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Kinetic theory models involving the Fokker-Planck equation, can be accurately discretised using a mesh support (Finite Elements, Finite Differences, Finite Volumes, Spectral Techniques). However these techniques involve a high number of approximation functions. When the model involves high dimensional spaces (including physical and conformation spaces and time) standard discretisation techniques fail due to the excessive computation time required to perform accurate numerical simulations. Stochastic simulations have been widely used to bypass the difficulty just referred to. However accurate representations of molecular conformation distributions require simulation of an extremely large number of trajectories of the stochastic processes, as well as working with a very small time step. Some new appealing strategies that allow these limitations to be circumvented are based on the use of a reduced approximation basis within an adaptive procedure, some of them making use of an efficient separated representation of the solution. This paper explores the potential of these new advanced strategies.

Introduction

Many natural and synthetic fluids are viscoelastic materials, in the sense that the stress endured by a macroscopic fluid element depends upon the history of the deformation experienced by that element. Notable examples include polymer solutions and melts, liquid crystalline polymers and fibre suspensions. Rheologists thus face a challenging non-linear coupling between flow-induced evolution of molecular configurations, macroscopic rheological response, flow parameters (such as the geometry and bound-ary conditions) and final properties. Theoretical modelling and methods of computational rheology have an important role to play in elucidating this coupling.

Atomistic modelling is the most detailed level of description that can be applied today in rheological studies, using techniques of non-equilibrium molecular dynamics. Such calculations require enormous computer resources, and even then they are currently limited to flow geometries of molecular dimensions. Consideration of macroscopic flows found in processing applications calls for less detailed mesoscopic models, such as those of kinetic theory.

Models of kinetic theory provide a coarse-grained description of molecular configurations wherein atomistic processes are ignored. They are meant to display in a more or less accurate fashion the important features that govern the flow-induced evolution of configurations. Over the last few years, different models related to dilute polymers have been evaluated in simple flows by means of stochastic simulation or Brownian dynamics methods.

In recent years, kinetic theory of entangled systems such as concentrated polymer solutions and polymer melts, has seen major developments that go well beyond the classical reptation tube model developed by Edwards, de Gennes, and Doi. The basic Doi-Edwards theory of linear entangled polymers cannot be used as such for simulating complex flows as it predicts a material instability due to excessive shear-thinning beyond some critical deformation rate.

Kinetic theory models can be very complicated mathematical objects. It is usually not easy to compute their rheological response in rheometric flows, and their use in numerical simulations of complex flows has long been thought impossible. The traditional approach has been to derive from a particular kinetic theory model a macroscopic constitutive equation that relates the viscoelastic stress to the deformation history. One then solves the constitutive model together with the conservation laws using a suitable numerical method, to predict velocity and stress fields in complex flows. The majority of constitutive equations used in continuum numerical simulations are indeed derived (or at least very much inspired) from kinetic theory.

Indeed, derivation of a constitutive equation from a model of kinetic theory usually involves closure approximations of a purely mathematical nature such as decoupling or pre-averaging. It is now widely accepted that closure approximations have a significant impact on rheological predictions for dilute polymer, solutions, or fibre suspensions.

In this context, micro-macro methods of computational rheology that couple the coarse-grained molecular scale of kinetic theory to the macroscopic scale of continuum mechanics have an important role to play. This approach is much more demanding of computer resources than more conventional continuum simulations that integrate a constitutive equation to evaluate the viscoelastic contribution of the stress tensor. On the other hand, micro-macro techniques allow the direct use of kinetic theory models and thus avoid the introduction of closure approximations.

Since the early 1990s the field has developed considerably, following the introduction of the CONNFFESSIT method by Ottinger and Laso [START_REF] Öttinger | Smart polymers in finite element calculation[END_REF]. Being relatively new, micro-macro techniques have been implemented only for models of kinetic theory with few configurational degrees of freedom, such as non-linear dumbbell models of dilute polymer solutions and single-segment tube models of linear entangled polymers.

Kinetic theory provides two basic building blocks: the diffusion or Fokker-Planck equation that governs the evolution of the distribution function (giving the probability distribution of configurations) and an expression relating the viscoelastic stress to the distribution function. The Fokker-Planck equation has the general form:

dψ dt + ∂ ∂ X ( Aψ) = 1 2 ∂ ∂ X ∂ ∂ X : (Dψ) (1) 
where dψ dt is the material derivative, vector X defines the coarse-grained configuration and has dimensions N . Factor A is a N -dimensional vector that defines the drift or deterministic component of the molecular model. Finally D is a symmetric, positive definite N × N matrix that embodies the diffusive or stochastic component of the molecular model. In general both A and D (and in consequence the distribution function ψ ) depend on the physical coordinates x, on the configuration coordinates X and on the time t.

The second building block of a kinetic theory model is an expression relating the distribution function and the stress. It takes the form:

τ p = C g( X)ψd X (2) 
where C represents the configuration space and g is a model-dependent tensorial function of the configuration. In a complex flow, the velocity field is a priori unknown and stress fields are coupled through the conservation laws. In the isothermal and incompressible case the conservation of mass and momentum balance are then expressed (neglecting the body forces) by:

Div v = 0 ρ d v dt = Div(-pI + τ p + η s d) (3) 
where ρ is the fluid density, p the pressure and η s d a purely viscous component (d being the strain rate tensor). The set of coupled equations ( 1)-( 3), supplemented with suitable initial and boundary conditions in both physical and configuration spaces, is the generic multiscale formulation. Three basic approaches have been adopted for exploiting the generic multiscale model:

1. The continuum approach wherein a constitutive equation of continuum mechanics that relates the viscoelastic stress to the deformation history is derived from, and replaces altogether, the kinetic theory model ( 1) and ( 2). The derivation process usually involves closure approximations. The resulting constitutive model takes the form of a differential, integral or integro-differential equation. It yields molecular information in terms of averaged quantities, such as the second moment of the distribution: C X ⊗ Xψd X 2. The Fokker-Planck approach wherein one solves the generic problem (1) to (3) in both configuration and physical space. The distribution function is thus computed explicitly as a solution of the Fokker-Planck equation [START_REF] Abakumov | Efficient fast direct method for solving Poisson's equation on a parallelepiped and its implementation in an array processor[END_REF]. The viscoelastic stress is computed from (2).

3.

The Stochastic approach which draws on the mathematical equivalence between the Fokker-Planck equation ( 1) and the following Ito stochastic differential equation:

dX = A dt + B dW (4) 
where D = B B T and W is a Wiener stochastic process of dimension N . In a complex flow, the stochastic differential equation ( 4) applies along individual flow trajectories, the time derivative is thus a material derivation. Instead of solving the deterministic Fokker-Planck equation ( 1), one solves the associated stochastic differential equation ( 4) for a large ensemble of realisations of the stochastic process X by means of a suitable numerical technique. The distribution function is not computed explicitly, and the viscoelastic stress (2) is readily obtained as an ensemble average.

For more details concerning the micro-macro approach readers can refers to the review paper [START_REF] Keunings | Micro-macro methods for the multiscale simulation viscoelastic flow using molecular models of kinetic theory[END_REF] and the references therein.

The continuum approach has been adopted throughout the development of computational rheology. First simulations were obtained in the early 1980s. Two decades later, macroscopic numerical techniques based upon the continuum approach remain under active development.

The control of the statistical noise is a major issue in stochastic micro-macro simulations based on the stochastic approach. Moreover, to reconstruct the distribution one needs to operate with an extremely large number of particles. However, in general, only those moments in such a distribution which can be computed using a much more reduced population of particles, are required. Thus, some stochastic simulations of multi-bead-spring (MBS) models have been successfully carried out, see for example [START_REF] Somasi | Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues[END_REF]. These problems do not arise at all in the Fokker-Planck approach. The difficulty, however, is that the Fokker-Planck equation (1) must be solved for the distribution function in both physical and configuration spaces. This necessitates a suitable discretisation procedure for all relevant variables, namely position, configuration X and time t. Until now, the dimensionality of the problem could be daunting and consideration of molecular models with many configurational degrees of freedom did not appear feasible. This probably explains why relatively few studies based of the Fokker-Planck approach have appeared in the literature until very recently. In [START_REF] Chauviere | Simulation of dilute polymer solutions using a Fokker-Planck equation[END_REF][START_REF] Lozinski | A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: two-dimensional FENE model[END_REF] the resolution of the Fokker-Planck equation involving a moderate number of dimensions is considered. Another deterministic particle approach, very close to that proposed in [START_REF] Chaubal | Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems[END_REF], was analysed in [START_REF] Ammar | Deterministic particle approach of multi-bead-spring polymer models[END_REF] in the context of MBS models using smooth particles, but it was noticed that the impact of smoothing on the solution is in fact significant.

Kinetic theory models involving the Fokker-Planck equation, can be accurately discretised using a mesh support (Finite Elements, Finite Differences, Finite Volumes, Spectral Techniques). However these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function (also known as shape function) is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time) standard discretisation techniques fail due to the excessive computation time required to perform accurate numerical simulations. To alleviate the computational effort some reduction strategies have been proposed, as in the case of the Partial Solution of the Cyclic Reduction (PSCR) [START_REF] Kuznetsov | On partial solution of systems of linear algebraic equations[END_REF][START_REF] Rossi | A nonstandard cyclic reduction method, its variants and stability[END_REF][START_REF] Rossi | A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension[END_REF] which solves linear systems by using techniques for the separation of variables, partial solution and projection techniques [START_REF] Abakumov | Efficient fast direct method for solving Poisson's equation on a parallelepiped and its implementation in an array processor[END_REF][START_REF] Kuznetsov | Block relaxation methods in subspaces their optimization and application[END_REF][START_REF] Vassilavski | Fast algorithm for solving a linear algebraic problem with separable variables[END_REF]. Despite the significant reduction in the computational effort this technique can be only applied to solve particular partial differential equations and it also fails in the multidimensional case.

Another appealing strategy that helps to alleviate the computational effort is based on the use of reduced approximation bases within an adaptive procedure. The new approximation functions are defined in the whole domain and they contain the most representative information of the problem solution. Thus, the number of degrees of freedom involved in the resolution of the Fokker-Planck equation is drastically reduced. The construction of those new approximation functions is done with an 'a priori' approach, which combines a basis reduction (using the Karhunen-Love decomposition) with a basis enrichment based on the use of some Krylov subspaces. This strategy has been successfully applied, in some of our earlier works, to solve kinetic theory models defined on the surface of the unit sphere (for simulating short fibre suspensions or liquid crystalline polymers) [START_REF] Ryckelynck | On the a priori model reduction: overview and recent developments[END_REF][START_REF] Ammar | Liquid-Crystalline Polymers reduced modelling[END_REF] as well as three-dimensional models describing FENE molecular models [START_REF] Ammar | On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells[END_REF], and it will be summarised in the first part of the present work. In this manner, an accurate description of a complex system evolution can, in general, be carried out from the linear combination of a reduced number of space functions (defined in the whole domain), the coefficients of that linear combination evolving in time. Thus, during the resolution of the evolution problem the coefficients of the approximation are computed at the same time as the numerical algorithm constructs the reduced approximation basis. An important drawback of this type of approach is the fact that the approximation functions are defined in the whole domain, and until now, the simplest form for representing one such function is by giving its value in some points of the domain of interest, its value being defined at any other point by interpolation. Sometimes the resulting model is highly multidimensional, and in this case the possibility of describing functions from their values at the nodes of a mesh or a grid in the domain of interest results, is simply prohibitory. Some attempts exist concerning the treatment of multidimensional problems. The interested reader can refer to [START_REF] Bungartz | Sparse grids[END_REF] for a review on sparse grids methods involving sparse tensor product spaces, but despite its optimality, the interpolation is defined in the whole multidimensional domain, and consequently only problems defined in spaces of dimension of the order of tens can be treated. In [START_REF] Beylkin | Algorithms for numerical analysis in high dimensions[END_REF] multidimensional problems are revisited and deeply analysed, and for this purpose new mathematical entities are introduced to be applied in the numerical treatment of such problems. In conclusion, the problem relating to models defined in multidimensional spaces remains, and new efforts must be paid to reach significant improvements in the next few years.

Some of the most used kinetic theory models defined from a Fokker-Planck equation have two important particularities: (i) they can be expressed in separated form (this is the case for multi-bead models) and (ii) in general, realistic molecular models involve springs with finite extension which implies that the distribution function vanishes on the boundary of the domain where the springs conformation is defined. In this case, the separated representation and the definition of tensor product approximation spaces, run perfectly and allow us to circumvent the difficulties related to the multidimensional character of kinetic theory models, as proved in [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids[END_REF]. This technique consists of using a separated representation of the molecular conformation distribution, introduced in the variational formulation of the Fokker-Planck equation. This leads to an iteration procedure that involves at each step the resolution of a small-size non-linear problem. The resolution of those non-linear problems can be performed by using a standard Newton strategy, alternating directions resolution or more sophisticated strategies as the asymptotic numerical technique [START_REF] Cochelin | The asymptotic numerical method: an efficient perturbation technique for non-linear structural mechanics[END_REF]. Thus, the number of degrees of freedom involved in the discretisation of the Fokker-Planck equation can be reduced from (n n ) N (required in the usual grid/mesh based strategies) to (n n ) × N (n n being the number of nodes involved in the discretisation of each conformation coordinate and N the dimension of the conformation space).

In [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids[END_REF] we considered the steady state solution of some classes of multidimensional partial differential equations, and in particular those governing the molecular configuration distribution in kinetic theory models of complex fluids. In the conclusion of that paper we claimed that the resolution of multidimensional transient Fokker-Planck equations could be considered within an incremental time discretisation. However, as time is only the same as the other coordinates, one could expect a coupled space-time resolution. The main difficulties related to such an approach lie in the fact that the initial condition is non-zero and the procedure proposed in [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids[END_REF] cannot be applied in a direct manner. Other difficulties lie in the fact that space approximations are built using standard piece-wise functions, and when this kind of approximation is used to construct time interpolation, a known inconsistency related to centred differences of time derivatives is encountered. In [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part 2: Transient simulation using space-time separated representations[END_REF] we propose alternatives to circumvent both difficulties, and then to allow an efficient treatment of multidimensional transient kinetic theory models.

The novelty of this technique means that it is justifiable to raise the following issues: (i) the treatment of non-linear Fokker-Planck equations; (ii) optimal basis enrichment; (iii) richer physical spaces; (iv) analysis of complex flows involving a non-homogeneous solution in the physical space; (v) general initial conditions; (vi) analysis of convergence; (vii) stabilisation of advection operators. Some suggestions on how to move forward with respect to these issues will be summarised in the Conclusion section of this paper. In any case, we would like to emphasise that we are not looking for a general numerical procedure for solving multidimensional PDE. In this context, the sparse grids or sparse tensor product bases [START_REF] Bungartz | Sparse grids[END_REF] are excellent candidates, but they are not able to treat highly multidimensional problems (N 20) as claimed in [START_REF] Achdou | Computational methods for option pricing[END_REF]. The technique proposed in our former work [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids[END_REF] and extended in [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part 2: Transient simulation using space-time separated representations[END_REF] to transient simulations is, in our opinion, a suitable choice when we are dealing with highly multidimensional parabolic PDE with homogeneous boundary conditions, and despite the apparent detriment of its generality that this assumption seems to imply, the usual molecular description makes use of a configuration distribution function defined in a bounded domain and which vanishes on its boundary.

As the different numerical approaches will be illustrated through the solution of FENE and MBS kinetic theory models, we start by introducing both models in the next section.

Kinetic theory models 2.1 The FENE model

The dumbbell model consists of two beads connected by a spring connector. The beads serve as an interaction point with the solvent and the spring contains the local stiffness depending on local stretching (see [START_REF] Bird | Dynamics of polymeric liquids[END_REF] for more detail). The dynamic of the chain is governed by viscous, Brownian, and connector forces. If we denote by ṙ1 and ṙ2 the velocities of the two beads, these three contributions can be easily identified in the three terms in:

-ζ( ṙ2 -u 0 -Gradu r 2 ) -k b T ∂ ∂r 2 (ln ψ) -F c = 0 (5) -ζ( ṙ1 -u 0 -Gradu r 1 ) -k b T ∂ ∂r 1 (ln ψ) + F c = 0 ( 6 
)
where ζ is the drag coefficient, u is the velocity field, u 0 is an average velocity, k b is the Boltzman constant, T is the absolute temperature and ψ is the probability distribution function. Using the definition of the connector vector q = r 2 -r 1 we can derive the following equation:

q = Gradu q - 2 ζ k b T ∂ ∂q (ln ψ) + F c (q) (7) 
The connector force can take different forms leading to different kinetic models. In this work a nonlinear extensible dumbbell (FENE) is considered. The connector force is then given by:

F c (q) = H 1 -q 2 /q 2 0 q (8) 
where q 2 = q 2 , H is a connector constant and q 0 is the maximum spring length. Particular to this model is that it has no equivalent constitutive macroscopic equation [START_REF] Keunings | On the Peterlin approximation for finitely extensible dumbells[END_REF]. The associated evolution equation for the distribution function can be written as:

∂ψ ∂t = - ∂ ∂q Gradu q - 2 ζ F c (q) ψ + 2k b T ζ ∂ 2 ψ ∂q 2 (9) 
The problem defined by equation ( 9) has a characteristic relaxation time θ = ζ/4H and a dimensionless finite extensibility parameter b = Hq 2 0 /k b T . Thus vector q can be made dimensionless with k b T /H, grad (u) with 1/θ (so it can be viewed as a Weissenberg number W e), time with θ and the polymer stress tensor with n c k b T where n c is the number of chains per unit of volume. Consequently, the dimensionless form of ( 9) is:

∂ψ ∂t = - ∂ ∂q Gradu q - 1 2 f (q)q ψ + 1 2 ∂ 2 ψ ∂q 2 (10) 
where f (q) becomes the dimensionless connector force, that in the FENE model results:

f (q) = 1 1 -q 2 /b (11) 
Moreover, a normalisation condition is associated with the probability distribution:

C ψ(q) dq = 1 (12) 
Finally, the relation between statistical distribution of dumbbell configurations and the polymer stress τ p is provided by the Kramers expression:

τ p =< f (q) q ⊗ q > -1 = ψ(q)f (q)q ⊗ q dq -1. (13) 
with 1 the unit tensor.

We must notice with respect to equation ( 10) that this equation defines the time evolution of the distribution function, whose integration requires the initial distribution that we denote by ψ 0 , to be specified. A reasonable choice lies in taking as the initial distribution the equilibrium steady state related to a null velocity gradient. That distribution can be obtained by solving ∂ ∂q

1 2 f (q) q ψ 0 + 1 2 ∂ 2 ψ 0 ∂q 2 = 0 (14) 
By symmetry considerations ψ 0 = ψ 0 ( q ), and accounting that ψ( q ) 2 > b) = 0, the solution of the previous equation results in

ψ 0 ( q ) = f (q) -b/2 C f (q) -b/2 dq (15)

The MBS model

The MBS chain consists of S + 1 beads connected by S springs. The bead serves as an interaction point with the solvent and the spring contains the local stiffness information depending on local stretching (see [START_REF] Bird | Dynamics of polymeric liquids[END_REF] for more details). The dynamics of the chain are governed by hydrostatic, Brownian and connector forces. If we denote by ṙk the velocity of the bead k and by qk the velocity of the spring connector, we obtain qk = ṙk+1 -ṙk ∀k = 1, ..., S

The dynamics of each bead can be written as:

-ζ( ṙk -u 0 -Gradu r k ) Hydrostatic ef f ects -k b T ∂ ∂r k ln(ψ)
Brownian ef f ects

+ F c k -F c k-1 Interactions F orces = 0 ( 17 
)
where ζ is the drag coefficient, u is the velocity field, u 0 is an average velocity, k b is the Boltzman constant, T is the absolute temperature and ψ is the probability distribution function. From equations ( 16) and ( 17) it results:

qk = Gradu q k - 1 ζ S l=1 A kl k b T ∂ ∂q l ln(ψ) + F c l ( 18 
)
where A kl is the Rouse matrix defined by

A kl =    2 if k = l -1 if k = l ± 1 0 otherwise
In the Rouse model the connector force F c is a linear function of the connector orientation vector. In our case a FENE spring will be used. In this case the dimensionless connector force results:

F c (q k ) = 1 1 -q 2 k /b q k (19)
where √ b is the maximum stretching value of each spring connector of the chain. Such a model can characterise individualist behaviour especially in elongational flows.

Introducing Equation ( 18) into the distribution function evolution equation

∂ψ(q 1 , ..., q S , t) ∂t = - S k=1 ∂ ∂q k ( qk ψ(q 1 , ..., q S , t)) (20) 
we obtain

∂ψ ∂t = - S k=1 ∂ ∂q k (Gradu q k - 1 ζ S l=1 A kl F c l ) ψ + + k b T ζ S k=1 S l=1 A kl ∂ 2 ψ ∂q k ∂q l (21)

Reduced order modelling

In the following Equations ( 10) and ( 21) will be solved by using two different reduced model techniques.

Introduction: The Karhunen-Love decomposition

We assume that the evolution of a certain field u(x, t) is known (as its evolution is governed by a PDE). For the sake of clarity, from now on, vectors will be affected by an underline, and matrix by a double underline. In practical applications, this field is expressed in a discrete form, that is, it is known at the nodes of a spatial mesh and sometimes as u(x i , t n ) ≡ u n i . We can also write introducing a time discretisation u n (x) ≡ u(x, t = n∆t); ∀n ∈ [1, • • • , P ]. The main idea of the Karhunen-Love (KL) decomposition is to obtain the most typical or characteristic structure φ(x) among these u n (x), ∀n. This is equivalent to obtaining a function φ(x) that maximises λ defined by

λ = n=P n=1 i=Nn i=1 φ(x i )u n (x i ) 2 i=N i=1 (φ(x i )) 2 (22) 
The maximization (δλ = 0) leads to:

n=P n=1 i=Nn i=1 φ(x i )u n (x i ) j=Nn j=1 φ(x j )u n (x j ) = λ i=Nn i=1 φ(x i )φ(x i ); ∀ φ (23)
which can be rewritten in the form

i=Nn i=1 j=Nn j=1 n=P n=1 u n (x i )u n (x j )φ(x j ) φ(x i ) = λ i=Nn i=1 φ(x i )φ(x i ); ∀ φ (24) 
Defining the vector φ such that its i-component is φ(x i ), Equation ( 24) takes the following matrix form

φT k φ = λ φT φ; ∀ φ ⇒ k φ = λφ (25) 
where the two points correlation matrix is given by

k ij = n=P n=1 u n (x i )u n (x j ) ⇔ k = n=P n=1 u n (u n ) T (26) 
which is symmetric and positive definite. If we define the matrix Q containing the discrete field history:

Q =      u 1 1 u 2 1 • • • u P 1 u 1 2 u 2 2 • • • u P 2 . . . . . . . . . . . . u 1 Nn u 2 Nn • • • u P Nn      (27) 
is direct to verify that the matrix k in Equation ( 25) results

k = Q Q T (28)
Thus, the functions defining the most characteristic structure of u n (x) are the eigenfunctions φ k (x) ≡ φ k associated with the highest eigenvalues.

A posteriori reduced modelling

If some direct simulations have been carried out, we can determine u(

x i , t n ) ≡ u n i , ∀i ∈ [1, • • • , N n ] ∀n ∈ [1, • • • , P ],
and from these the r eigenvectors related to the r-highest

eigenvalues φ T k = [φ k (x 1 ), • • • , φ k (x Nn )] ∀k ∈ [1, • • • , r] (with r N n
). Now, we can try to use these r eigenfunctions for approximating the solution of a problem slightly different to the one that has served to define u(x i , t n For this purpose we need to define the matrix

B B =      φ 1 (x 1 ) φ 2 (x 1 ) • • • φ r (x 1 ) φ 1 (x 2 ) φ 2 (x 2 ) • • • φ r (x 2 ) . . . . . . . . . . . . φ 1 (x Nn ) φ 2 (x Nn ) • • • φ r (x Nn )      (29) 
Now, we consider the linear system of equations resulting from the discretisation of a partial differential equation (PDE) in the form

K U n = F n-1 (30)
that in the case of evolution problems F n-1 contains the contribution of the solution at the previous time step. Then, the unknown vector containing the nodal degrees of freedom can be expressed as

U n = i=r i=1 φ i a n i = B a n (31) which implies K U n = F n-1 ⇒ K B a n = F n-1 (32)
and multiplying both terms by B T it results

B T K B a n = B T F n-1 (33)
which proves that the final linear system is of small size, that is, the dimensions of B T K B are r × r, with r N n , and the dimensions of both a and B T F are r × 1.

Remark 3.1 Equation (33) can be also derived introducing the approximation (31)

into the PDE Galerkin form.

Adaptivity via an "a priori" model reduction

In order to compute reduced model solutions without an a priori knowledge, Ryckelynck proposed in [START_REF] Ryckelynck | A priori hyperreduction method: an adaptive approach[END_REF] to start with a low order approximation basis, using some simple functions (for example, the initial condition in transient problems) or using the eigenvectors of a similar problem which has already been solved. Now, we compute S time steps of the evolution problem using the reduced model (33) without changing the approximation basis B (0) (the superscript indicates that this is the first reduced approximation basis used). For a more general description we consider that the approximation basis has been updated m times until now, that is, the approximation basis at the present time is B (m) . Now, we compute S time steps of the reduced model without changing the approximation basis. After each S time steps, the complete linear system (32) is constructed, and the residual R evaluated:

R = K U -F = K B (m) a (m) -F (34) 
Remark 3.2 For the sake of simplicity in the notation, from now on in this section, we omit the superscript related to the time step in vectors a and F , and a (m) refers to the vector containing the approximation coefficients associated with the approximation basis B (m) .

If the norm of the residual verifies R < ε, with ε a threshold value small enough, we can continue for other S time steps using the same approximation basis B (m) . On the contrary, if the residual norm is too large, R > ε, we come back to t = t -S∆t, we put S = S/2 and recompute. When the residual becomes small enough, i.e. R < ε the reduced approximation basis is enriched using some Krylov's subspaces {R, K R, K 2 R, • • • }. At this time, the reduced solution a n(m) is stocked (n represents the corresponding time step). Now, we compute the most representative information extracted from the reduced solutions a n(m) previously stocked. The superscript (m) indicates that these reduced order solutions are expressed on the basis B (m) . Now, applying the Karhunen-Love decomposition to the solution evolution represented for these vectors a n(m) (∀n) we obtain the most representative eigenvectors defining the matrix V .

Then, the evolution process can continue for other S time steps, using the enriched basis defined by: B (m+1) = {B (m) V , R, K R, K 2 R} (in our simulation we consider only the first three Krylov's subspaces).

After each reduced basis modification, the previous reduced solutions that have been stocked a n(m) must be projected into the new basis. Thus, we can write:

a n(m+1) = (B (m+1) ) T B (m+1) -1 B (m+1) T B (m) a n(m) , ∀n (35) 

Numerical examples in kinetic theory model reduction

To illustrate the potentiality of the strategy just described we consider in this section a three-dimensional start-up elongation flow problem of a complex fluid described by the FENE model. Readers can also refer to [START_REF] Ammar | On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells[END_REF] for a detailed description or to [START_REF] Ryckelynck | On the a priori model reduction: overview and recent developments[END_REF] or [START_REF] Ammar | Liquid-Crystalline Polymers reduced modelling[END_REF] to other applications concerning short fibre suspensions or liquid crystalline polymers respectively. The flow is characterised by grad(u) = diag(1, -0.5, -0.5)W e.

In this case the distribution function result homogeneous in the whole physical domain, and it only depends on the conformation coordinates (spring connector) and time. The spring connector is defined in the three-dimensional space, and then its coordinates are defined by √ b[ 3 has been partitioned with a regular quadrilateral mesh, whose element size is defined by its dimensions on each coordinate axis: h 1 = 0.03 and h 2 = h 3 = 0.1. The time step has been fixed to ∆t = 10 -5 . Planes x 1 = 0, x 2 = 0 and x 3 = 0 are used for the graphical representation of the solution evolution and the different approximation functions.

q T = (x 1 , x 2 , x 3 ) ∈ C =] - √ b, √ b[ 3 ,
The solutions computed at times t = 0, 0.1, 0.2 and 2 are shown in Figure 1(a)-(d). The whole simulation involves only 11 approximation functions, whose two most significant ones are represented in Figure 2(a)-(b). In [START_REF] Ammar | On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells[END_REF] we noticed that the number of approximation functions required to approximate the whole evolution of the distribution function is not affected by the dimensionality of the problem. That is, in one-dimensional, two-dimensional or three-dimensions the number of approximation functions is the same. The evolution of the associated reduced basis coefficients is depicted in Figure 2(c) and the evolution of the number of approximation functions in Figure 2(d). In this case the exact steady solution can be obtained, allowing us to draw conclusions about the excellent accuracy of the proposed reduced order technique [START_REF] Ammar | On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells[END_REF].

Separated representation and tensor product spaces

The Fokker-Planck equation being a parabolic PDE, we consider in this section, for the sake of simplicity, a similar equation (parabolic PDE) but involving simpler notation, as is the case of the transient Poisson problem defined in a N -dimensional space, given by:

∂T ∂t -T = f (x 1 , x 2 , ..., x N ) ( 36 
)
where T is assumed a scalar function of space and time T (x, t) = T (x 1 , x 2 , ..., x N , t). Problem (36) is assumed to be defined in the domain

Ω = Ω x ×Ω t =]-L, +L[ N ×]0, t max ]
and T is assumed to vanish on the space boundary, that is T (x ∈ ∂Ω x , t) = 0 as well as at the initial time, that is T (x, t = 0) = 0.

Remark 4.1 Most of kinetic theory models are defined in a bounded domain, with the associated distribution function vanishing on its boundary. Despite the fact that these models are subjected to a non-zero initial condition, it is more direct to prove that the subtraction of this initial condition from the original distribution function leads to another function, verifying a slightly different Fokker-Planck equation, which vanishes on the domain boundary as well as at the initial time.

The problem solution takes the form:

T (x 1 , x 2 , ..., x N , t) = ∞ j=1 α j N k=1 F kj (x k ) F (N +1)j (t) (37) 
where F kj is the j th basis function which only depends on the k th space coordinate. From now on, time is considered as one more coordinate.

The construction of such a solution (Equation ( 37)) consists of an iteration procedure involving two steps at each iteration n:

1. Projection of the solution on a discrete basis. If we assume the functions F kj (∀j ∈ [1, ..., n]; ∀k ∈ [1, ..., N + 1]) known (verifying the boundary and initial conditions), the coefficients α j , j ∈ [1, • • • , n], can be computed by introducing the approximation of T (Equation ( 37)) into the Galerkin variational formulation associated with Equation (36) which results in a linear system of size n × n.

Enrichment of the approximation basis.

From the alpha coefficients just computed the approximation basis can be enriched by adding the new function

N k=1 F k(n+1) (x k ) F (N +1)(n+1) (t).
For this purpose we solve the Galerkin variational formulation related to Equation (36) using the approximation of T given by:

T (x 1 , x 2 , ..., x N , t) = n j=1 α j N k=1 F kj (x k ) F (N +1)j (t) + + N k=1 R k (x k ) R (N +1) (t) (38) 
which results in a non-linear problem of the size N +1 i n i n being n i n the number of nodes used to approximate function R i . Functions F k(n+1) are finally obtained by normalising the functions R 1 , R 2 , ..., R N +1 .

Numerical example

The case analysed here concerns a one-dimensional start-up elongation flow problem of a complex fluid described by the MBS-FENE model. The problem is defined by N and b = 20/N , being N the number of spring connectors considered: N = 1, 3, 5 and 7 (all of them are defined in a one-dimensional physical domain and its number defines the dimension of the conformation space, allowing us to write Ψ(q 1 , q 2 , • • • , q N , t)). Each conformation space is discretised by using 200 nodes, 40 being enough to discretise the time interval ]0, t max=20 ] (at t max the steady state is almost reached). Figures 3,4, 5 and 6 depict the solutions related to N = 1, 3, 5 and 7 respectively, where, due to the symmetry problem, only the functions related to the first (N + 1)/2 connectors are represented. Now, multiplying different functions with the same colour and then summing the results of those products affected by its associated coefficient (proportional to the line width), the distribution function can be reconstructed (in a multidimensional space of dimension N ). It must be noted that, in the last case, (N = 7) the computation of the solution using the finite element method needs to proceed with 200 7 ≈ 10 16 degrees of freedom at each time step.

Conclusions and perspectives

This paper explores the ability of some recent numerical strategies to solve transient multidimensional parabolic PDE with homogeneous boundary conditions, as usually encountered in kinetic theory modelling.

The technique, based on the use of reduced approximation bases, can be success- fully applied to simulate kinetic theory models defined in a space of moderate dimensions. However fails in highly dimensional spaces, where the technique based on a separated representation of the solution seems to be an excellent candidate for treating this kind of complex model. If we come back to the opening problems, listed in the first section, the first point concerning the treatment of non-linear Fokker-Planck equations does not involve major difficulties. One could proceed by linearising, and then applying the procedures proposed in [START_REF] Ammar | A fast solver for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids[END_REF] in the steady case, or the one just described in transient simulations.
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The second point concerns the optimal choice of the number of degrees of freedom to be used in the discretisation of each dimension. The use of a wavelet approximation could offer an optimal refinement via the multi resolution property of wavelets (additional degrees of freedom are only required in regions where the wavelets coefficients are not small enough).

When richer physical spaces are considered, two difficulties are found: (i) the molecular conformation function is defined in a bounded domain but not a hypercube; and (ii) in the case of MBS models the advection terms related to each spring cannot be separated as a product of terms involving each one of the physical space directions. In this case a suitable approximation consists of:

ψ(q 1 , • • • , q N , t) = ∞ j=1 α j F 1j (q 1 ) • • • F N j (q N )G j (t) (39) 
and then the approximation of each function F is built in a space of the same dimension as the physical space. This procedure can be applied easily in complex flow simulations involving nonhomogenous solutions in the physical space, by considering a micro-macro approach in the context of a splitting solution of the FP equation. For this purpose, we could consider that each node used in the discretisation of the physical domain moves along its flow trajectory, allowing the integration of the advection operator (in the physical space) of the Fokker-Planck equation using the method of characteristics. Then, from the distribution just computed, the conformation part of the FP equation is solved using the procedure described here during the time step used in the flow kinematics resolution. The final distribution allows the calculation of the extra-stress tensor at each nodal position that will be used to update the flow kinematics. The only remaining difficulty lies in the fact that nodes are assumed to move with the flow, which leads to highly distorted elements if one uses the finite element method (FEM) for solving momentum and mass balance equations. One possibility to circumvent this difficulty consists of using the meshless natural element method (NEM) [START_REF] Martinez | Natural element meshless simulation of injection processes involving short fiber suspensions[END_REF] instead of the usual finite elements, because the accuracy of the NEM does not require any geometrical quality of the nodal distribution. Another possibility consists of using the same splitting strategy as in a fixed mesh with an appropriate stabilisation of the advection operator concerning the physical space.

In the case of general initial conditions, we can compute a separated representa-tion of that initial condition (as the sum of a product of terms involving the different coordinates) using, for example, an alternating least squares technique [START_REF] Beylkin | Algorithms for numerical analysis in high dimensions[END_REF].

The first convergence results seem to reveal that the proposed technique is only first order when the time is considered, but it seems to be third order (using the error norm) when multidimensional elliptic partial differential equations are examined, one order higher than the expected second order characteristic of the finite element discretisations using approximations with linear consistency. Further analyses are in progress.

At present the implemented stabilisation of the advection operators involving the conformation space has been inspired by a SUPG technique. The results obtained in two-dimensional or three-dimensional simulations have been compared with the results computed with more experienced stabilised techniques in the finite elements of finite differences, proving the suitability of the proposed stabilisation for accounting dominant advection effects. However a deeper analysis must be achieved.

Due to the novelty of these approaches it CPU time is a sensitive issue. In any case, the computing time seems to be lower (at present) than that of more experienced stochastic simulations, allowing us to accurately compute both the distribution function and its moments. The benefits are more evident as the dimensions of the space where the problem is defined increase. Of course, standard finite element simulations are prohibitory in that case.

  with b = 10 and W e = 5 in the examples that follow. Due to the expected symmetry of the distribution function, only the subdomain C =]0,
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 1 Figure 1: Three-dimensional start-up elongation W e = 5, b = 10: (a) Distribution function t = 0.0; (b) Distribution function t = 0.1; (c) Distribution function t = 0.2; (d) Distribution function t = 2.0.
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 2 Figure 2: three-dimensional start-up elongation W e = 5, b = 10: (a) Most significant function; (b) Second most significant function; (c) Evolution of the reduced order approximation coefficients; (d) Evolution of the number of approximation functions.
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 3 Figure 3: MBS model consisting of N = 1 spring, W e = 0.4 √ N and b = 20/N
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 456 Figure 4: MBS model consisting of N = 3 springs, W e = 0.4 √ N and b = 20/N