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We apply degree theory to prove the existence of positive solutions of semilinear elliptic systems. As an application we obtain a number of new results for higher order equations which appear frequently in applications. In particular, we extend to these equations and systems the notions of sublinearity and superlinearity, classical in the setting of second order equations.

Résumé. On utilise la théorie du degré topologique pour montrer l'existence de solutions de certaines classes de systèmes elliptiques semi-linéaires. En tant qu'application on obtient des résultats d'existence pour équations d'ordre supérieur, qui apparaissent fréquemment dans les applications. En particulier, on étend à ces équations et systèmes les notions de sous-linéarité et sur-linéarité, classiques dans le cadre des équations scalaires d'ordre deux.

Introduction

In recent years there has been a great deal of work on elliptic equations like (-∆) m u = g(x, u), [START_REF] Amann | Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces[END_REF] or ∆ 2 u + β∆u = g(x, u), [START_REF] Bartsch | A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator[END_REF] in a domain Ω ⊆ R N , N ≥ 1, for m ∈ N, β ∈ R, where g is some continuous function. This paper is a contribution to the study of existence and properties of positive solutions to problems for which [START_REF] Amann | Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces[END_REF] and ( 2) are model cases. Two types of boundary conditions for (1) are most often considered, when Ω = R N . These are Dirichlet boundary conditions u = Du = . . . = D m-1 u=0 on ∂Ω, and Navier boundary conditions u = ∆u = . . . = ∆ m-1 u = 0 on ∂Ω.

(3) α i ≥ 0, i = 2, . . . , m -1 (if m ≥ 3) are constants. We consider the problem

(-L) m u = m-1 i=1 α i (-L) m-i u + f (x, u) in Ω (5) 
(-L) k u = 0, k ∈ {0, 1, . . . , m -1} on ∂Ω. [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF] In the second order case -Lu = f (u) (i.e. m = 1) there is a well developed existence theory when the behaviour of f (u)/u at zero and at infinity is different with respect to λ 1 . In particular, the development of degree theory (we refer to the classical works of Leray-Schauder [START_REF] Leray | Topologie et équations fonctionnelles[END_REF], Krasnoselskii [START_REF] Krasnoselskii | Positive solutions of operator equations[END_REF], Amann [START_REF] Amann | Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces[END_REF], Nussbaum [START_REF] Nussbaum | Positive solutions of nonlinear elliptic boundary value problems[END_REF]) permitted to show that if a second-order equation is sublinear, that is, lim inf u→0 u -1 f (u) > λ 1 > lim sup u→∞ u -1 f (u), then it always has a positive solution, while if it is superlinear in the sense that lim sup u→0 u -1 f (u) < λ 1 < lim inf u→∞ u -1 f (u), then it has a positive solution, provided it admits a priori bounds (see below).

Our first principal result is that the higher order equation ( 5)-( 6) has the same property, and the dividing number is

λ * = max 0, λ m 1 - m-1 i=1 α i λ m-i 1 .
To give an example, let us compute λ * for the standard Paneitz equation with constant coefficients ∆ 2 u + α∆u + au = f (x, u), α ∈ R, a ≥ 0 (if a < 0 we replace f by f -au ; to avoid confusion, note that here ∆ = ∂ ii , and not -∂ ii as in some other works on the subject). This equation can be recast in the form [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF] if δ = α 2 -4a ≥ 0, for L = ∆ + c 0 , with 2c 0 = α ± √ δ, α 1 = ∓ √ δ. Hence by λ 1 (L) = λ 1 (∆)-c 0 we get λ * = (λ 1 (∆) 2 -αλ 1 (∆)+a) + .

Theorem 1 Suppose there exist a, b ∈ R such that

∞ ≥ lim inf u→0 f (x, u) u ≥ a > λ * > b ≥ lim sup u→∞ f (x, u) u , for x ∈ Ω. ( 7 
)
Then problem ( 5)-( 6) has a positive solution in C 2m (Ω), with (-L) k u > 0 in Ω, for all k ∈ {0, . . . , m -1}.

Theorem 2 Suppose there exist a, b ∈ R such that

lim sup u→0 f (x, u) u ≤ a < λ * < b ≤ lim inf u→∞ f (x, u) u ≤ ∞, for x ∈ Ω. ( 8 
)
Suppose in addition that problem [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF] admits a priori bounds, in the following sense : for each t 0 ≥ 0 there exists a constant C depending only on t 0 , λ, ν, m, N, α i , Ω, f, such that if t ∈ [0, t 0 ], u ∈ C 2m (Ω) is a solution of [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF] with f (x, u) replaced by f (x, u + t), and (-L) k u > 0 in Ω, (-L) k u = 0 on ∂Ω, k = 0, . . . , m -1, then u L ∞ (Ω) ≤ C.

Then problem ( 5)-( 6) has a positive solution in C 2m (Ω), with (-L) k u > 0 in Ω, for all k ∈ {0, . . . , m -1}.

Remark 1. Extending the established terminology for the second order case (when λ * = λ 1 ), we say that (7) (resp. ( 8)) means f is sublinear (resp. superlinear) in u. To our knowledge, these notions are being defined here for the first time for higher order elliptic partial differential equations. Remark 2. Theorems 1 and 2 are consequences of results on system [START_REF] Ayed | Some existence results for a Paneitz type problem via the theory of critical points at infinity[END_REF], which rely on degree theory and linear programming (for a general survey on use of degree theory in differential equations see [START_REF] Mawhin | Leray-Schauder degree : a half-century of extensions and applications[END_REF]). It follows from these results, see Sections 2 and 4, that we can consider equations in which, instead of taking the powers of a given operator, we iterate different elliptic operators. We can also replace the constants α i in (5) by functions. Further, we can get existence results for systems of higher order equations. All these statements have been postponed to the next sections, for the sake of conciseness and clarity of the introduction. Remark 3. Theorems 1 and 2 hold if we suppose only that A(x) ∈ C(Ω), b i , c ∈ L ∞ (Ω), and f ∈ C(Ω × R). In this case the solutions we obtain belong to W 2,p (Ω) ∩ C 2m-2 (Ω), p < ∞.

Theorem 2 settles the existence question in the superlinear case, provided a priori bounds can be proved. Consequently, in the second part of the paper we study the availability of such bounds -an important question in itself.

Here we shall concentrate on the situation where the nonlinearity f has power growth in u. Note that, when λ * > 0, the model case f (x, u) = u p satisfies hypothesis [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] when p ∈ (0, 1), and hypothesis (8) when p ∈ (1, ∞).

A large amount of work has been devoted to equations ( 1) and ( 2) with superlinear power-like nonlinearity, see for example [START_REF] Bartsch | A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator[END_REF], [START_REF] Bartsch | Existence and nonexistence results for critical growth polyharmonic elliptic systems[END_REF], [START_REF] Ayed | Some existence results for a Paneitz type problem via the theory of critical points at infinity[END_REF], [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF], [START_REF] Djadli | Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications[END_REF], [START_REF] Gazzola | Existence and nonexistence results for critical growth biharmonic elliptic equations[END_REF], [START_REF] Ge | Positive solutions in semilinear critical problems for polyharmonic operators[END_REF], [START_REF] Hebey | Compactness and global estimates for a fourth order equation of critical Sobolev growth arising from conformal geometry[END_REF], as well as the references there. As is well-known, in (1) the growth of f with respect to u plays a crucial role. Specifically, for f behaving as u p the number

p * = (N + 2m)/(N -2m) (p * = ∞ if N ≤ 2m)
, plays the role of a critical exponent, similarly to the case m = 1. A large part of the previous works concentrate on the critical case, p = p * . The supercritical case has recently been considered in [START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF].

In view of the historical development of the second-order case, it may seem surprising that there has been relatively little work on subcritical f , i.e. p < p * . The reason for this is that previous works on (1) make use of variational methods and, generally, in the subcritical case these methods extend quite simply from m = 1 to any m ∈ N. For instance, if f in (1) is subcritical and satisfies the conditions of the Mountain Pass theorem, then this theorem easily implies that problem (1)-( 3) has a positive solution.

On the other hand, in the second-order case it has long been known that degree theory permits to prove existence of solutions in situations where variational methods cannot be employed. For instance, this is the case for most systems of equations. For higher order problems topological methods have been used in [START_REF] Clement | Positive solutions of semilinear elliptic systems[END_REF] , [START_REF] Oswald | On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball[END_REF] and [START_REF] Soranzo | A priori estimates and existence of positive solutions of a superlinear polyharmonic equation[END_REF], where equation (1) in a convex domain was studied, obtaining a direct extension of the results for m = 1 in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF]. In these works the variational nature (divergence form) of the Laplacian was used in an essential way. We have the following result, which applies to general operators and domains.

Theorem 3 Suppose f in [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF] has subcritical power growth, that is, for some function b ∈ C(Ω) such that b > 0 in Ω, and for some p

∈ (1, p * ) lim u→∞ f (x, u) u p = b(x), for x ∈ Ω.
Then ( 5) admits an a priori bound, as defined in Theorem 2.

A result of this type was obtained in [START_REF] Birindelli | Liouville theorems for elliptic inequalities and applications[END_REF], for the particular equation (-L) m u = f (x, u), under the stronger hypothesis p ∈ (1, N/(N -2m)] -see Theorem 6.3 in that paper.

It is very well known that a priori bounds cannot be proven for the equation -∆u = u p , provided p ≥ (N + 2)/(N -2), more generally for (-∆) m u = u p , p ≥ (N + 2m)/(N -2m). So the range in Theorem 3 is optimal. Remark 4. Combining Theorems 2 and 3 yields an existence result for superlinear higher order equations with subcritical power growth. Note this result could not be obtained by variational methods, both because of the form of L and the form of f . In addition, by combining the methods and the results of this paper with those in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], it is only a matter of technique to extend Theorem 3 to systems of higher order equations with power growth nonlinearities. Remark 5. In some important in practice cases our results can be used to get existence in the whole space -see Theorem 5 in the next section.

In the proof of Theorem 3 we use the blow-up method of Gidas and Spruck, developed in [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] for the second-order scalar case, and recently extended to some systems of second-order equations in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], [START_REF] Zou | A priori estimates and existence for strongly coupled semilinear elliptic systems[END_REF] (see also the references in these works). We will show that this method can be used for another large class of systems, which covers the case we are interested in Theorem 3. We note that the blow-up method contains a contradiction argument, which in turn relies on Liouville (nonexistence) theorems in R N or in a half-space of R N , see Section 5.

The paper is organized as follows. In the next section we give more general existence results for systems, which contain Theorems 1 and 2 as particular cases. The proofs of these results are given in Section 3, while Section 4 contains some extensions and comments. In Section 5 we develop the blow-up method for a class of systems which include ( 5)-( 6), and give the proof of Theorem 3. Finally, in Section 6 we prove some existence results in R N .

Elliptic systems -more principal results

We consider the system

(P t )    -L i u i = f i (x, u 1 + t, . . . , u n + t) in Ω, i = 1, . . . , n u i ≥ 0 in Ω, i = 1, . . . , n u i = 0 on ∂Ω, i = 1, . . . , n,
where t ≥ 0, n ∈ N, and

L k = N i,j=1 a (k) ij (x)∂ ij + N i=1 b (k) i (x)∂ i + c (k) (x)
satisfy the hypotheses we made on L in Section 1.

Let us introduce some notations and conventions. We denote λ k = λ 1 (L k , Ω) > 0 and Λ = diag(λ 1 , . . . , λ n ) ∈ M n (R). We shall use the matrix notation

U = (u 1 , . . . , u n ) T ∈ R n , F = (f 1 , . . . , f n ) T , L = diag(L 1 , . . . , L n ).
We set 1 = (1, . . . , 1) ∈ R n . On R n we use the norm U = max 1≤i≤n |u i |. Throughout the paper equalities and inequalities between vectors or matrices will be understood to hold component-wise. We define the following relation between matrices : if A and B are two n × n matrices,

A ≺ B ⇐⇒ ∀ U ∈ R n : BU ≤ AU U ≥ 0 implies U = 0. (9) Geometrically, if B -A is invertible, (9) means that A ≺ B if the (closed)
positive cone generated by the columns of B -A does not meet the negative hyper-quadrant {U ≤ 0}, except at the origin. We suppose that f i are Hölder (or just continuous, see Remark 3 in Section 1) functions, and for some ξ i ≥ 0

f i (x, U ) ≥ -ξ i u i , for all U ∈ R n + := {U ∈ R N : u i ≥ 0}.
Replacing c (i) by c (i) -ξ i (resp. λ i by λ i + ξ i ) we can assume ξ i = 0.

We have the following result on existence of solutions of (P 0 ).

Theorem 4 Suppose L 1 ≡ . . . ≡ L n and either (sublinear case)

(H 0 ) there exist r > 0 and a matrix B ∈ M n (R) such that for x ∈ Ω B Λ and F (x, U ) ≥ B U if U ≤ r, U ∈ R n + , (H ∞ ) there exist k > 0 and a matrix A ∈ M n (R) such that for x ∈ Ω A ≺ Λ and F (x, U ) ≤ A U + k 1 for all U ∈ R n + ,
or (superlinear case)

(H 0 ) there exist r > 0 and a matrix A ∈ M n (R) such that for x ∈ Ω A ≺ Λ and F (x, U ) ≤ A U if U ≤ r, U ∈ R n + , (H ∞ ) there exist R > 0 and a matrix B ∈ M n (R) such that for x ∈ Ω B Λ and F (x, U ) ≥ B U if min{u 1 , . . . , u n } ≥ R,
(APB) for any t 0 ≥ 0 there exists a constant M , depending only on t 0 , Ω, n, N , λ, ν, and on the functions f i , such that max 1≤i≤n sup x∈Ω u i (x) ≤ M for any t ∈ [0, t 0 ] and any solution (u 1 , . . . , u n ) of (P t ).

Then (P 0 ) has a nonnegative solution, such that u k > 0 in Ω, for at least one k ∈ {1, . . . , n}.

Remark 1. We note that we need the operators to coincide in the above theorem -this is the price to pay to have the nice and explicit hypotheses given by the relation " ". A more general (but less explicit) result for different L i is given in Section 4, Theorem 8 (see also the remark following this theorem ; in Section 4 we also comment on issues of coercivity of matrix and higher order operators). Note that if L i differ only in their zero-order coefficients, we can always make them equal by changing f i . Remark 2. A weaker variant of Theorem 4 for the case L i = ∆ was proved in [START_REF] Sirakov | Notions of sublinearity and superlinearity for nonvariational elliptic systems[END_REF], where the divergence form of the Laplacian was used in an essential way (note [START_REF] Sirakov | Notions of sublinearity and superlinearity for nonvariational elliptic systems[END_REF] was not written viewing applications to higher order equations).

Here we employ a very different approach, relying on Farkas' lemma -quite an untypical tool in the field of elliptic PDE's -and on results on existence and properties of first eigenvalues of vector operators, obtained in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]. Remark 3. Note that if F is differentiable at u = 0 then (H 0 ) (resp. (H 0 )) reduces to F (x, 0) Λ (resp. F (x, 0) ≺ Λ), for x ∈ Ω.

One gets Theorems 1 and 2 by applying Theorem 4 to the system

       -L i u i = u i+1 , i = 1, . . . , m -1 -L m u m = f (x, u 1 ) + α m-1 u 2 + . . . + α 1 u m , u i ≥ 0 in Ω, i = 1, . . . , m u i = 0 on ∂Ω, i = 1, . . . , m, (10) 
and by using the following proposition (obtained by a simple computation and the definition of the relation " ")

Proposition 2.1 For any n ∈ N, µ i ≥ 0, 1 ≤ i ≤ n -1, µ n ∈ R, the n × n matrix M =     0 1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 . . . 0 1 µ 1 µ 2 µ 3 . . . µ n-1 µ n     is such that M ≺ Λ (resp. M Λ) provided n j=1 µ j λ j . . . λ n < 1 resp. µ 1 > 0 and n j=1 µ j λ j . . . λ n > 1 .
Note that a simple application of the maximum principle and the strong maximum principle for scalar elliptic operators shows that if (u 1 , . . . , u n ) is a solution of (10) then either u 1 = . . . = u n ≡ 0 or u i > 0 in Ω for all i.

In the end we state an existence result in the whole space for a class of systems which include a number of important models, for instance the Paneitz equation. See [START_REF] Van Den Berg | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF] or [START_REF] Peletier | Pulse-like spatial patterns described by higher-order model equations[END_REF] for various applications.

Theorem 5 Suppose a 1 , . . . , a n are positive numbers, and f (u) is a nondecreasing locally Lipschitz function such that

lim sup u→0 f (u) u < n i=1 a i , lim u→∞ f (u) u p = c > 0, (11) 
for some c > 0, p ∈ (1, p * ). Then the system

-∆u i + a i u i = u i+1 , i = 1, . . . , n -1, -∆u n + a n u n = f (u 1 ), ( 12 
)
has a solution in R N , such that u i > 0 in R N and u i → 0 as |x| → ∞.
Note that many higher order equations like the ones studied in the introduction can be factorized in the form [START_REF] Yang | On a fourth order curvature invariant[END_REF]. Various extensions of Theorem 5 can be deduced from its proof. See also Proposition 6.1 in Section 6.

Proof of Theorem 4

In this section we prove Theorem 4. We recall that Theorems 1 and 2 are particular cases of this theorem.

Preliminaries

The following result, due to Krasnoselskii and Benjamin (see Proposition 2.1 and Remark 2.1 in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF]) has nowadays become a classical tool in proving existence results.

Theorem 6 Let K be a closed cone in a Banach space X, and let

B R = {x ∈ K : x < R}. Let T : B R → K be a compact mapping. Suppose σ, ρ ∈ (0, R), σ = ρ are such that (i) T x = tx for all x ∈ ∂B σ and all t ≥ 1 ;
and there exists a mapping H :

B ρ × [0, ∞) → K such that (ii) H(x, 0) = T x for all x ∈ ∂B ρ ;
(iii) H(x, t) = x for all x ∈ ∂B ρ , and all t ≥ 0 ;

(iv) ∃ t 0 ∈ R + : H(x, t) = x for all x ∈ B ρ , and all t ≥ t 0 .

Then there exists a fixed point x of T (i.e. T x = x), such that x X is between σ and ρ.

We denote with X the space C 0 (Ω) n and introduce the linear mapping

S : X → X, such that for any Ψ = (ψ 1 , . . . , ψ n ) T , W = (w 1 , . . . , w n ) T ∈ X, S(Ψ) = W ⇐⇒ -L i w i = ψ i in Ω, i = 1, . . . , n w i = 0 on ∂Ω, i = 1, . . . , n.
The mapping S is well-defined, since λ 1 (L i , Ω) > 0. Properties of scalar operators with a positive first eigenvalue were studied in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. Below (Theorem 7) we recall some of these properties, obtained in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] in the more general setting of a cooperative system. We set T (U ) = S(F (U )) and note that T maps compactly X into itself, by standard regularity and imbedding theorems. With this notation, solving (P 0 ) clearly amounts to finding a fixed point of T in the cone

K = {U ∈ X : u i ≥ 0, i = 1, . . . , n}.
Of course T maps K into itself, by the maximum principle, which is verified by L i in Ω, since λ 1 (L i , Ω) > 0. Consequently, finding a nontrivial fixed point of T in K, that is, verifying the four hypotheses of Theorem 6, will be our task in this section.

We shall need some results, and consequences of results from [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] (see in particular Sections 8, 13 and 14 in that paper).

Let c ij (x) be bounded functions and set C(x) = (c ij (x)) n i,j=1 . Suppose g i (x) ∈ L N (Ω). Consider a linear system in the form

LU + CU = G, ( 13 
)
where

L = diag(L 1 , . . . , L n ), C(x) = (c ij (x)) n i,j=1 , U = (u 1 , . . . , u n ) T , and G = (g 1 , . . . , g n ) T .
Since we are going to use Alexandrov-Bakelman-Pucci estimates and Maximum Principles we shall need to consider cooperative systems. System ( 13) is called cooperative (or quasi-monotone) if c ij ≥ 0 for all i = j.

We recall that a system of this type is called fully coupled (and the matrix C is called irreducible) provided for any non-empty sets I, J ⊂ {1, . . . , n} such that I ∩ J = ∅ and I ∪ J = {1, . . . , n}, there exist i 0 ∈ I and j 0 ∈ J for which

meas{x ∈ Ω | c i 0 j 0 (x) > 0} > 0. (14) 
When ( 14) holds we write c i 0 j 0 ≡ 0 in Ω. Simply speaking, a system is fully coupled provided it cannot be split into two subsystems, one of which does not depend on the other. As explained in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], any matrix C(x) can have its lines and columns renumbered in such a way that it is in block triangular form, with each block on the main diagonal being fully coupled. More precisely, C = (C kl ) q k,l=1 , for some 1 ≤ q ≤ n, C kl are t k × t l matrices for some t k ≤ n with q k=1 t k = n, C kk is an irreducible matrix for all k = 1, . . . , q, and C kl ≡ 0 in Ω, for all k, l ∈ {1, . . . , q} with k < l. Note that q = 1 means C itself is irreducible, while q = n means C is in triangular form. We set s 0 = 0, s k = q j=1 t j , and

S k = {s k-1 + 1, . . . , s k }.
For instance, any 1 × 1 matrix is irreducible. Then, up to renumbering, when n = 2 we divide the set of matrices C into two parts : matrices of The first two of these matrices are irreducible, the third has one 2 × 2 and one 1 × 1 irreducible blocks, and the fourth has three 1 × 1 irreducible blocks. It was proved in Theorem 13.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] that the matrix operator L + C admits a principal eigenvalue with all the usual properties of the principal eigenvalue of a scalar operator, provided C is cooperative and irreducible. We recall that this eigenvalue is defined by:

λ 1 = λ 1 (L + C) = sup{λ ∈ R : ∃Ψ ∈ W 2,N loc (Ω, R n ), Ψ > 0 & (L + C + λI)Ψ ≤ 0 in Ω}.
Hence, using the explained above block triangular representation of the cooperative matrix C, we can associate to C a set of eigenvalues λ

(1) 1 , . . . , λ (q) 1 , where λ (k) 1
is the principal eigenvalue of L (k) + C kk . Here we have denoted

L (k) =diag(L s k-1 +1 , . . . , L s k ) (see

above for the notations).

A combination of Theorems 8.1, 12.1, 13.1, 13.2, 14.1 and Lemma 14.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] yields the following result (we shall provide a brief proof, for convenience). Note that, when q = n = 1, it reduces to the well-known results on scalar equations from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF].

Theorem 7 (i) The following are equivalent : 

(a) λ (k) 1 > 0 for all k = 1, . . . , q ; (b) there exists a vector Ψ(x) ∈ C 2 (Ω)(or Ψ(x) ∈ W 2,p (Ω) ∩ C(Ω)) such that C 0 1 ≥ Ψ ≥ 1 and LΨ + CΨ ≤ 0 in Ω,
g i L N (Ω) ,
where C depends only on Ω and on the coefficients of L and C.

(d) the operator L + C satisfies the maximum principle in Ω, that is, if LU + CU ≤ 0 in Ω and U ≥ 0 on ∂Ω, then U ≥ 0 in Ω. (ii) if λ (k) 1
> 0 for all k = 1, . . . , q, then for any G ∈ C α (Ω) (or G ∈ L p (Ω), p ≥ N ) there exists a unique classical (resp. in W 2,p (Ω) ∩ C(Ω)) solution of [START_REF] Chen | Potential theory for elliptic systems[END_REF], such that u = 0 on ∂Ω ; in addition

U W 2,p (Ω) ≤ C G L p (Ω) . (iii) Suppose ψ ∈ C(Ω, R d ) is such that ψ ≥ 0 and Lψ + Cψ ≤ 0 in Ω. If ψ j ≡ 0 in Ω for some j ∈ S k and some k ∈ {1 . . . , q}, then λ (k) 1 ≥ 0.
Sketch of the proof of Theorem 7.(i) Theorem 14.1 and Lemma 14.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] give (a) ⇔ (b) ⇔ (d). Theorem 8.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] gives (b) ⇒ (c), and (c) ⇒ (d) is obvious.

(ii) If q = 1 this is Theorem 13.2 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] (due to Sweers [START_REF] Sweers | Strong positivity in C(Ω) for elliptic systems[END_REF]). If q > 1 we apply this theorem q times : using the block-diagonal structure of C, first we solve (L (1) + C 11 )u (1) = g (1) , then (L (2) + C 2 )u (2) = g (2) -C 21 u (1) , etc. The last inequality in (ii) follows from standard regularity results and (i)-(c).

(iii) This follows from the cooperativeness of C and the definition of the first eigenvalue, together with Theorem 14.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]. 2

Proof of Theorem 4 in the sublinear case

In this section we show that problem (P 0 ) has a nontrivial solution in K, provided (H 0 ) and (H ∞ ) hold. For any U ∈ K and any t ∈ [0, ∞) we define

H(U, t) = T (U ) + t Φ 1 ,
where

Φ 1 = (ϕ 1,1 , . . . , ϕ 1,n ) T , Φ 1 = ( 1 λ 1 ϕ 1,1 , . . . , 1 λ n ϕ 1,n
) T and ϕ 1,i denotes the positive eigenfunction of L i in Ω (corresponding to λ i ). Note that, for later use, we keep working with different elliptic operators wherever it is possible.

We are going to show that the hypotheses of Theorem 6 are satisfied by the mappings T and H, under (H 0 ) and (H ∞ ). Note that H(U, t) = S(F (U ) + tΦ 1 ), hence

H(U, t) = U ⇔    -LU = F (x, U ) + tΦ 1 in Ω u i ≥ 0, i = 1, . . . , n, in Ω u i = 0, i = 1, . . . , n, on ∂Ω (15)
First, hypothesis (ii) in Theorem 6 is clearly verified by H. Let us now show that hypotheses (iii) and (iv) in Theorem 6 hold with ρ = r, where r is the number which appears in (H 0 ).

Suppose that H(U, t) = U for some U ∈ K, U ≤ r, and some t ∈ [0, ∞). By (H 0 ) and [START_REF] Esposito | Mountain pass critical points for Paneitz-Branson operators[END_REF] we have

LU + BU ≤ -tΦ 1 ≤ 0 in Ω. ( 16 
)
We use the following simple lemma. 

x ∈ R n , x ≥ 0} is closed ; (b) if D is such that ∀ U ∈ R n : DU ≤ 0 U ≥ 0 implies U = 0, ( 17 
)
then there exists ε > 0 such that D -εI has the same property.

Proof. Statement (a) is a very standard fact from linear optimization, while (b) follows from a simple contradiction argument. Indeed if for each ε there exists a vector

U ε ≥ 0, U ε = 0 such that (D -εI)U ε ≤ 0 then a subsequence of V ε = U ε -1 U ε converges to a vector V such that V ≥ 0, V = 1 and DV ≤ 0, a contradiction. 2 
So, since B Λ, there exists ε > 0, such that B Λ + εI. Hence we can rewrite inequality [START_REF] Dancer | Some notes on the method of moving planes[END_REF] as

LU + BU ≤ -tΦ 1 ≤ 0 in Ω, (18) 
with

L = L + Λ + εI, B = B -(Λ + εI), so λ 1 ( L i , Ω) = -ε < 0 and B 0.
We want to infer that U ≡ 0. Then from (18) t = 0 as well, so (iii) and (iv) of Theorem 6 hold. Suppose for contradiction that there exists an index j and a point x 0 ∈ Ω such that u j (x 0 ) > 0.

We are going to make use of the following variant of a basic result from linear programming, known as Farkas' Lemma. Since it is not usually encountered in this form in the literature, for the reader's convenience we provide a proof at the end of this section. Proposition 3.1 Suppose k, l ∈ N, D is a k × l real matrix, and let d ∈ R k . Then exactly one of the following systems of linear inequalities has a solution α ∈ R k , β ∈ R l (the dot will denote scalar product) :

   D T α ≥ 0 α ≥ 0 d.α > 0,
and

Dβ ≤ -d β ≥ 0. ( 19 
)
We apply this proposition with D = B = ( b ij ) n i,j=1 and d = e j , the unitary vector with j-th coordinate equal to 1 and all other coordinates equal to 0. The hypothesis B 0 implies that the second system in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] does not have a solution. Hence we can find nonnegative numbers α 1 , . . . , α n , with α j > 0, such that n i=1 α i b ik ≥ 0, for all k = 1, . . . , n.

We multiply the i-th equation in [START_REF] De Figueiredo | A Liouville-type theorem for systems[END_REF] by α i , for each i, and sum up the resulting equations. We obtain that the function u

= n i=1 α i u i is such that    L 1 u ≤ 0 in Ω u ≥ 0 in Ω u(x 0 ) > 0
(at this moment we use the hypothesis that the elliptic operators coincide). By the strong maximum principle u > 0 in Ω. By the definition of the principal eigenvalue (or Theorem 7 (iii) for n = 1), the existence of such a function u implies λ 1 ( L 1 , Ω) ≥ 0, which is a contradiction.

It remains to verify condition (i) of Theorem 6, under (H 0 ) and (H ∞ ). Suppose for contradiction that (i) does not hold, that is, for any σ > ρ we can find a vector U and a number t

≥ 1 such that U L ∞ (Ω) = σ and    -LU = t -1 F (x, U ) in Ω u i ≥ 0, i = 1, . . . , n, in Ω u i = 0, i = 1, . . . , n, on ∂Ω (20)
By (H ∞ ) and t ≥ 1, this implies

LU + AU ≥ -k 1 in Ω, ( 21 
)
where A is a matrix such that A ≺ Λ and k is a constant. We fix ε > 0 such that A ≺ Λ -εI. Note that AU + k 1 ≥ 0 for each U ≥ 0 implies A ≥ 0. Hence Theorem 7 can be applied to the operator L + A. Specifically, we are going to show that this operator satisfies the maximum principle in Ω, i.e. that condition (i)-(d) of this theorem is verified. Then, by the equivalence in Theorem 7 (i), statement (i)-(c) will also hold. Hence, by applying (i)-(c) to [START_REF] Djadli | Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications[END_REF] we get U L ∞ (Ω) ≤ C 0 (here C 0 depends on k, n, N, L, A, Ω), which is a contradiction, since we can take σ > C 0 .

So let is show that, given a function V for which

LV + AV ≤ 0 in Ω V ≥ 0 on ∂Ω, ( 22 
)
we necessarily have V ≥ 0 in Ω.

We recast [START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF] as

LV + AV ≤ 0 ( 23 
)
with L = L + Λ -εI (so λ 1 ( L i , Ω) = ε > 0) and A = A -Λ + εI (so A ≺ 0). Now, since λ 1 ( L 1 , Ω) > 0 there exists a function ψ such that C 1 ≥ ψ ≥ 1 in Ω and L 1 ψ ≤ 0 in Ω -this is for instance Theorem 7 (i)-(b) for n = 1, or Proposition 6.1 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. By the construction of ψ and standard regularity results ψ C 1,α (Ω) ≤ C 2 (the constants C 1 , C 2 depend only on the coefficients of L 1 and Ω). We set V = ψW (here we use the fact that the operators L i coincide, more precisely, that ψ is the same for all of them).

A simple computation transforms [START_REF] Gazzola | Existence and nonexistence results for critical growth biharmonic elliptic equations[END_REF] into

       L 1 w 1 + a 11 w 1 + a 12 w 2 + . . . + a 1n w n ≤ 0 in Ω . . . . . . . . . L 1 w n + a n1 w 1 + a n2 w 2 + . . . + a nn w n ≤ 0 in Ω W ≥ 0 on ∂Ω , (24) 
where

L 1 = N i,j=1 a ij (x)∂ ij + N i=1 b i (x) + 2 N j=1 a ij (x) ∂ j ψ(x) ψ(x) ∂ i + L 1 ψ ψ .
In particular, the zero-order coefficient of L 1 is nonpositive.

Recall that our goal is to show that W ≥ 0 in Ω. Suppose this is not true and set J = {j ∈ {1, . . . , n} : w j < 0 somewhere in Ω}, I = {1, . . . , n} \ J (I can be empty, but J = ∅).

We remove from [START_REF] Ge | Positive solutions in semilinear critical problems for polyharmonic operators[END_REF] all inequations in Ω with indices in I. Then if we remove from the remaining inequations all terms where appears a function w i with i ∈ I, the inequalities remain true, since A is cooperative (all offdiagonal terms of A are nonnegative), recall A ≥ 0. In this way we see that we can suppose I = ∅ in [START_REF] Ge | Positive solutions in semilinear critical problems for polyharmonic operators[END_REF], by taking a smaller n, if necessary. Here we have to note the simple fact that if a cooperative matrix D ∈ M n (R) is such that D ≺ 0, then any minor D k ∈ M n-k (R) of D obtained by removing from D lines and columns with the same indices is such that D k ≺ 0. Indeed, if not, take a vector z ∈ R n-k , z ≥ 0, z = 0, such that D k z ≥ 0 ; then adding k zero coordinates to z leads to a contradiction with D ≺ 0.

Let x j ∈ Ω be a point where w j attains its negative minimum, for all j = 1, . . . , n. We set W 0 = (w 1 (x 1 ), . . . , w n (x n )) ∈ R n . Since x j is point of negative minimum, and L 1 is elliptic with a nonpositive zero-order term, we clearly have L 1 w j (x j ) ≥ 0, for all j = 1, . . . , n. Hence n l=1 a kl w l (x k ) ≤ 0, for all k = 1, . . . , n.

By the minimal choice of x j (w l (x k ) ≥ w l (x l ) for all k, l) and a kl ≥ 0 for k = l, this implies n l=1 a kl w l (x l ) ≤ 0, for all k = 1, . . . , n.

In other words, we have

-A(-W 0 ) ≤ 0 -W 0 > 0.
So -A 0 implies W 0 = 0, a contradiction. This finishes the proof of Theorem 4 under (H 0 ) and (H ∞ ).

Proof of Theorem 4 in the superlinear case

In this section we prove that problem (P 0 ) has a nontrivial solution in K, assuming (H 0 ), (H ∞ ), and (APB). We are going to use Theorem 6 again. First we show that (H 0 ) permits to verify hypothesis (i) in Theorem 6. Suppose U is a solution of T U = tU with t ≥ 1, that is, (20) holds. By (H 0 ) we have, for all U with

U L ∞ (Ω) ≤ r,    (L + A)U ≥ 0 in Ω U ≥ 0 in Ω U = 0 on ∂Ω ( 25 
)
where A is a constant matrix such that A ≺ Λ and AU ≥ 0 for all U, U ≤ r, which implies A ≥ 0. We claim that if U satisfies (25) then U ≡ 0 (so hypothesis (i) in Theorem 6 is verified with σ = r). Like in the considerations which lead us to [START_REF] Ge | Positive solutions in semilinear critical problems for polyharmonic operators[END_REF] we introduce L = L + Λ -εI (so λ 1 ( L i , Ω) = ε > 0), A = A -Λ + εI (so A ≺ 0), the function ψ with C ≥ ψ ≥ 1 and L 1 ψ ≤ 0, the operator L 1 (with a nonpositive zero-order coefficient), and set

U = ψW . So            L 1 w 1 + a 11 w 1 + a 12 w 2 + . . . + a 1n w n ≥ 0 in Ω . . . . . . . . . L 1 w n + a n1 w 1 + a n2 w 2 + . . . + a nn w n ≥ 0 in Ω W ≥ 0 in ∂Ω W = 0 on ∂Ω , (26) 
We take x j ∈ Ω to be points of maximum for w j , j = 1, . . . , n, and set W 0 = (w 1 (x 1 ), . . . , w n (x n )) ∈ R n . Then, clearly, L 1 w j (x j ) ≤ 0, so by A ≥ 0 and w j (x i ) ≤ w j (x j ) we get from ( 26)

AW 0 ≥ 0 W 0 ≥ 0, which implies W 0 = 0, by A ≺ 0.
We now turn to the remaining three conditions required for Theorem 6 to hold. Here we define, for t ≥ 0, H(U, t) = T (U + t 1 ).

Note that now

H(U, t) = U ⇐⇒    -LU = F (x, U + t 1 ) in Ω u i ≥ 0, i = 1, . . . , n, in Ω u i = 0, i = 1, . . . , n, on ∂Ω (27)
Hypothesis (ii) of Theorem 6 is again trivially satisfied by H. Let us show that the equation H(U, t) = U does not have solutions in K for t ≥ R, where R is the number that appears in (H ∞ ). This will then imply hypotheses (iii) of Theorem 6 for t ≥ R, and (iv) with t 0 = R.

Indeed, if t ≥ R, then (H ∞ ) and ( 27) yield

-LU ≥ B(U + t 1 ) in Ω. ( 28 
)
We can repeat a reasoning we used in the sublinear case, setting L = L + Λ + εI, B = B -(Λ + εI), so λ 1 ( L i , Ω) = -ε < 0 and B 0. Supposing that u j (x 0 ) > 0 for some j and x 0 ∈ Ω, by Proposition 3.1 we can find nonnegative numbers α 1 , . . . , α n , with α j > 0, such that

n i=1 α i b ik ≥ 0, for all k = 1, . . . , n.
Multiplying the i-th equation in ( 28) by α i , for each i, and summing up the resulting equations (note that the terms coming from t B 1 become positive, by the choice of α, so we can remove them from the resulting inequality), we obtain that the function u = n i=1 α i u i is such that L 1 u ≤ 0, u > 0 in Ω, which leads to a contradiction with λ 1 ( L 1 , Ω) < 0.

Finally, the validity of hypothesis (iii) of Theorem 6 for t < R is a consequence of the a priori estimate for (P t ), hypothesis (APB) with t 0 = R, which we assume in Theorem 2 -specifically, we take ρ in Theorem 6 (iii) to be larger than this a priori bound.

Theorem 4 is proved. 2

Proof of Proposition 3.1. We recall that Farkas' lemma in its classical form, to be found in most textbooks on linear programming, states that for any k, l ∈ N, any real k × l matrix A, and any b ∈ R k , exactly one of the following systems has a solution x ∈ R l , y ∈ R k :

Ax = b x ≥ 0 and A T y ≥ 0 b.y < 0 , ( 29 
)
or, equivalently,

∃ x ∈ R l : Ax = b x ≥ 0 ⇐⇒ ∀ y ∈ R k : A T y ≥ 0 ⇒ b.y ≥ 0 .
(30) Suppose that the first problem in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] has a solution α 0 ≥ 0. This obviously implies that for any z ∈ R, z ≥ 0, the vector α 0 is a solution of the problem D T y ≥ 0 (-d -z).y < 0 By [START_REF] Leray | Topologie et équations fonctionnelles[END_REF] this implies that the problem Dx = -d -z

x ≥ 0 has no solution for all z ≥ 0, which is equivalent to saying that the second problem in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] has no solutions. Next, suppose that the first problem in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] has no solutions. This means that for any x ∈ R k the inequalities D T x ≥ 0, x ≥ 0 imply d.x ≤ 0. In other words, setting [START_REF] Lin | A classification of solutions of a conformally invariant fourth order equation in R n . Comment[END_REF] this implies that the problem (D ) T y = -d y ≥ 0 has a solution y ∈ R k+l . Hence the vector β ∈ R l containing the first l coordinates of y is a solution of the second problem in [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF]. 2

D = D T I (D is a (l + k) × k matrix), the inequality D x ≥ 0 implies d.x ≤ 0. By

More general results and comments

In this section we give results on existence of solutions for (P 0 ) with different elliptic operators. As explained in Section 3.1, to any uniformly elliptic operators L 1 , . . . , L n and any cooperative matrix C(x) we can associate a set of first eigenvalues in Ω of the irreducible blocks of the matrix operator L + C, denoted by λ

(1) 1 , . . . , λ (q)
1 . We set λ 1 (L + C, Ω) and λ 1 (L + C, Ω) to be respectively the largest and the smallest of these numbers.

We suppose that the operators L i have no zero-order terms (c (i) ≡ 0 for all i). This will not introduce any restriction whatsoever, since in the next theorem we shall allow the matrices A, B, which appear in its hypotheses, to depend on x -that is, c (i) (x) are incorporated in the coefficients on the main diagonal of A, B.

Theorem 8 Suppose that either (sublinear case) (H 0 ) there exist r > 0 and a cooperative matrix B(x) such that we have

F (x, U ) ≥ B(x) U if U ≤ r, x ∈ Ω, and 
λ 1 (L + B(x), Ω) < 0.
(H ∞ ) there exist k > 0 and a cooperative matrix A(x) such that we have

F (x, U ) ≤ A(x) U + k 1 for all U ∈ R n + , x ∈ Ω, and 
λ 1 (L + A(x), Ω) > 0 ;
or (AP B) holds and (superlinear case) (H 0 ) there exist r > 0 and a cooperative matrix A(x) such that we have

F (x, U ) ≤ A(x) U if U ≤ r, x ∈ Ω, and 
λ 1 (L + A(x), Ω) > 0.
(H ∞ ) there exist R > 0 and a cooperative matrix B(x) such that we have

F (x, U ) ≥ B(x) U if min{U 1 , . . . , U n } ≥ R, x ∈ Ω, and 
λ 1 (L + B(x), Ω) < 0.
Then (P 0 ) has a nonnegative solution, such that u k > 0 in Ω, for at least one k ∈ {1, . . . , n}.

Remark 1. To verify the hypotheses of Theorem 8 one can use the upper and lower bounds on λ 1 (L + C, Ω), λ 1 (L + C, Ω) in terms of Ω and the coefficients of L, C, given in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] (actually, as explained there, all bounds from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] can be extended to matrix eigenvalues). See also Proposition 4.1 below.

Proof of Theorem 8. The proof is an application of the definition of the eigenvalues and Theorem 7, which permit to us to verify the hypotheses of Theorem 6. We shall sketch this proof, mostly in its parts where it is different from the proof of Theorem 4 above. Just like in the Theorem 4 we need to deal with problems ( 16), ( 21), ( 22), ( 25), [START_REF] Lenhart | A system of nonlinear PDE's arising in the optimal control of stochastic systems[END_REF].

In the sublinear case we again set H(U, t) = T (U )+t Φ 1 . Then hypotheses (iii) and (iv) from Theorem 6 are verified thanks to Theorem 7 (iii), by which the existence of a nontrivial solution of ( 16) implies λ 1 (L + B(x), Ω) ≥ 0. Hypothesis (i) from Theorem 6 follows from the equivalence between parts (i)-(a) and (i)-(c) of Theorem 7, applied to [START_REF] Djadli | Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications[END_REF].

In the superlinear case hypothesis (i) from Theorem 6 is verified, since if a function U satisfies [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] then by the maximum principle (Theorem 7 (i)-(d), here we use λ 1 (L + A(x), Ω) > 0, which is (i)-(a) in Theorem 7) we have U ≤ 0, but U ≥ 0 by [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF], so U ≡ 0. To verify the other hypotheses of Theorem 6, take again H(U, t) = T (U + t 1 ) and note that if U satisfies ( 28) then (L + B(x))(U + t 1) ≤ 0, and the existence of such a function U + t 1 ≥ 0 implies that either U + t 1 ≡ 0 or λ 1 ≥ 0, by Theorem 7 (iii). 2

Actually, studying the proof of Theorem 4, we see that in its course we have proved the following result, of clear independent interest. It gives conditions for a matrix operator with a constant matrix to have positive or negative first eigenvalues.

Proposition 4.1 Assume C ∈ M n (R) is cooperative. (a) Suppose there exists a function ψ ∈ W 2,p (Ω), p > N , such that ψ ≥ 1
and L i ψ ≤ 0 in Ω, for all i = 1, . . . , n (note this hypothesis is satisfied if all L i have nonpositive zero-order coefficients, then we can take ψ ≡ 1).

Then C ≺ Λ =⇒ λ 1 (L + C -Λ, Ω) > 0. (b) Suppose L 1 ≡ . . . ≡ L n . Then C Λ =⇒ λ 1 (L + C -Λ, Ω) < 0. (that is, λ 1 (L + C, Ω) < λ 1 (L 1 , Ω)).
Remark. We have obtained Theorem 4 in the sublinear case as a combination of Theorem 8 and Proposition 4.1, except that in Theorem 4 we need not suppose that the matrix B is cooperative. Here this hypothesis guarantees the existence of first eigenvalues.

Proof of Proposition 4.1. Set L = L + C -Λ. Recall that by Theorem 7 (i)

λ 1 (L, Ω) > 0 ⇐⇒ ∀ U : LU ≤ 0 in Ω U ≥ 0 on ∂Ω ⇒ U ≥ 0 in Ω ,
and that by Theorem 7 (iii)

λ 1 (L, Ω) < 0 ⇐⇒ ∀ U : LU ≤ 0 in Ω U ≥ 0 in Ω ⇒ U ≡ 0 in Ω .
The validity of the right-hand sides of these equivalences, under C ≺ Λ (resp. C Λ), was established in the course of the proof in Section 3.2. 2

In view of Theorem 7, part (a) of Proposition 4.1 contains a condition for the operator L + C to be coercive. As a consequence of this result, we get conditions for the coerciveness of various higher order operators. For instance, ∆ 2 + α∆ + a with α 2 ≥ 4a is equivalent to ∆ 1 + C, with

C = 1 2   α √ α 2 -4a √ α 2 -4a α   .

Proof of Theorem 3

This section is devoted to verifying (APB) for a general class of superlinear systems, of which ( 10) is a very particular case. We show how to apply the Gidas-Spruck blow-up method to these systems. This result is of independent importance and applies to other problems as well. The widely used Gidas-Spruck method first appeared in [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF] for scalar equations, we refer to [START_REF] De Figueiredo | Nonlinear elliptic systems[END_REF] and [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF] for a review of its use for systems of two equations. For some higher order problems it was used in [START_REF] Birindelli | Liouville theorems for elliptic inequalities and applications[END_REF] ; we note that a different class of systems was recently studied in [START_REF] Zou | A priori estimates and existence for strongly coupled semilinear elliptic systems[END_REF], for a special type of domains. We first prove the following combinatorial lemma.

Lemma 5.1 Given two sequences of positive numbers {z k } n k=1 and {β k } n k=1 , there exists at least one k ∈ {1, . . . , n}, such that

z β j k ≥ z β k j for all j ∈ {1, . . . , n}.
We suppose the functions f i are such that for some matrices Q ∈ M n (R), Q ≥ 0 and A(x) ∈ C(Ω), A(x) ≥ 0 in Ω, there exist continuous functions h i (x, u 1 , . . . , u n ) for which

f i (x, s) = n j=1 a ij (x)s q ij j + h i (x, s), lim s 2 →∞ h i (x, s) n j=1 a ij (x)s q ij j = 0, (34) 
uniformly in x ∈ Ω, for all i. We suppose that p i := q i,i+1 > 0 (of course again the index n + 1 replaces 1) and b i (x) := a i,i+1 (x) ≥ b 0 > 0, for all i.

Further, we assume that the second order coefficients of L k coincide, that is, a

(k) ij (x) is independent of k, for all i, j = 1, . . . , N. (35) 
We set

γ 1 = 1 + n-1 i=1 p 1 . . . p i , γ 2 = 1 + n i=2 p 2 . . . p i , γ k = 1 + p k + p k p k+1 + . . . + p k . . . p n 1 + k-2 i=1 p 1 . . . p i , 3 ≤ k ≤ n.
Suppose the exponents p i satisfy

δ 0 := p 1 p 2 . . . p n -1 > 0. ( 36 
)
Note this is the weakest possible superlinearity condition for the limiting system [START_REF] Peletier | Pulse-like spatial patterns described by higher-order model equations[END_REF] below. This condition is standard for n = 2, when one can employ variational methods to treat [START_REF] Peletier | Pulse-like spatial patterns described by higher-order model equations[END_REF], but is not studied for larger n.

Set β i = 2γ i δ 0 . ( 37 
)
We shall suppose in addition that

q ij β j -β i < 2, for all j = i + 1, i, j = 1, . . . , n (38) 
(obviously this hypothesis is satisfied if q ij = 0). Then we have the following result.

Lemma 5.2 Suppose (u

(l) 1 , . . . , u (l)
n ) is a solution of ( 33) satisfying [START_REF] Mawhin | Leray-Schauder degree : a half-century of extensions and applications[END_REF], and ( 34), [START_REF] Nussbaum | Positive solutions of nonlinear elliptic boundary value problems[END_REF], [START_REF] Oswald | On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball[END_REF], [START_REF] Peletier | Nonlinear eigenvalue problems for higher order model equations[END_REF] hold. Then the system (setting

v n+1 = v 1 )    -∆v i = v p i i+1 i = 1, . . . , n v i > 0 in G, i = 1, . . . , n v i = 0 on ∂G, if ∂G = ∅, ( 39 
)
has a solution with G = R N or G = R N + = {x ∈ R N : x N > 0}.
Proof. For any fixed l we apply Lemma 5.1 to the sequences z kl := u

(l) k L ∞ (Ω)
and β k given by [START_REF] Peletier | Spatial patterns. Higher order models in physics and mechanics[END_REF]. Note that all z kl are positive, since u (l) k ≡ 0. So by Lemma 5.1 for any l there exists k = k(l) ∈ {1, . . . , n}, such that z

β j kl ≥ z β k
jl , for all j ∈ {1, . . . , n}. By taking a subsequence of l → ∞, we can suppose that k is independent of l, say k = 1. We set

ν l = u (l) 1 -1 β 1 L ∞ (Ω) ,
and v

(l) i (x) = ν β i l u (l) i (ν l x + x l ),
where x l is a point of maximum of u

(l)
1 in Ω. Recall that ν l → 0 as l → ∞, by [START_REF] Mawhin | Leray-Schauder degree : a half-century of extensions and applications[END_REF]. Then, setting Ω l = 1 ν l (Ω -x l ), by the above considerations we have

v (l) 1 (0) = 1 and v (l) i ≤ 1 in Ω l , for all i ∈ {1, . . . , n}, l ≥ 1. ( 40 
)
It is trivial to check that the sequence (v [START_REF] Soranzo | A priori estimates and existence of positive solutions of a superlinear polyharmonic equation[END_REF] in the domain Ω l , where the dot stands for ν l x + x l , we have denoted h

(l) 1 , . . . , v (l) n ) satisfies the system          -L (l) i v (l) i = j =i+1 a ij (•)ν β i +2-q ij β j l v (l) i + b i (•)ν β i +2-p i β i+1 l v (l) i+1 + h (l) i v (l) i > 0 in Ω l v (l) i = 0 on ∂Ω l ,
(l) i = h i •, ν -β 1 l v (l) 1 , . . . , ν -βn l v (l) n
, and

L (l) k = N i,j=1 a (k) ij (•)∂ ij + ν l N i=1 b (k) i (•)∂ i + ν l c (k) (•) .
By compactness we can assume that {x l } tends to some point x 0 ∈ Ω.

It is then a very standard fact that the domain Ω l tends either to the whole space or to a half-space, when l → ∞. Note that in [START_REF] Peletier | Spatial patterns. Higher order models in physics and mechanics[END_REF] we have chosen β i to be the solution of the linear system

β i -p i β i+1 = -2, i = 1, . . . , n
(we have set β n+1 = β 1 ; the determinant of this system is 1 -p 1 . . . p n , which is strictly negative, by [START_REF] Oswald | On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball[END_REF]). In addition [START_REF] Peletier | Nonlinear eigenvalue problems for higher order model equations[END_REF] guarantees that for these β i the powers of ν l which appear in the sums in the right-hand sides of (41) are strictly positive.

Therefore, thanks to the uniform boundedness of (v

(l) 1 , . . . , v (l) n ) in L ∞ (Ω l )
, elliptic regularity theory permits to us to pass to the limit in (41) (we recall once more that ν l → 0). We thus obtain a vector (v 1 , . . . , v n ), which satisfies the limiting system

   -tr(AD 2 v i ) = v p i i+1 i = 1, . . . , n v i ≥ 0 in G, i = 1, . . . , n v i = 0 on ∂G, if ∂G = ∅, ( 42 
)
where

G is either R N or R N + , A = (a ij (x 0 )) N i,j=1
is a constant positive definite matrix, and D 2 v i stands for the matrix of the second derivatives of v i . Note also that v 1 (0) = 1, so all v i are strictly positive, by the strong maximum principle, applied to all equations in [START_REF] Sweers | Strong positivity in C(Ω) for elliptic systems[END_REF], starting from the last, and going to the first. Finally, by rotating and stretching the coordinates, we obtain a solution of [START_REF] Peletier | Pulse-like spatial patterns described by higher-order model equations[END_REF].
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It is obvious that if (32) holds then system [START_REF] Lions | On the existence of positive solutions of semilinear elliptic equations[END_REF] satisfies the hypotheses of Lemma 5.2 with p i = 1, i = 1, . . . , n -1, p n = p > 1, q ij = 0 for all j ≥ i + 2 and all j ≤ i < n, while q nj = 1 for all 2 ≤ j ≤ n. This lemma implies that the problem

   (-∆) n v = v p , in G (-∆) i v > 0 in G, i = 0, . . . , n -1 v = 0 on ∂G (43) 
has a bounded solution with either G = R N or G = R N + . The first of these is impossible by Theorem 1.4 of [START_REF] Wei | Classification of solutions of higher order conformally invariant equations[END_REF], which states that (-∆) n v = v p has no positive classical solutions in R N , for p ∈ (1, p * ), p * = (N + 2n)/(N -2n). Note that when N ≤ 2n and p > 1 even the inequality (-∆) n v ≥ v p does not have nontrivial solutions such that (-∆) k u > 0, k ∈ {0, . . . , n -1}, see for instance [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF].

The following result provides a contradiction in the case G = R N + and proves the a priori bound, Theorem 3.

Theorem 9 Problem (43) with

G = {x ∈ R N : x N > 0} does not have bounded solutions, provided p < N + 2n -1 N -2n -1 (or p < ∞ if N ≤ 2n + 1).
The proof of this theorem relies on an idea by Dancer [START_REF] Dancer | Some notes on the method of moving planes[END_REF], which consists in the following : if there is a solution of [START_REF] Troy | Symmetry properties in systems of semilinear elliptic equations[END_REF] with G = R N + , and if one is able to show that any such solution is increasing in the x N -direction, then, after eventually some supplementary work, one should be able to pass at the limit as x N → ∞ and thus get a solution of the same equation in R N -1 , which in turn permits to use nonexistence results for the whole space (note the exponent in Theorem 9 is p * with N replaced by N -1).

General monotonicity results for second-order scalar equations were obtained in [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]. Corresponding results for systems of two scalar equations were recently proved in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF]. The reasoning for the system we are interested in here uses an approach similar to the one in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF] and relies on a moving planes argument and the Harnack-Krylov-Safonov estimates for nonlinear elliptic systems obtained in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF].

We have the following monotonicity result.

Theorem 10 Suppose U = (u 1 , . . . , u n ) is a bounded solution to the problem    -∆u i = u i+1 , i = 1, . . . , n -1, -∆u n = u p 1 , u i > 0 in G, i = 1, . . . , n (44) 
with

G = {x ∈ R N : x N > 0} and p ≥ 1. Suppose U = 0 on {x N = 0}. Then ∂u i ∂x N > 0 in G, for all i.
This theorem was proved in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF] for n = 2, more precisely, for the system of two equations -∆u 1 = u q 2 , -∆u 2 = u p 1 (see Theorem 1.2 in that paper). Although the condition q > 1 is stated there, absolutely the same proof works for q = 1, and in an even simpler way. We shall omit the extension to arbitrary n, since it involves only trivial technicalities.

We note that an essential role in the proof of Theorem 10 is played by the following Harnack inequality, which is a consequence of the results in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]. The reader can find a simple proof in this particular case in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], for n = 2 (extension to arbitrary n is rather straightforward).

Theorem 11 Let (u 1 , . . . , u n ) be a positive solution of    -L i u i = u i+1 , i = 1, . . . , n -1 -L n u n = u p 1 , u i > 0 in G, i = 1, . . . , n (45) 
in some domain G. Suppose K is a compact set properly included in G and

max inf x∈K u 1 , . . . , inf x∈K u n ≤ 1, max sup x∈G u 1 , . . . , sup x∈G u n ≤ M. Then sup x∈K max{u 1 , . . . , u n } ≤ C min inf x∈K u 1 1 p , inf x∈K u 2 , . . . , inf x∈K u n .
where C depends only on N, M, G, Ω.

Finally, the nonexistence result in a half-space, Theorem 9, is obtained by combining the nonexistence result in R N -1 from [45] (Theorem 1.4 in that paper) with the following theorem.

Theorem 12 If there exists a bounded solution U of [START_REF] Villaggio | Mathematical models for elastic structures[END_REF] with G = R N + , such that U = 0 on {x N = 0}, then there exists a solution of [START_REF] Villaggio | Mathematical models for elastic structures[END_REF] with G = R N -1 .

Proof. This theorem can be proved by a somewhat standard and tedious argument involving multiplication by test functions and integration by parts, see for instance [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF] for such a reasoning. We shall give here a simpler proof, which also applies to elliptic operators in non-divergence form. Suppose U is a solution of [START_REF] Villaggio | Mathematical models for elastic structures[END_REF] with

G = R N + , 0 ≤ U ≤ M 1 in R N + , U = 0 on {x N = 0}
(so all components of U are monotonous in the x N direction, by Theorem 10).

For each x = (x 1 , . . . , x N ) in the strip Σ 1 = {x : 0 < x N < 1} and each l ∈ N we set

U (l) (x) = U (x 1 , . . . , x N -1 , x N + l).
Now U (l) satisfies the same system as U so, using once more the elliptic regularity and convergence results, we see that the bounded vector U (l) converges uniformly on compact subsets of Σ 1 to a vector function U which satisfies [START_REF] Villaggio | Mathematical models for elastic structures[END_REF] with G = Σ 1 . However, the monotonicity of U (l) in x N trivially implies that U is independent of the x N -variable. This means that ( 44) is actually satisfied with G = R N -1 . 2

6 Existence results in R N

In this section we prove Theorem 5. One of our main observations is contained in the following proposition.

Proposition 6.1 For G ⊆ R N we consider the system

-L i u i = f i (x, u 1 , . . . , u n ) in G, i = 1, . . . , n u i > 0 in G, i = 1, . . . , n, ( 46 
)
with elliptic operators L i in general non-divergence form, as in Section 2, and

f i ∈ C(Ω × R n + )
. We suppose that for some positive constants a, c 1 , . . . , c n and some function g c (i) (x) ≤ -c i < 0, , i = 1, . . . , n, (47) Assume also that [START_REF] Zou | A priori estimates and existence for strongly coupled semilinear elliptic systems[END_REF] with G = B R := {x ∈ R N : |x| < R} has a solution u R , such that u R L ∞ (B R ) is uniformly bounded in R, for R ≥ R 0 > 0, and u i,R has a point of maximum x i,R ∈ B R , such that x 1,R belongs to a fixed ball B d , for all R ≥ R 0 . Then [START_REF] Zou | A priori estimates and existence for strongly coupled semilinear elliptic systems[END_REF] with G = R N has a solution such that u 1 ≡ 0.

f i (x,
Proof. First, by elliptic theory, the uniform boundedness of u R in L ∞ implies that this sequence is bounded in W 2,p loc (R N ), p < ∞, and converges, up to a subsequence, locally uniformly to a solution of (46) in R N . We only have to show that the limit function u 1 is not identically zero. This will certainly be the case if u 1,R (x 1,R ) ≥ ε > 0 for some subsequence of R → ∞ (we can assume that x 1,R tends to a point x 0 ∈ B d ). So we suppose for contradiction that u 1,R (x 1,R ) → 0 as R → ∞, that is, u 1 converges uniformly to zero (we do not write the subscript R for u i in what follows).

We evaluate the first equation in ( 46) at x 1,R . Since x 1,R is a point of maximum of u 1 , by (47) we have -L 1 u 1 (x 1,R ) ≥ c 1 u 1 (x 1,R ). Hence, by (48),

c 1 u 1 (x 1,R ) ≤ u 2 (x 1,R ) ≤ u 2 (x 2,R )
(the last inequality follows from the definition of x 2,R ). Then we evaluate the second equation at x 2,R , and get in the same way c 1 c 2 u 1 (x 1,R ) ≤ c 2 u 2 (x 2,R ) ≤ u 3 (x 2,R ) ≤ u 3 (x 3,R ), etc.

We repeat the same procedure n -1 times and at the end evaluate the n-th equation at x n,R , to get

n i=1 c i u 1 (x n,R ) ≤ n i=1 c i u 1 (x 1,R ) ≤ c n u n (x n,R ) ≤ f n (x n,R , u 1 (x n,R ), . . . , u n (x n,R )).
This is a contradiction with u 1 ⇒ 0 and (49). 

A 0 < (a 1 + λ R ) . . . (a n + λ R ),
which is a consequence of hypothesis [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], for all R > 0.

Similarly, by [START_REF] Hebey | Compactness and global estimates for a fourth order equation of critical Sobolev growth arising from conformal geometry[END_REF] we have lim u→∞ u -1 f (u) = ∞, so (H ∞ ) is satisfied if M λ R I for some (large) number m, which is also easy to check.

We have already verified (AP B), for any fixed R. Indeed, system ( 12) is of type [START_REF] Lions | On the existence of positive solutions of semilinear elliptic equations[END_REF], which we already studied. Therefore, by Theorem 4, (12) has a solution u R > 0 (we have already explained the fact that if one component of a nonnegative solution of ( 12) is not identically zero, then all components are strictly positive).

Next, by a result of Troy [START_REF] Troy | Symmetry properties in systems of semilinear elliptic equations[END_REF], all components of any positive solution of (12) in a ball are radially symmetric, and attain their unique maximum at the origin. So, to verify the hypotheses of Proposition 6.1, it only remains to show that u i,R (0) is bounded as R → ∞, for all i. This can be done by exactly the same contradiction argument as the one we used in order to prove an priori bound for [START_REF] Lions | On the existence of positive solutions of semilinear elliptic equations[END_REF]. More precisely, we suppose that u i,R l (0) → ∞ for some R l → ∞ (as l → ∞), we introduce the normalized functions v (l) i (x) = ν β i l u i,R l (ν l x), and pass to the limit as l → ∞, thus getting a solution of (-∆) n u = u p in R N or in a half-space (note that in the passage to the limit R l → ∞ only improves the speed of convergence), which is a contradiction.

Finally, the L ∞ -a priori bound together with the variational structure of (12) easily imply an a priori bound in H 1 0 (B R ) for solutions of [START_REF] Yang | On a fourth order curvature invariant[END_REF], from which the condition u i → 0 as |x| → ∞ is an easy consequence.

2



  the form * a b * and matrices of the form * 0 * * , where a, b ≡ 0 and * stands for an arbitrary function. The first of these matrices is irreducible, the second is not, and has two 1 × 1 irreducible blocks. Respectively, for n = 3, there are four types of matrices (of course, up to renumbering again) : , a, b, c, d ≡ 0.

Lemma 3 . 1

 31 Let D be a real n × n matrix. Then (a) the set {Dx :

2 Proof of Theorem 5 .

 25 System (12) clearly satisfies (47)-(49). Let us show that[START_REF] Yang | On a fourth order curvature invariant[END_REF], written in the matrix form-∆U = F (U ),wheref i (U ) = -a i u i + u i+1 , i < n, f n (U ) = -a n u n + f (u 1 ), satisfies conditions (H 0 ), (H ∞ ), (AP B) in Theorem 4 if Ω = B R , for any fixed R. Set A 0 := lim sup u→0 u -1 f (u) and λ R = λ 1 (-∆, B R ).Then it is easy to see that checking (H 0 ) amounts to verifying the condition M ≺ λ R I, where with m = A 0 . A trivial computation shows this is equivalent to

  u 1 , . . . , u n ) ≤ u i+1 , i = 1, . . . , n -1, (48) f n (x, u 1 , . . . , u n ) ≤ g(u 1) and lim sup

	t→0	g(t) t	≤ a <	n i=1	c i .	(49)

Proof. Suppose the lemma is false, that is, for each k we can find an index j k = k such that z

We apply this with k = 1, then with k = j 1 = 1 which yields j 2 = j 1 such that z

If j 2 = 1 this is a contradiction. If not, we find j 3 = j 2 such that z

Again if j 3 = 1 or j 3 = j 1 we get a contradiction. If not, we continue the process, which will clearly lead to a contradiction after a finite number of steps. 2

Recall we have to prove an a priori bound for solutions of (we shall write n instead of m, to conform with the notations in the previous sections)

where t ∈ [0, t 0 ]. Note that if (u 1 , . . . , u n ) is a solution of (31) and u j ≡ 0 for some j then u k ≡ 0 for all k ≥ j (by using successively the j-th till the (n -1)-th equation in [START_REF] Lions | On the existence of positive solutions of semilinear elliptic equations[END_REF]). On the other hand, if u j ≡ 0 then by applying successively the Alexandrov-Bakelman-Pucci inequality (Theorem (7) (i)-(c) for n = 1) to the (j -1)-th equation -L j-1 u j-1 = t, then to the (j -2)-th, till the first, we see that u k are uniformly bounded for all k < j. The desired a priori bound is then true, so we can suppose in what follows that u j ≡ 0 for all j = 1, . . . , n.

Suppose there is not such bound, that is, for all l ∈ N there exist t l ∈ [0, t 0 ] and u (l) which solves [START_REF] Lions | On the existence of positive solutions of semilinear elliptic equations[END_REF] 

We shall now develop the blow-up method -in a more general context than [START_REF] Lions | On the existence of positive solutions of semilinear elliptic equations[END_REF], in view of some further applications.

Let us have the system (setting

-L i u i = f i (x, u 1 , . . . , u n ), i = 1, . . . , n u i ≥ 0 in Ω, i = 1, . . . , n u i ≡ 0 in Ω, i = 1, . . . , n u i = 0 on ∂Ω, i = 1, . . . , n. [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF]