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Abstract— This notes concerns the non-uniform entropy (NUE)
coding, and describes some of the main properties due to such
a type of code.

Index Terms— Entropy coding, Networked controlled systems,
NCS.

I. I NTRODUCTION

T His paper deals with systems interconnected by a com-
munication network where information is transmitted via

a particular coding algorithm. Many of such type of control
architectures has been studied recently. Some examples are:
[7], [3], [9], [10], [13], [8], [5], [1], [2], and [4] among others.

In particular, delta modulation (∆-M ) is a well-known
differential coding technique used for reducing the data rate
required for voice communication, see [12]. The standard
technique is based on synchronizing a state predictor on
emitter and receiver and just sending a onebit error signal
corresponding to the innovation of the sampled data with
respect to the predictor. The prediction is then updated by
adding a positive or negative quantity (determined by the
bit that has been transmitted) of absolute value∆, a known
parameter shared between emitter and receiver.

We have recently investigate the closed-loop properties of
the ∆-M algorithm when used in the feedback loop. Our
results in [2], have suggested some modification of the original
form of the∆-M algorithm to improve the closed-loop prop-
erties when used in feedback within the context of Networked
controlled systems (NCS). The results showed that the stability
domain and the resulting precision of the∆-M is limited
by the position of the largest unstable pole of the system.
Although this can be improved by increasing the sampling
rate, or by the use of extra bits [6], this possibility is clearly
limited by the maximum permissible data transmission rate.
Further studies, have also shown that it is possible to make the
modulation gain adaptive so as to improve the global stability
results [4].

The aim of this work is to explore yet another variant of the
∆-M structure to improve data transmission efficiency in the
context of NCS. High compression rates can only be reached
by the use of entropy coding. Entropy coding introduce
redundancy and assigns some probability distribution to the
events. In that way, the mean code length can be reduced.

A pre-requisite for the entropy coding strategy is to design
a mechanism with the ability to quantify and to differentiate

stand-still signal events, to changes in the source (label cross-
ing detector). For instance, this can be done by defining an
alphabet where the source signal information is contained in
the time interval between level crossing and in the direction
of the level crossing. As mentioned in [11], by assigning
strings of the 2-tuple00 to represent the time between signal
level crossing, and01 and 10 to denote the direction of
level crossing, the output of the nonuniform sampling encoder
contains a high probability of the0 symbol with makes it
suitable for an entropy encoder to attain a “good” overall
compression ratio. A fundamental difference with the classical
∆-M algorithm is that the error is coded on the basis of a
3-valued alphabet rather than a 2-valued one. These features
point toward the possibility of efficient encoding strategies.

The overall coding strategy studied here is composed of two
main blocks:

1) a non uniform sampling encoder, NSE, (i.e.asynchronous
delta modulation), including a model-based predictor,
MBP, similar to the one proposed in [2], and

2) a variable length-block encoding scheme, VLE,(i.e. Run-
length distortion-less encoding strategy) in which buffer-
ing is only requited at the input only.

The overall scheme is shown in Figure 1.
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Fig. 1. Block diagram of the non uniform entropy coding in thefeedback
loop.

The paper aims at studding the closed-loop properties of
such arrangement. Due to the fact that the VLE block is a
distortion less coding, and for simplicity reasons, the focus
of this study is directed toward the study of the stability
properties of the first coding block only.



A. Definitions

rk: reference signal,
xk: system state,
x̂k: estimated state,
x̃k: true estimated error,̃xk = xk − x̂k,
ˆ̃xk: approximated estimated error, obtained after reconstruc-

tion, i.e. ˆ̃xk = {ϕ−1
LD ◦ ϕLD}(x̃k)

∆: step interval used for level detection and to reconstruct
ˆ̃xk,

δk: 3-level valued integer signal:{−1, 0, 1}
νk: 2-bits binary signal;{00, 01, 10}
ηk: variable length binary signal to be send by the channel

(output of the RLE block.
uk: control input

B. Assumptions

The hypothesis used in the results presented in this paper,
are the following:

• The transmitted information is binary
• Only encoder-to-decoder information transmission is al-

lowed (feedback between decoder to encoder is forbid-
den),

• Reliable noiseless channel transmission is considered (no
data lost, or information distortion is considered),

• Transmission delays are neglected,

II. PROBLEM SET UP

We consider the following SISO discrete-time linear system
(possible unstable), of the form,

xk =
B(q−1)

A(q−1)
uk (1)

together with a RST controller,

uk =
R(q−1)

S(q−1)

{
γ

T (q−1)
rk − x̂k

}

(2)

whererk is the reference,̂xk is the estimated of the system
outputxk, andR(q−1), S(q−1), T (q−1) are the control poly-
nomials in the delay operatorq−1. They also satisfy:

T = RB, SA + RB = Acl, γ
△
= Acl(1)

with Acl being the closed-loop polynomial, andγ the static
gain needed to reach unitary zero-frequency gain. For simplic-
ity, we will omit the use of the argument(q−1) when needed.

The coding process consists in: 1) encoding the system
output xk, 2) transmitting the coding sequence through the
communication channel, and 3) decoding the received infor-
mation to produce the estimated̂xk. The complete sequence
can be seen as estimation process.

When x̂k ≡ xk, the above controller give the following
closed-loop relation,

xk =
γ

Acl(q−1)
rk

else (̂xk 6= xk), we have,

xk =
γ

Acl(q−1)
rk + W (q−1)x̃k

wherex̃k = xk−x̂k is the estimation error, andW = BR/Acl.
As Acl defines a stable polynomial, the outputxk is keep
bounded as long as̃xk is bounded as well.

The problem is then to design the coding process that
defines the output̂xk preserving closed-loop properties. This
process is described next.

III. C ODING PROCESS

The coding (encoding/decoding) process is composed of
several steps, described by the following operations:

xk 7→
︸︷︷︸

NU−enc.

νk 7→
︸︷︷︸

E−enc.

ηk ⇒
︸︷︷︸

channel

η̂k 7→
︸︷︷︸

E−dec.

ν̂k 7→
︸︷︷︸

NU−dec.

x̂k

As shown in Figure 1, the encoder (respectively the inverse
decoder) operation is composed of two separate blocks:

• The non uniform sampler encoder (NUE) together with a
model-based predictor (MBP), this operation mapsxk 7→
νk (respectively the decoder mapsν̂k 7→ x̂k), and

• A variable length encoder (VLE) mapping the 3-valued
signal,νk to the string binary signalηk (respectively, the
decoder mapŝηk 7→ ν̂k).

Each of these components are described next.

A. Description of the NUE and the MBP

Elements composing the Non-Uniform Entropy coding and
the model-based predictor are the following:

1) The Level Detector:(ϕLD : x̃k 7→ νk), take the error
signal and codes the output signals into a 3-valued oneδk ∈
{−1, 0, 1} (or equivalent to the binary signalνk). That is:

δk =







1 if one level is crossed uppwards
0 if signal stay at the acual level

−1 if one level is crossed dawnwards

Equations behind this are:

lk =







⌊
x̃k

∆

⌋
if , x̃k > 0

0 if , x̃k = 0
⌈

x̃k

∆

⌉
if , x̃k < 0

δk = f(x̃k) =

{
0 if , lk = lk−1

sign(lk − lk−1) else

the level threshold is∆, and the floor operator⌊·⌋ rounds to
the smaller integer, and the ceil operator⌈·⌉ rounds to the
larger integer.

Finally, the 3-valued signalδk is transform into a a 2-bits
binary numberνk ∈ {00, 01, 10}, by the following operation.

νk =







00 if δk = 0
01 if δk = −1
10 if δk = 1

The combination‘11′ is not used in this process. Note that
δk is just a dummy internal variable useful to simplify the
formalization of the error equations in stability studies to be
presented latter, which can be formalized using real numbers.

Operation principle of the LD. The operation principe of
the level detector is shown in Figure 2. The signal detection
levels are uniformly spaced by the quantum∆. The level
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Fig. 2. Illustration of the level detector working operation principe.

detector device produces a signal (identified by′01′ or ′10′)
whenever a level crossing takes place. As level changes are
not uniformly spaced in time, this device normally works on
the basis of non-uniform sampling. However a complete asyn-
chronous problem formulation, will also require to describe
the system to be controlled in this time-asynchronous frame-
work. Instead, and following [11], we consider quantizing
the time between level crossing and encoding the quantizing
time interval in uniform steps. By doing this the information
transmission in synchronous.

While two symbols are used to characterize the level
changes, one more symbol can be used to quantize time
intervals. Then01 indicates upward crossing,10 downward
crossing, and00 is used to code the time-interval between
crossing. To illustrate this consider the example of Figure2.
We assume that uniform samples are taken every timeTs, then
m samples are taken in the time intervalTi = ti−ti−1 before a
cross level takes place. As two level (upward)crossing happen
within this interval, the information the binary representation
of this situation by the level crossing detector produce the
following signal,

01, 00, 00, . . .00
︸ ︷︷ ︸

m−pairs

, 01

This sequence has then high probability of0′s, and thus suited
for entropy coding.

2) The model-based predictor:Has the role to recover the
encoded signalxk for the 3-valued binary signalνk. It is
composed of:

• The inverse of the level detector:ϕ−1
LD : νk 7→ δk 7→ ˆ̃xk,

which equations are:

δk =







0 if νk = 00
−1 if νk = 01

1 if νk = 10

and,
ˆ̃xk = ˆ̃xk−1 + ∆ · δk

• The predictor.Which is a model-based predictor. As it
name indicated it used the target closed-loop model as

run sequenceνk outputηk(n = 2) outputηk(n = 3)
01 00 000
10 01 001

0001 10 010
0010 11 011

000001 - 100
000010 - 101
000000 - 110
unused - 111

TABLE I

RUN-LENGTH ENCODING.

a basis for it design. This structure is inspired by our
previous works in [2], [4], and also in [5]. The predictor
is a dynamic linear discrete-time operator that maps
the output of the inverse level detector, to the signal
prediction x̂k. Its structure depends upon the particular
control used (state feedback or output feedback). For
instance, for the RST-control discussed here, it has the
following form:

x̂k = W
[ γ

T
rk + ˆ̃xk

]

, W
△
=

BR

Acl

(3)

Which results in the following error equation:

x̃k = W
[

x̃k − ˆ̃xk

]

(4)

B. Description of the entropy coding VLE

As mentioned in the introduction, high compression rates
can only be reached by the use of entropy coding. Entropy
coding introduce redundancy and assigns some probability
distribution to the events. In that way, the mean code length
can be optimized. Run-length codes1, are a class of variable-
length codes that are sub-optimal (when compared to the
Huffman code), but have the advantage of avoiding buffering
at the decoder side, and therefore reducing data transmission
latency. An example used in [11] is described below.

Let ϕRL : νk 7→ ηk, describe the VLE map. Then, when a
run-length code of lengthn is applied, the result is the output
ηk which a variable-length binary signal. An example of a
coding scheme of block lengthn = 2, andn = 3 is shown
below.

Assuming that the coding sequence is independent and
identically distributed, and that the upward crossing frequency
equals the downwards crossing frequency, i.e.

p = P (00), P (01) = P (10) =
1

2
(1 − p)

then, according to [11], the mean coding length,CL, of this
scheme is:

CL = 2
1 − p(2(n−1)

−1)

1 − p
bits

and the compaction ratio,CR, is:

CR =
CL

n
=

2

n

1 − p(2(n−1)
−1)

1 − p

which has the limiting value:limp→1 CR = 2n
−2
n

.

1Class of coding strategy that can decode information instantaneously.



IV. ERROR SYSTEM

Following the assumptions maid in this paper (lossless
channel transmission), we then have thatνk = ν̂k, and that
δk = δ̂k. In this case binary variables are not needed, and
hence error equation can be described by real variables only.

Introducing the following error definitions:

• ek = xk − γ
Acl

rk: the tracking error,
• x̃k = xk − x̂k: the prediction error, and
• εk = x̃k − ˆ̃xk: the LD error.

we have the closed-loop error system:

ek = W (q−1)x̃k (5)

x̃k = W (q−1)εk (6)

with W = BR/Acl being the stable operator defined previ-
ously. Note that theεk = εk(x̃k), and thereby the above error
equation can be seen as two systems in cascade, i.e. the output
of the autonomous system (6) is the input of the stable system
(5). For stability purposes it is thus sufficient to demonstrate
the stability properties of the sub-system (6).

A. Properties of the LD and it inverse

Note thatεk writes as:

εk = x̃k − ˆ̃xk

= x̃k − ϕRL ◦ ϕ−1
RL {x̃k}

= x̃k − ϕ̃RL {x̃k}

whereϕ̃RL
△
= ϕRL ◦ ϕ−1

RL : x̃k 7→ ˆ̃xk. Note that this map is
dynamic, defined by the following relation:

ˆ̃xk = ˆ̃xk−1 + ∆ · δk (7)

with δk = f(x̃k) as defined before. System (6)-(7) can be then
seen as a feedback system, as shown by Figure 3, i.e.

x̃k = W (q−1)εk

= W (q−1)
(

x̃k − ˆ̃xk

)

= W (q−1)

(

x̃k −
∆

1 − q−1
f(x̃k)

)

Ideally we would like that the map̃ϕRL be a linear map with

−

−

W

+

x̃k

ˆ̃xk

εk

∆
1−z−1

δk

f

Fig. 3. Closed-loop interconnection of System (6)-(7). Jonathan: merci de
faire cete figure.

unitary gain. This ideal goal is hampered by several factors:

• unknown initial conditions of̃x0,
• badly chosenTs, and∆, and
• chattering in the neighborhood of the quantum∆.

In particular, large sampling timesTs, and too small quantum
∆ may results in signal variation of more than one level, which
may leads to unrecovered bias in the estimated, leading to
potential instabilities for unstable open-loop systems.

The qualitative valuation of this algorithm is shown next
trough a simulation examples, and some qualitative discus-
sions.

V. QUALITATIVE EVALUATION

Consider the following simple system

A(q−1)

B(q−1)
=

bq−1

1 − aq−1
(8)

The controller is:

R = r0+r1q
−1, S = 1−q−1, T =

Acl(1)

B(1)
Acl = (1−acl)

2

obtained from the closed-loop specification given byAcl =

(1 − acl)
2, andr0 = a+1−2acl

b
, r1 = −

a−a2
cl

b
. Note that this

controller introduced a integral action as well. Parameterused
in simulations are:a = 1.1, b = 1, ac = 0.96, Ts = 0.05
(sec),∆ = 0.02, andx0 = 0.1.

A. Initial conditions

Initial conditions of the predictor̂x0 need to be synchro-
nized with initial condition of the system, i.e.̂x0 = x0,
in particular at the decoder side. This requires a specific
initialization procedure that send this initial information before
the coding algorithm is triggered. Figure 4 shows the algorithm
behavior when this synchronization is performed correctly.
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Fig. 4. Simulations with synchronized initial conditions;x0 = x̂0 = 0.1.
reference and output (top), output and it estimated (middle), and error variables
x̃(red), andˆ̃x(blue)

When this synchronization is not done correctly, Figure 5
shows a bias in the estimates, which produces an error in



the tracking signal. Note however, that this ill-synchronization
does not causes instabilities, but just a tracking performance
degradation, proportional to the initial mismatch between
initial condition in the decoder estimates.
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Fig. 5. Simulations with ill-synchronized initial conditions;x0 6= x̂0 = 0.1.
reference and output (top), output and it estimated (middle), and error variables
x̃(red), andˆ̃x(blue)

B. Quantum∆ and sampling timeTs

The value of∆ has an important impact on the quality
of the estimates and the system stability. Larger values of∆
are suited for enhance stability, but it degrades the estimated
quality. Inversely, small values for∆ will results in better
estimated quality, but it jeopardize the system stability.Evi-
dently, also the selection of the sampling periodTs play also
an important role, and more specifically, the ratio∆/Ts, as it
will be discussed below.

Note that the coding scheme is based on the hypothesis that
information is coded by a 3-valued signalδk, or equivalently
that level changes are restricted to a maximum of one level of
magnitude∆. This can bee seen from the inverse of the level
detector equation, that aims at reconstructing the estimation
error trough the relation̂̃xk = ˆ̃xk−1 + ∆ · δk. When the this
equation is correctly initialized (̃̂x0 = x̃0) in particular at the
decoder side, and the change of level is limited to one, then
the maximum distance betweeñ̂xk, and x̃0 is given by ∆.
Looking closely the error equation (5)-(6), we can see that
as a consequence, the norm of the tracking error becomes
proportional to∆, i.e.

|e| 6 |W |2∆

the system precision is then proportional to∆ as long as|lk−
lk−1| 6 1. In order to this to happen, it is necessary that
to select∆ such as the net change between two consecutive
samples of̃x is bounded by this value, i.e.

|x̃k − x̃k−1| < ∆ (9)

In this relation the sampling time does not appears explicitly
because is embedded in the particular discrete-time notation,
which have the following signification:

x̃k = x̃(tk), x̃k−1 = x̃(tk − Ts)

Thus equation (9) can also be read as:

|
d

dt
x̃(t)| ≈

1

Ts

|x̃(tk) − x̃(tk − Ts)| <
∆

Ts

the rate of change of the estimated error signal should thus
be bounded by the ration∆

Ts
. The Figure 6, and Figure 7

shown this event. In Figure 6∆
Ts

is sufficient small to keep
|lk − lk−1| 6 1, whereas in Figure 7|lk − lk−1| 6 2. As a
consequence in this second case the estimation performance
is degraded, and in certain case for even larger∆

Ts
(not shown

here) instabilities may occur.
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C. Chattering effect

Note that practically all parameters of the control scheme
affects the spectrum of the evolution ofδk, and in particular the
ration∆/Ts, but also the level of open-loop instabilities of the
considered system. Figure 8 show the resulting histogram ofδk

for different simulations with different parameters. The results
shows that by increasingTs the frequency spectrum ofδk is
reduced, and hence the eventδk = 0 has higher probability to
occur. We recall distributions with high roll-off will be benefic
for data compression, as illustrated by the VLE algorithm.
from the same figure and similar reasons, we observe that
open-loop instable systems with a high degree of instability
are less adapted for entropy coding. The resulting compression
ratio are reported in Table II. Higher compression rates are
thus obtained for the cases wherep is higher, i.e. the bottom
simulation in Fig.8.
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Fig. 8. Simulations with∆ = 0.02;Te = 0.05;a = 1.6 (upper),∆ =
0.02; Te = 0.05; a = 1.1 (middle), and with∆ = 0.02; Te = 0.15;
a = 1.1(bottom). Time evolution ofδk (left), histogram of events (right)

VI. CONCLUSIONS

In this paper we have investigated the possibility to use
asynchronous coding in the context of networked controlled
systems. The main motivation has been to explore the benefits
in terms of coding compression ratio when the NUE is
combined with entropy coding strategies. In particular we have
analyzed the case of run-length coding, which in spite of its

case (n=3) p CL CR

upper .4 3.4208 1.1403
middle .75 4.6250 1.5417
lower .8 4.8800 1.6267

TABLE II

COMPRESSION RATIOS AND CODE LENGTH OBTAINED WITHn = 3 FROM

DATA SHOWN IN FIG. 8.

sub-optimality do not require buffering at the decoder side,
and hence reduce latency.

We have shown also that the predictor initial conditions,
seems to be critical for the well operation of the coding
algorithm. When these are not exactly known the predictor
produce a bias, although stability is not happened. We have
also presented some preliminary studies showing that the
choice of ∆ and Ts are critical for the well functioning of
scheme. In particular ”high” ratios of∆/Ts are suited for
stability, whereas in opposition ”small” ratios of∆/Ts are
better for data compression. This underline a trade-off between
stability and performance of the proposed scheme.

Finally, further analytic studies are in progress to find
analytic conditions for stability, optimal selection of the ratio
∆/Ts, and eventually making this ratio time (state) varying.

REFERENCES

[1] Brockett R.-W. and Liberzon D. Quantized feedback stabilization of
linear systems.IEEE Transactions on Automatic Control, 45(7):1279–
1289, July 2000.

[2] C. Canudas-de-Wit, F. Rubio, J. Fornes, and F. Gomez-Estern. Dif-
ferential coding in networked controlled linear systems.American
Control Conference. Silver Anniversary ACC. Minneapolis,Minnesota
USA, 2006.

[3] N. Elia and S.-K. Mitter. Stabilization of linear systems with limited
information. IEEE Transaction on Automatic Control, 46(9):1384–1400,
September 2001.

[4] F. Rubio F. Gomez-Estern, C. Canudas-de-Wit and J. Fornes. Adaptive
delta-modulation coding in networked controlled systems.Submitted to
American Control Conference, New York, USA USA, 2007.

[5] Hespanha J.-P., Ortega A., and Vasudevan L. Towards the control of
linear systems with minimum bit–rate. In15th Int. Symp. Mathematical
Theory of Networks and Systems (MTNS), Notre Dame, IL, USA, 2002.

[6] C.T. Abdallah I. Lopez and C. Canudas-de-Wit. Compensation schemes
for a delta-modulation-based ncs.Submitted to ECC’07 USA, 2007.

[7] H. Ishii and T. Başar. Remote control of lti systems overnetworks with
state quatization.System and Control Letters, (54):15–31, 2005.

[8] K. Li and J. Baillieul. Robust quatization for diginal finite communica-
tion bandwidth (dfcb) control.IEEE Transaction on Automatic Control,
49(9):1573–1584, September 2004.

[9] D. Liberzon. On stabilization of linear systems with limited information.
IEEE Transaction on Automatic Control, 48(2):304–307, February 2003.

[10] Lemmon M. and Q. Ling. Control system performance underdynamic
quatization: the scalar case. In43rd IEEE Conference on Decision and
Control, pages 1884–1888, Atlantis, Paradice Island, Bahamas, 2004.

[11] J.W. Mark and T.D. Tood. A nonuniform sampling approachto data
compression.

[12] J.G. Proakis. Digital Communications. McGraw-Hill, Inc. Series in
electrical and computer enginering, 2001.

[13] S. Tan, Xi Wei, and J.-S. Baras. Numerical study of jointquatization and
control under block-coding. In43rd IEEE Conference on Decision and
Control, pages 4515–4520, Atlantis, Paradice Island, Bahamas, 2004.


