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1 Introduction

In recent years there has been a great deal of work on elliptic equations like

(−∆)mu = g(x, u), (1)

or
∆2u + β∆u = g(x, u), (2)

in a domain Ω ⊆ R
N , N ≥ 1, for m ∈ N, β ∈ R, where g is some continuous

function. This paper is a contribution to the study of existence and properties
of positive solutions to this type of problems.

Two types of boundary conditions for (1) are most often considered, when
Ω 6= R

N . These are Dirichlet boundary conditions u = Du = . . . = Dm−1u=0
on ∂Ω, and Navier boundary conditions

u = ∆u = . . . = ∆m−1u = 0 on ∂Ω. (3)

Each of these conditions presents its own type of difficulties. We concentrate
on the Navier problem here, consequently most of the references we give con-
cern that problem. There are various motivations for studying these types
of equations. On one hand, they have recently been proposed as models
for some phenomena in complex spatio-temporal pattern formation (see the
reviews [31], [32], and more specifically [7], [33]). On the other hand, such
equations appear when studying the so-called Paneitz-Branson operator and
its generalizations, which have many geometric properties (in particular, con-
formal invariance), and are important in mathematical physics – see [8], [10],
[12], [18], and the references there. Further, higher order operators appear
in some areas of physics, for instance, the hinged plate problem – [29], [39].

Note that (1) and (2) are very particular cases of an elliptic system

−Liui = fi(x, u1, . . . , un), i = 1, . . . , n, (4)

1e-mail : sirakov@ehess.fr
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with, for example for (1), Li = ∆; fi(x, u) = ui+1, i < m; fm(x, u) = f(x, u1).
Apart from their applications mentioned above, systems of type (4) appear in
many other situations, for instance in probability theory (switched diffusion
processes, [11]) and stochastic control (switching costs problem, [24]). In
1982 P.L. Lions asked whether and to what extent known results for scalar
equations can be extended to systems of this type - see open problem 4.2
(c) in [26]. This work is a part of a series devoted to providing answers to
that question in some cases. In the next sections we give results on existence
of solutions of system (4), whereas in the introduction we put the emphasis
on applications to higher order equations, because of their importance. We
stress that our results are new even for (1) and (2).

Let us describe our setting. Suppose Ω is a smooth bounded domain in
R

N , N ≥ 1, and let L be a uniformly elliptic second order operator with
Hölder continuous coefficients,

L =
N∑

i,j=1

aij(x)∂ij +
N∑

i=1

bi(x)∂i + c(x),

with λ|ξ|2 ≤ ∑
aijξiξj, ξ ∈ R

N , for some 0 < λ ≤ ν, and |aij|, |bi|, |c| ≤ ν in
Ω. Assume L has a positive first eigenvalue λ1 = λ1(L, Ω) (that is, −Lϕ1 =
λ1ϕ1 for some ϕ1 > 0 in Ω, ϕ1 = 0 on ∂Ω). Of course λ1 > 0 if c ≤ 0.

Suppose f is a nonnegative Hölder function on Ω × R+, and α1 ∈ R,
αi ≥ 0, i = 2, . . . ,m − 1 (if m ≥ 3) are constants. We study the problem

(−L)mu =
m−1∑

i=1

αi(−L)m−iu + f(x, u) in Ω (5)

(−L)ku = 0, k ∈ {0, 1, . . . ,m − 1} on ∂Ω. (6)

In the second order case −Lu = f(u) (i.e. m = 1) there is a well developed
existence theory when the behaviour of f(u)/u at zero and at infinity is
different with respect to λ1. Our first principal result is that the higher order
equation (5)-(6) has the same property, and the dividing number is

λ∗ = max

{
0, λm

1 −
m−1∑

i=1

αiλ
m−i
1

}
.

To give an example, let us compute λ∗ for the standard Paneitz equation
with constant coefficients ∆2u + α∆u + au = f(x, u), α, a ∈ R (to avoid
confusion, note that here ∆ =

∑
∂ii, and not −∑

∂ii as in some other works
on the subject). This equation can be recast in the form (5) if δ = α2−4a ≥ 0,
for L = ∆+ c0, with 2c0 = α±

√
δ, α1 = ∓

√
δ. Hence by λ1(L) = λ1(∆)− c0

we get λ∗ = (λ1(∆)2 − αλ1(∆) + a)+.
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Theorem 1 Suppose there exist a, b ∈ R such that

∞ ≥ lim inf
u→0

f(x, u)

u
≥ a > λ∗ > b ≥ lim sup

u→∞

f(x, u)

u
, for x ∈ Ω. (7)

Then problem (5)-(6) has a positive solution in C2m(Ω), with (−L)ku > 0
in Ω, for all k ∈ {0, . . . , m − 1}.

Theorem 2 Suppose there exist a, b ∈ R such that

lim sup
u→0

f(x, u)

u
≤ a < λ∗ < b ≤ lim inf

u→∞

f(x, u)

u
≤ ∞, for x ∈ Ω. (8)

Suppose in addition that problem (5) admits a priori bounds, in the fol-
lowing sense : for each t0 ≥ 0 there exists a constant C depending only on
t0, λ, ν,m, N, αi, Ω, f, such that if t ∈ [0, t0], u ∈ C2m(Ω) is a solution of (5)
with f(x, u) replaced by f(x, u + t), and (−L)ku > 0 in Ω, (−L)ku = 0 on
∂Ω, k = 0, . . . ,m − 1, then ‖u‖L∞(Ω) ≤ C.

Then problem (5)-(6) has a positive solution in C2m(Ω), with (−L)ku > 0
in Ω, for all k ∈ {0, . . . , m − 1}.

Remark 1. Extending the established terminology for the second order case
(when λ∗ = λ1), we say that (7) (resp. (8)) means f is sublinear (resp.
superlinear) in u. To our knowledge, these notions are being defined here for
the first time for higher order elliptic partial differential equations.
Remark 2. Theorems 1 and 2 are consequences of results on system (4),
which rely on Leray-Schauder degree theory and linear programming (for
a general survey on use of degree theory in differential equations see [27]).
It follows from these results, see Sections 2 and 4, that we can consider
equations in which, instead of taking the powers of a given operator, we
iterate different elliptic operators. Further, we can get existence results for
systems of higher order equations. All these statements have been postponed
to the next sections, for the sake of conciseness and clarity of the introduction.
Remark 3. Theorems 1 and 2 hold if we suppose only that A(x) ∈ C(Ω),
bi, c ∈ L∞(Ω), and f ∈ C(Ω×R). In this case the solutions we obtain belong
to W 2,p(Ω) ∩ C2m−2(Ω), p < ∞.

Theorem 2 settles the existence question in the superlinear case, provided
a priori bounds can be proved. Consequently, in the second part of the paper
we study the availability of such bounds – an important question in itself.
Here we shall concentrate on the situation where the nonlinearity f has power
growth in u. Note that, when λ∗ > 0, the model case f(x, u) = up satisfies
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the hypothesis of Theorem 1 when p ∈ (0, 1), and the first hypothesis of
Theorem 2 when p ∈ (1,∞).

A large amount of work has been devoted to equations (1) and (2) with
superlinear power-like nonlinearity, see for example [1], [2], [3], [4], [18], [20],
[21], [23], as well as the references there. As is well-known, in (1) the growth
of f with respect to u plays a crucial role. Specifically, for f behaving as up

the number p∗ = (N + 2m)/(N − 2m) (p∗ = ∞ if N ≤ 2m), plays the role of
a critical exponent, similarly to the case m = 1. A large part of the previous
works concentrate on the critical case, p = p∗. The supercritical case has
recently been considered in [19].

In view of the historical development of the second-order case, it may
seem surprising that there has been relatively little work on subcritical f ,
i.e. p < p∗. The reason for this is that previous works on (1) make use
of variational methods and, generally, in the subcritical case these methods
extend quite simply from m = 1 to any m ∈ N. For instance, if f in (1)
is subcritical and satisfies the conditions of the Mountain Pass lemma, then
this lemma easily implies that problem (1)-(3) has a positive solution.

On the other hand, in the second-order case it has long been known that
degree theory permits to prove existence of solutions in situations where
variational methods cannot be employed. For instance, this is the case for
most systems of equations. For higher order problems topological methods
have been used in [30] and [36], where equation (1) in a convex domain was
studied, obtaining a direct extension of the results for m = 1 in [16]. In these
works the variational nature (divergence form) of the Laplacian was used
in an essential way. We have the following result, which applies to general
operators and domains.

Theorem 3 Suppose f in (5) has subcritical power growth, that is, for some
function b ∈ C(Ω) such that b > 0 in Ω, and for some p ∈ (1, p∗)

lim
u→∞

f(x, u)

up
= b(x), for x ∈ Ω.

Then (5) admits an a priori bound, as defined in Theorem 2.

Remark 4. Combining Theorems 2 and 3 yields an existence result for super-
linear higher order equations with subcritical power growth. Note this result
could not be obtained by variational methods, both because of the form of
L and the form of f . In addition, by combining the methods and the results
of this paper with those in [17], it is only a matter of technique to extend
the above theorems to systems of higher order equations with power growth
nonlinearities.
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Remark 5. In some important in practice cases our results can be used to
get existence in the whole space – see Theorem 5 in the next section.

In the proof of Theorem 3 we use the blow-up method of Gidas and
Spruck, developed in [22] for the second-order scalar case, and recently ex-
tended to some systems of second-order equations in [17], [41] (see also the
references in these works). We will show that this method can be used for
another large class of systems, which covers the case we are interested in
Theorem 3.

The blow-up method contains a contradiction argument, which in turn
relies on Liouville (nonexistence) theorems in R

N or in a half-space of R
N .

Specifically, we use the fact that the equation (−∆)mu = up does not have
positive solutions in R

N , for p ∈ (1, p∗). This result is proved in [25] and [40].
However, a Liouville result for (−∆)mu = up in a half-space does not seem
to be available. We will prove such a result in Section 5.

The paper is organized as follows. In the next section we give more
general existence results for systems, which contain Theorems 1 and 2 as
particular cases. The proofs of these results are given in Section 3, while
Section 4 contains some extensions and comments. In Section 5 we develop
the blow-up method for a class of systems which include (5)-(6), and give
the proof of Theorem 3. Finally, in Section 6 we prove some existence results
in R

N .

2 Elliptic systems – more principal results

We consider the system

(Pt)





−Liui = fi(x, u1 + t, . . . , un + t) in Ω, i = 1, . . . , n
ui ≥ 0 in Ω, i = 1, . . . , n
ui = 0 on ∂Ω, i = 1, . . . , n,

where t ≥ 0, n ∈ N, and Lk =
∑N

i,j=1 a
(k)
ij (x)∂ij +

∑N

i=1 b
(k)
i (x)∂i + c(k)(x)

satisfy the hypotheses we made on L in Section 1.
Let us introduce some notations and conventions. We denote λk =

λ1(Lk, Ω) > 0 and Λ = diag(λ1, . . . , λn) ∈ Mn(R). We shall use the matrix
notation U = (u1, . . . , un)T ∈ R

n, F = (f1, . . . , fn)T , L = diag(L1, . . . , Ln).
We set ~1 = (1, . . . , 1) ∈ R

n. On R
n we use the norm ‖U‖ = max1≤i≤n |ui|.

Throughout the paper equalities and inequalities between vectors or matrices
will be understood to hold component-wise. We define the following relation
between matrices : if A and B are two n × n matrices,

A ≺ B ⇐⇒ ∀U ∈ R
n :

{
BU ≤ AU

U ≥ 0
implies U = 0. (9)
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Geometrically, if B − A is invertible, (9) means that A ≺ B if the (closed)
positive cone generated by the columns of B −A does not meet the negative
hyper-quadrant {U ≤ 0}, except at the origin.

We suppose that fi are Hölder (or just continuous, see Remark 3 in Sec-
tion 1) functions, and for some ξi ≥ 0

fi(x, U) ≥ −ξiui, for all U ∈ R
n
+ := {U ∈ R

N : ui ≥ 0}.

Replacing c(i) by c(i) − ξi (resp. λi by λi + ξi) we can assume ξi = 0.
We have the following result on existence of solutions of (P0).

Theorem 4 Suppose L1 ≡ . . . ≡ Ln and either (sublinear case)

(H0) there exist r > 0 and a matrix B ∈ Mn(R) such that for x ∈ Ω

B ≻ Λ and F (x, U) ≥ B U if ‖U‖ ≤ r, U ∈ R
n
+,

(H∞) there exist k > 0 and a matrix A ∈ Mn(R) such that for x ∈ Ω

A ≺ Λ and F (x, U) ≤ AU + k~1 for all U ∈ R
n
+,

or (superlinear case)

(H0) there exist r > 0 and a matrix A ∈ Mn(R) such that for x ∈ Ω

A ≺ Λ and F (x, U) ≤ AU if ‖U‖ ≤ r, U ∈ R
n
+,

(H∞) there exist R > 0 and a matrix B ∈ Mn(R) such that for x ∈ Ω

B ≻ Λ and F (x, U) ≥ B U if min{u1, . . . , un} ≥ R,

(APB) for any t0 ≥ 0 there exists a constant M , depending only on t0, Ω,
n,N , λ, ν, and on the functions fi, such that max

1≤i≤n
sup
x∈Ω

ui(x) ≤ M for

any t ∈ [0, t0] and any solution (u1, . . . , un) of (Pt).

Then (P0) has a nonnegative solution, such that uk > 0 in Ω, for at least
one k ∈ {1, . . . , n}.

Remark 1. We immediately note that the hypothesis that the operators
coincide is not superfluous in the above theorem – this is the price to pay to
have the nice and explicit hypotheses given by the relation ”≻”. A thorough
explanation goes beyond the scope of this paper, we will only mention here
that this turns out to be related to the fact that a Hamilton-Jacobi-Bellman
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operator F(u) = minj Lju can have two different eigenvalues corresponding
to a positive and a negative eigenfunction, and that the smaller of these
eigenvalues can be strictly smaller than the eigenvalue of each Lj (for details
on this topic, see [34]).
Remark 2. A more general (but less explicit) result for different Li is given in
Section 4, Theorem 8 (in Section 4 we also comment on issues of coercivity
of matrix and higher order operators). Note that if Li differ only in their
zero-order coefficients, we can always make them equal by changing fi.
Remark 3. A weaker variant of Theorem 4 for the case Li = ∆ was proved in
[35], where the divergence form of the Laplacian was used in an essential way
(note [35] was not written viewing applications to higher order equations).
Here we employ a very different approach, relying on Farkas’ lemma – quite
an untypical tool in the field of elliptic PDE’s – and on results on existence
and properties of first eigenvalues of vector operators, obtained in [9].
Remark 4. Note that if F is differentiable at u = 0 then (H0) (resp. (H0))
reduces to F ′(x, 0) ≻ Λ (resp. F ′(x, 0) ≺ Λ), for x ∈ Ω.

One gets Theorems 1 and 2 by applying Theorem 4 to the system




−Liui = ui+1, i = 1, . . . , m − 1
−Lmum = f(x, u1) + αm−1u2 + . . . + α1um,

ui ≥ 0 in Ω, i = 1, . . . , m
ui = 0 on ∂Ω, i = 1, . . . , m,

(10)

and by using the following proposition (obtained by a simple computation
and the definition of the relation ”≻”)

Proposition 2.1 For any n ∈ N, µi ≥ 0, 1 ≤ i ≤ n − 1, µn ∈ R, the n × n
matrix

M =




0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1
µ1 µ2 µ3 . . . µn−1 µn




is such that M ≺ Λ (resp. M ≻ Λ) provided

n∑

j=1

µj

λj . . . λn

< 1

(
resp. µ1 > 0 and

n∑

j=1

µj

λj . . . λn

> 1

)
.

Note that a simple application of the maximum principle and the strong
maximum principle for scalar elliptic operators shows that if (u1, . . . , un) is
a solution of (10) then either u1 = . . . = un ≡ 0 or ui > 0 in Ω for all i.

In the end we state an existence result in the whole space for a class
of systems which include a number of important models, for instance the
Paneitz equation. See [7] or [33] for various applications.
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Theorem 5 Suppose a1, . . . , an are positive numbers, and f(u) is a nonde-
creasing Lipschitz function such that

lim sup
u→0

f(u)

u
<

n∏

i=1

ai, lim
u→∞

f(u)

up
= c > 0, (11)

for some c > 0, p ∈ (1, p∗). Then the system

{
−∆ui + aiui = ui+1, i = 1, . . . , n − 1,
−∆un + anun = f(u1),

(12)

has a solution in R
N , such that ui > 0 in R

N and ui → 0 as |x| → ∞.

Note that many higher order equations like the ones studied in the introduc-
tion can be factorized in the form (12). Various extensions of Theorem 5 can
be deduced from its proof. See also Proposition 6.1 in Section 6.

3 Proof of Theorem 4

In this section we prove Theorem 4. We recall that Theorems 1 and 2 are
particular cases of this theorem.

3.1 Preliminaries

The following result, due to Krasnoselskii and Benjamin (see Proposition 2.1
and Remark 2.1 in [16]) has nowadays become a classical tool in proving
existence results.

Theorem 6 Let K be a closed cone in a Banach space X, and let BR =
{x ∈ K : ‖x‖ < R}. Let T : BR → K be a compact mapping. Suppose
σ, ρ ∈ (0, R), σ 6= ρ are such that

(i) Tx 6= tx for all x ∈ ∂Bσ and all t ≥ 1 ;

and there exists a mapping H : Bρ × [0,∞) → K such that

(ii) H(x, 0) = Tx for all x ∈ ∂Bρ ;

(iii) H(x, t) 6= x for all x ∈ ∂Bρ, and all t ≥ 0 ;

(iv) ∃ t0 ∈ R+ : H(x, t) 6= x for all x ∈ Bρ, and all t ≥ t0.

Then there exists a fixed point x of T (i.e. Tx = x), such that ‖x‖X is
between σ and ρ.
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We denote with X the space
(
C0(Ω)

)n
and introduce the linear mapping

S : X → X, such that for any Ψ = (ψ1, . . . , ψn)T ,W = (w1, . . . , wn)T ∈ X,

S(Ψ) = W ⇐⇒
{

−Liwi = ψi in Ω, i = 1, . . . , n
wi = 0 on ∂Ω, i = 1, . . . , n.

The mapping S is well-defined, since λ1(Li, Ω) > 0. Properties of scalar oper-
ators with a positive first eigenvalue were studied in [6]. Below (Theorem 7)
we recall some of these properties, obtained in [9] in the more general setting
of a cooperative system.

We set T (U) = S(F (U)) and note that T maps compactly X into itself,
by standard regularity and imbedding theorems. With this notation, solving
(P0) clearly amounts to finding a fixed point of T in the cone

K = {U ∈ X : ui ≥ 0, i = 1, . . . , n}.

Of course T maps K into itself, by the maximum principle, which is verified
by Li in Ω, since λ1(Li, Ω) > 0. Consequently, finding a nontrivial fixed point
of T in K, that is, verifying the four hypotheses of Theorem 6, will be our
task in this section.

We shall need some results, and consequences of results from [9] (see in
particular Sections 8, 13 and 14 in that paper).

Let cij(x) be bounded functions and set C(x) = (cij(x))n

i,j=1. Suppose

gi(x) ∈ LN(Ω). Consider a linear system in the form

LU + CU = G, (13)

where L = diag(L1, . . . , Ln), C(x) = (cij(x))n

i,j=1 , U = (u1, . . . , un)T , and

G = (g1, . . . , gn)T .
Since we are going to use Alexandrov-Bakelman-Pucci estimates and

Maximum Principles we shall need to consider cooperative systems. Sys-
tem (13) is called cooperative (or quasi-monotone) if cij ≥ 0 for all i 6= j.

We recall that a system of this type is called fully coupled (and the matrix
C is called irreducible) provided for any non-empty sets I, J ⊂ {1, . . . , n} such
that I ∩J = ∅ and I ∪J = {1, . . . , n}, there exist i0 ∈ I and j0 ∈ J for which

meas{x ∈ Ω | ci0j0(x) > 0} > 0. (14)

When (14) holds we write ci0j0 6≡ 0 in Ω. Simply speaking, a system is fully
coupled provided it cannot be split into two subsystems, one of which does
not depend on the other.

As explained in [9], any matrix C(x) can have its lines and columns renum-
bered in such a way that it is in block triangular form, with each block on the
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main diagonal being fully coupled. More precisely, C = (Ckl)
q

k,l=1 , for some

1 ≤ q ≤ n, Ckl are tk×tl matrices for some tk ≤ n with
q∑

k=1

tk = n, Ckk is an ir-

reducible matrix for all k = 1, . . . , q, and Ckl ≡ 0 in Ω, for all k, l ∈ {1, . . . , q}
with k < l. Note that q = 1 means C itself is irreducible, while q = n means C

is in triangular form. We set s0 = 0, sk =

q∑

j=1

tj, and Sk = {sk−1 +1, . . . , sk}.

For instance, any 1 × 1 matrix is irreducible. Then, up to renumbering,
when n = 2 we divide the set of matrices C into two parts : matrices of

the form

(
∗ a
b ∗

)
and matrices of the form

(
∗ 0
∗ ∗

)
, where a, b 6≡ 0 and ∗

stands for an arbitrary function. The first of these matrices is irreducible,
the second is not, and has two 1 × 1 irreducible blocks. Respectively, for
n = 3, there are four types of matrices (of course, up to renumbering again) :



∗ a ∗
∗ ∗ b
c ∗ ∗


 ,



∗ a 0
b ∗ c
0 d ∗


 ,



∗ a 0
b ∗ 0
∗ ∗ ∗


 ,



∗ 0 0
∗ ∗ 0
∗ ∗ ∗


 , a, b, c, d 6≡ 0.

The first two of these matrices are irreducible, the third has one 2 × 2 and
one 1×1 irreducible blocks, and the fourth has three 1×1 irreducible blocks.

It was proved in Theorem 13.1 in [9] that the matrix operator L + C
admits a principal eigenvalue with all the usual properties of the principal
eigenvalue of a scalar operator, provided C is cooperative and irreducible. We
recall that this eigenvalue is defined by:

λ1 = λ1(L + C)

= sup{λ ∈ R : ∃Ψ ∈ W 2,N
loc (Ω, Rn), Ψ > 0 & (L + C + λI)Ψ ≤ 0 in Ω}.

Hence, using the explained above block triangular representation of the
cooperative matrix C, we can associate to C a set of eigenvalues λ

(1)
1 , . . . , λ

(q)
1 ,

where λ
(k)
1 is the principal eigenvalue of L(k) + Ckk. Here we have denoted

L(k) =diag(Lsk−1+1, . . . , Lsk
) (see above for the notations).

A combination of Theorems 8.1, 12.1, 13.1, 13.2, 14.1 and Lemma 14.1 in
[9] yields the following result (we shall provide a brief proof, for convenience).
Note that, when q = n = 1, it reduces to the well-known results on scalar
equations from [6].

Theorem 7 (i) The following are equivalent :

(a) λ
(k)
1 > 0 for all k = 1, . . . , q ;

10



(b) there exists a vector Ψ(x) ∈ C2(Ω)(or Ψ(x) ∈ W 2,p(Ω) ∩ C(Ω)) such
that C0

~1 ≥ Ψ ≥ ~1 and LΨ + CΨ ≤ 0 in Ω, where C0 depends only on
Ω and the coefficients of L and C ;

(c) (Alexandrov-Bakelman-Pucci inequality) for any G ∈ LN(Ω, Rn) and
any subsolution U of (13) (i.e. LU + CU ≥ G) there holds

sup
Ω

max{u1, . . . , un} ≤ C

(
sup
∂Ω

max{u1, . . . , un, 0} + ‖max
1≤i≤n

gi‖LN (Ω)

)
,

where C depends only on Ω and on the coefficients of L and C.

(d) the operator L + C satisfies the maximum principle in Ω, that is, if
LU + CU ≤ 0 in Ω and U ≥ 0 on ∂Ω, then U ≥ 0 in Ω.

(ii) if λ
(k)
1 > 0 for all k = 1, . . . , q, then for any G ∈ Cα(Ω) (or G ∈

Lp(Ω), p ≥ N) there exists a unique classical (resp. in W 2,p(Ω) ∩ C(Ω)) so-
lution of (13), such that u = 0 on ∂Ω ; in addition ‖U‖W 2,p(Ω) ≤ C‖G‖Lp(Ω).

(iii) Suppose ψ ∈ C(Ω, Rd) is such that ψ ≥ 0 and Lψ + Cψ ≤ 0 in Ω. If

ψj 6≡ 0 in Ω for some j ∈ Sk and some k ∈ {1 . . . , q}, then λ
(k)
1 ≥ 0.

Sketch of the proof of Theorem 7.(i) Theorem 14.1 and Lemma 14.1 in
[9] give (a) ⇔ (b) ⇔ (d). Theorem 8.1 in [9] gives (b) ⇒ (c), and (c) ⇒ (d)
is obvious.
(ii) If q = 1 this is Theorem 13.2 in [9] (due to Sweers [37]). If q > 1 we
apply this theorem q times : using the block-diagonal structure of C, first we
solve (L(1) + C11)u

(1) = g(1), then (L(2) + C2)u
(2) = g(2) − C21u

(1), etc. The
last inequality in (ii) follows from standard regularity results and (i)-(c).
(iii) This follows from the cooperativeness of C and the definition of the first
eigenvalue, together with Theorem 14.1 in [9]. ✷

3.2 Proof of Theorem 4 in the sublinear case

In this section we show that problem (P0) has a nontrivial solution in K,
provided (H0) and (H∞) hold.

For any U ∈ K and any t ∈ [0,∞) we define

H(U, t) = T (U) + tΦ̃1,

where Φ1 = (ϕ1,1, . . . , ϕ1,n)T , Φ̃1 = ( 1
λ1

ϕ1,1, . . . ,
1

λn
ϕ1,n)T and ϕ1,i denotes the

positive eigenfunction of Li in Ω (corresponding to λi). Note that, for later
use, we keep working with different elliptic operators wherever it is possible.
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We are going to show that the hypotheses of Theorem 6 are satisfied
by the mappings T and H, under (H0) and (H∞). Note that H(U, t) =
S(F (U) + tΦ1), hence

H(U, t) = U ⇔





−LU = F (x, U) + tΦ1 in Ω
ui ≥ 0, i = 1, . . . , n, in Ω
ui = 0, i = 1, . . . , n, on ∂Ω

(15)

First, hypothesis (ii) in Theorem 6 is clearly verified by H. Let us now show
that hypotheses (iii) and (iv) in Theorem 6 hold with ρ = r, where r is the
number which appears in (H0).

Suppose that H(U, t) = U for some U ∈ K, ‖U‖ ≤ r, and some t ∈ [0,∞).
By (H0) and (15) we have

LU + BU ≤ −tΦ1 ≤ 0 in Ω. (16)

We use the following simple lemma.

Lemma 3.1 Let D be a real n × n matrix. Then

(a) the set {Dx : x ∈ R
n, x ≥ 0} is closed ;

(b) if D is such that

∀ U ∈ R
n :

{
DU ≤ 0

U ≥ 0
implies U = 0, (17)

then there exists ε > 0 such that D − εI has the same property.

Proof. Statement (a) is a very standard fact from linear optimization, while
(b) follows from a simple contradiction argument. Indeed if for each ε there
exists a vector Uε ≥ 0, Uε 6= 0 such that (D − εI)Uε ≤ 0 then a subsequence
of Vε = ‖Uε‖−1Uε converges to a vector V such that V ≥ 0, ‖V ‖ = 1 and
DV ≤ 0, a contradiction. ✷

So, since B ≻ Λ, there exists ε > 0, such that B ≻ Λ + εI. Hence we can
rewrite inequality (16) as

L̃U + B̃U ≤ −tΦ1 ≤ 0 in Ω, (18)

with L̃ = L + Λ + εI, B̃ = B − (Λ + εI), so λ1(L̃i, Ω) = −ε < 0 and B̃ ≻ 0.
We want to infer that U ≡ 0. Then from (18) t = 0 as well, so (iii) and

(iv) of Theorem 6 hold. Suppose for contradiction that there exists an index
j and a point x0 ∈ Ω such that uj(x0) > 0.

We are going to make use of the following variant of a basic result from
linear programming, known as Farkas’ Lemma. Since it is not usually encoun-
tered in this form in the literature, for the reader’s convenience we provide
a proof at the end of this section.
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Proposition 3.1 Suppose k, l ∈ N, D is a k× l real matrix, and let d ∈ R
k.

Then exactly one of the following systems of linear inequalities has a solution
α ∈ R

k, β ∈ R
l (the dot will denote scalar product) :





DT α ≥ 0
α ≥ 0

d.α > 0,
and

{
Dβ ≤ −d

β ≥ 0.
(19)

We apply this proposition with D = B̃ = (̃bij)
n
i,j=1 and d = ej, the unitary

vector with j-th coordinate equal to 1 and all other coordinates equal to 0.
The hypothesis B̃ ≻ 0 implies that the second system in (19) does not have
a solution. Hence we can find nonnegative numbers α1, . . . , αn, with αj > 0,

such that
n∑

i=1

αib̃ik ≥ 0, for all k = 1, . . . , n.

We multiply the i-th equation in (18) by αi, for each i, and sum up the
resulting equations. We obtain that the function u =

∑n

i=1 αiui is such that





L̃1u ≤ 0 in Ω
u ≥ 0 in Ω

u(x0) > 0

(at this moment we use the hypothesis that the elliptic operators coincide).
By the strong maximum principle u > 0 in Ω. By the definition of the
principal eigenvalue (or Theorem 7 (iii) for n = 1), the existence of such a

function u implies λ1(L̃1, Ω) ≥ 0, which is a contradiction.
It remains to verify condition (i) of Theorem 6, under (H0) and (H∞).

Suppose for contradiction that (i) does not hold, that is, for any σ > ρ we
can find a vector U and a number t ≥ 1 such that ‖U‖L∞(Ω) = σ and





−LU = t−1 F (x, U) in Ω
ui ≥ 0, i = 1, . . . , n, in Ω
ui = 0, i = 1, . . . , n, on ∂Ω

(20)

By (H∞) and t ≥ 1, this implies

LU + AU ≥ −k~1 in Ω, (21)

where A is a matrix such that A ≺ Λ and k is a constant. We fix ε > 0 such
that A ≺ Λ − εI. Note that AU + k~1 ≥ 0 for each U ≥ 0 implies A ≥ 0.

Hence Theorem 7 can be applied to the operator L + A. Specifically, we
are going to show that this operator satisfies the maximum principle in Ω, i.e.
that condition (i)-(d) of this theorem is verified. Then, by the equivalence in
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Theorem 7 (i), statement (i)-(c) will also hold. Hence, by applying (i)-(c) to
(21) we get ‖U‖L∞(Ω) ≤ C0 (here C0 depends on k, n, N, L, A, Ω), which is a
contradiction, since we can take σ > C0.

So let is show that, given a function V for which

{
LV + AV ≤ 0 in Ω

V ≥ 0 on ∂Ω,
(22)

we necessarily have V ≥ 0 in Ω.
We recast (22) as

L̃V + ÃV ≤ 0 (23)

with L̃ = L + Λ− εI (so λ1(L̃i, Ω) = ε > 0) and Ã = A−Λ + εI (so Ã ≺ 0).

Now, since λ1(L̃1, Ω) > 0 there exists a function ψ such that C1 ≥ ψ ≥ 1

in Ω and L̃1ψ ≤ 0 in Ω – this is for instance Theorem 7 (i)-(b) for n = 1,
or Proposition 6.1 in [6]. By the construction of ψ and standard regularity
results ‖ψ‖C1,α(Ω) ≤ C2 (the constants C1, C2 depend only on the coefficients

of L̃1 and Ω). We set V = ψW (here we use the fact that the operators Li

coincide, more precisely, that ψ is the same for all of them).
A simple computation transforms (23) into





L1w1 + ã11w1 + ã12w2 + . . . + ã1nwn ≤ 0 in Ω
. . . . . . . . .

L1wn + ãn1w1 + ãn2w2 + . . . + ãnnwn ≤ 0 in Ω
W ≥ 0 on ∂Ω ,

(24)

where

L1 =
N∑

i,j=1

aij(x)∂ij +
N∑

i=1

(
bi(x) + 2

N∑

j=1

aij(x)
∂jψ(x)

ψ(x)

)
∂i +

L̃1ψ

ψ
.

In particular, the zero-order coefficient of L1 is nonpositive.
Recall that our goal is to show that W ≥ 0 in Ω. Suppose this is not true

and set

J = {j ∈ {1, . . . , n} : wj < 0 somewhere in Ω}, I = {1, . . . , n} \ J

(I can be empty, but J 6= ∅).
We remove from (24) all inequations in Ω with indices in I. Then if we

remove from the remaining inequations all terms where appears a function
wi with i ∈ I, the inequalities remain true, since Ã is cooperative (all off-

diagonal terms of Ã are nonnegative), recall A ≥ 0. In this way we see that
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we can suppose I = ∅ in (24), by taking a smaller n, if necessary. Here we
have to note the simple fact that if a cooperative matrix D ∈ Mn(R) is such
that D ≺ 0, then any minor Dk ∈ Mn−k(R) of D obtained by removing from
D lines and columns with the same indices is such that Dk ≺ 0. Indeed, if
not, take a vector z ∈ R

n−k, z ≥ 0, z 6= 0, such that Dkz ≥ 0 ; then adding
k zero coordinates to z leads to a contradiction with D ≺ 0.

Let xj ∈ Ω be a point where wj attains its negative minimum, for all
j = 1, . . . , n. We set W0 = (w1(x1), . . . , wn(xn)) ∈ R

n.
Since xj is point of negative minimum, and L1 is elliptic with a nonpositive

zero-order term, we clearly have

L1wj(xj) ≥ 0,

for all j = 1, . . . , n. Hence

n∑

l=1

ãklwl(xk) ≤ 0, for all k = 1, . . . , n.

By the minimal choice of xj (wl(xk) ≥ wl(xl) for all k, l) and ãkl ≥ 0 for
k 6= l, this implies

n∑

l=1

ãklwl(xl) ≤ 0, for all k = 1, . . . , n.

In other words, we have
{

−Ã(−W0) ≤ 0
−W0 > 0.

So −Ã ≻ 0 implies W0 = 0, a contradiction.
This finishes the proof of Theorem 4 under (H0) and (H∞).

3.3 Proof of Theorem 4 in the superlinear case

In this section we prove that problem (P0) has a nontrivial solution in K,
assuming (H0), (H∞), and (APB).

We are going to use Theorem 6 again. First we show that (H0) permits to
verify hypothesis (i) in Theorem 6. Suppose U is a solution of TU = tU with
t ≥ 1, that is, (20) holds. By (H0) we have, for all U with ‖U‖L∞(Ω) ≤ r,





(L + A)U ≥ 0 in Ω
U ≥ 0 in Ω
U = 0 on ∂Ω

(25)
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where A is a constant matrix such that A ≺ Λ and AU ≥ 0 for all U, ‖U‖ ≤ r,
which implies A ≥ 0.

We claim that if U satisfies (25) then U ≡ 0 (so hypothesis (i) in The-
orem 6 is verified with σ = r). Like in the considerations which lead us to

(24) we introduce L̃ = L + Λ − εI (so λ1(L̃i, Ω) = ε > 0), Ã = A − Λ + εI

(so Ã ≺ 0), the function ψ with C ≥ ψ ≥ 1 and L̃1ψ ≤ 0, the operator L1

(with a nonpositive zero-order coefficient), and set U = ψW . So





L1w1 + ã11w1 + ã12w2 + . . . + ã1nwn ≥ 0 in Ω
. . . . . . . . .

L1wn + ãn1w1 + ãn2w2 + . . . + ãnnwn ≥ 0 in Ω
W ≥ 0 in ∂Ω
W = 0 on ∂Ω ,

(26)

We take xj ∈ Ω to be points of maximum for wj, j = 1, . . . , n, and set
W0 = (w1(x1), . . . , wn(xn)) ∈ R

n. Then, clearly,

L1wj(xj) ≤ 0,

so by A ≥ 0 and wj(xi) ≤ wj(xj) we get from (26)

{
ÃW0 ≥ 0

W0 ≥ 0,

which implies W0 = 0, by Ã ≺ 0.

We now turn to the remaining three conditions required for Theorem 6
to hold. Here we define, for t ≥ 0,

H(U, t) = T (U + t~1 ).

Note that now

H(U, t) = U ⇐⇒





−LU = F (x, U + t~1 ) in Ω
ui ≥ 0, i = 1, . . . , n, in Ω
ui = 0, i = 1, . . . , n, on ∂Ω

(27)

Hypothesis (ii) of Theorem 6 is again trivially satisfied by H. Let us show
that the equation H(U, t) = U does not have solutions in K for t ≥ R, where
R is the number that appears in (H∞). This will then imply hypotheses (iii)
of Theorem 6 for t ≥ R, and (iv) with t0 = R.

Indeed, if t ≥ R, then (H∞) and (27) yield

−LU ≥ B(U + t~1 ) in Ω. (28)
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We can repeat a reasoning we used in the sublinear case, setting L̃ =
L + Λ + εI, B̃ = B − (Λ + εI), so λ1(L̃i, Ω) = −ε < 0 and B̃ ≻ 0. Supposing
that uj(x0) > 0 for some j and x0 ∈ Ω, by Proposition 3.1 we can find

nonnegative numbers α1, . . . , αn, with αj > 0, such that
n∑

i=1

αib̃ik ≥ 0, for all

k = 1, . . . , n.
Multiplying the i-th equation in (28) by αi, for each i, and summing up the

resulting equations (note that the terms coming from tB̃~1 become positive,
by the choice of α, so we can remove them from the resulting inequality), we

obtain that the function u =
∑n

i=1 αiui is such that L̃1u ≤ 0, u > 0 in Ω,

which leads to a contradiction with λ1(L̃1, Ω) < 0.

Finally, the validity of hypothesis (iii) of Theorem 6 for t < R is a con-
sequence of the a priori estimate for (Pt), hypothesis (APB) with t0 = R,
which we assume in Theorem 2 – specifically, we take ρ in Theorem 6 (iii) to
be larger than this a priori bound.

Theorem 4 is proved. ✷

Proof of Proposition 3.1. We recall that Farkas’ lemma in its classical form,
to be found in most textbooks on linear programming, states that for any
k, l ∈ N, any real k× l matrix A, and any b ∈ R

k, exactly one of the following
systems has a solution x ∈ R

l, y ∈ R
k :

{
Ax = b

x ≥ 0
and

{
AT y ≥ 0
b.y < 0 ,

(29)

or, equivalently,

∃ x ∈ R
l :

{
Ax = b

x ≥ 0
⇐⇒

(
∀ y ∈ R

k : AT y ≥ 0 ⇒ b.y ≥ 0
)
.

(30)
Suppose that the first problem in (19) has a solution α0 ≥ 0. This

obviously implies that for any z ∈ R, z ≥ 0, the vector α0 is a solution of the
problem {

DT y ≥ 0
(−d − z).y < 0

By (29) this implies that the problem

{
Dx = −d − z

x ≥ 0

has no solution for all z ≥ 0, which is equivalent to saying that the second
problem in (19) has no solutions.
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Next, suppose that the first problem in (19) has no solutions. This means
that for any x ∈ R

k the inequalities DT x ≥ 0, x ≥ 0 imply d.x ≤ 0. In other
words, setting

D′ =

(
DT

I

)

(D′ is a (l + k)× k matrix), the inequality D′x ≥ 0 implies d.x ≤ 0. By (30)
this implies that the problem

{
(D′)T y′ = −d

y′ ≥ 0

has a solution y′ ∈ R
k+l. Hence the vector β ∈ R

l containing the first l
coordinates of y′ is a solution of the second problem in (19). ✷

4 More general results and comments

In this section we give results on existence of solutions for (P0) with different
elliptic operators. As explained in Section 3.1, to any uniformly elliptic
operators L1, . . . , Ln and any cooperative matrix C(x) we can associate a
set of first eigenvalues in Ω of the irreducible blocks of the matrix operator
L + C, denoted by λ

(1)
1 , . . . , λ

(q)
1 . We set λ1(L + C, Ω) and λ1(L + C, Ω) to be

respectively the largest and the smallest of these numbers.
We suppose that the operators Li have no zero-order terms (c(i) ≡ 0 for

all i). This will not introduce any restriction whatsoever, since in the next
theorem we shall allow the matrices A,B, which appear in its hypotheses, to
depend on x – that is, c(i)(x) are incorporated in the coefficients on the main
diagonal of A, B.

Theorem 8 Suppose that either (sublinear case)

(H0) there exist r > 0 and a cooperative matrix B(x) such that we have
F (x, U) ≥ B(x) U if ‖U‖ ≤ r, x ∈ Ω, and

λ1(L + B(x), Ω) < 0.

(H∞) there exist k > 0 and a cooperative matrix A(x) such that we have
F (x, U) ≤ A(x) U + k~1 for all U ∈ R

n
+, x ∈ Ω, and

λ1(L + A(x), Ω) > 0 ;

or (APB) holds and (superlinear case)
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(H0) there exist r > 0 and a cooperative matrix A(x) such that we have
F (x, U) ≤ A(x) U if ‖U‖ ≤ r, x ∈ Ω, and

λ1(L + A(x), Ω) > 0.

(H∞) there exist R > 0 and a cooperative matrix B(x) such that we have
F (x, U) ≥ B(x) U if min{U1, . . . , Un} ≥ R, x ∈ Ω, and

λ1(L + B(x), Ω) < 0.

Then (P0) has a nonnegative solution, such that uk > 0 in Ω, for at least one
k ∈ {1, . . . , n}.

Remark 1. To verify the hypotheses of Theorem 8 one can use the upper and
lower bounds on λ1(L+C, Ω), λ1(L+C, Ω) in terms of Ω and the coefficients
of L, C, given in [9] (actually, as explained there, all bounds from [6] can be
extended to matrix eigenvalues). See also Proposition 4.1 below.

Proof of Theorem 8. The proof is an application of the definition of the
eigenvalues and Theorem 7, which permit to us to verify the hypotheses of
Theorem 6. We shall sketch this proof, mostly in its parts where it is different
from the proof of Theorem 4 above. Just like in the Theorem 4 we need to
deal with problems (16), (21), (22), (25), (28).

In the sublinear case we again set H(U, t) = T (U)+tΦ̃1. Then hypotheses
(iii) and (iv) from Theorem 6 are verified thanks to Theorem 7 (iii), by which
the existence of a nontrivial solution of (16) implies λ1(L + B(x), Ω) ≥ 0.
Hypothesis (i) from Theorem 6 follows from the equivalence between parts
(i)-(a) and (i)-(c) of Theorem 7, applied to (21).

In the superlinear case hypothesis (i) from Theorem 6 is verified, since
if a function U satisfies (25) then by the maximum principle (Theorem 7
(i)-(d), here we use λ1(L + A(x), Ω) > 0, which is (i)-(a) in Theorem 7) we
have U ≤ 0, but U ≥ 0 by (25), so U ≡ 0. To verify the other hypotheses of
Theorem 6, take again H(U, t) = T (U + t~1 ) and note that if U satisfies (28)
then

(L + B(x))(U + t~1) ≤ 0,

and the existence of such a function U + t~1 ≥ 0 implies that either U + t~1 ≡ 0
or λ1 ≥ 0, by Theorem 7 (iii). ✷

Actually, studying the proof of Theorem 4, we see that in its course
we have proved the following result, of clear independent interest. It gives
conditions for a matrix operator with a constant matrix to have positive or
negative first eigenvalues.
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Proposition 4.1 Assume C ∈ Mn(R) is cooperative.

(a) Suppose there exists a function ψ ∈ W 2,p(Ω), p > N , such that ψ ≥ 1
and Liψ ≤ 0 in Ω, for all i = 1, . . . , n (note this hypothesis is satisfied if
all Li have nonpositive zero-order coefficients, then we can take ψ ≡ 1).
Then

C ≺ Λ =⇒ λ1(L + C − Λ, Ω) > 0.

(b) Suppose L1 ≡ . . . ≡ Ln. Then

C ≻ Λ =⇒ λ1(L + C − Λ, Ω) < 0.

(that is, λ1(L + C, Ω) < λ1(L1, Ω)).

Remark. We have obtained Theorem 4 in the sublinear case as a combination
of Theorem 8 and Proposition 4.1, except that in Theorem 4 we need not
suppose that the matrix B is cooperative. Here this hypothesis guarantees
the existence of first eigenvalues.

Proof of Proposition 4.1. Set L = L + C − Λ. Recall that by Theorem 7 (i)

λ1(L, Ω) > 0 ⇐⇒
(
∀U :

{
LU ≤ 0 in Ω

U ≥ 0 on ∂Ω
⇒ U ≥ 0 in Ω

)
,

and that by Theorem 7 (iii)

λ1(L, Ω) < 0 ⇐⇒
(
∀U :

{
LU ≤ 0 in Ω

U ≥ 0 in Ω
⇒ U ≡ 0 in Ω

)
.

The validity of the right-hand sides of these equivalences, under C ≺ Λ (resp.
C ≻ Λ), was established in the course of the proof in Section 3.2. ✷

In view of Theorem 7, part (a) of Proposition 4.1 contains a condition
for the operator L + C to be coercive. As a consequence of this result, we
get conditions for the coerciveness of various higher order operators. For
instance, ∆2 + α∆ + a with α2 ≥ 4a is equivalent to ∆~1 + C, with

C =
1

2




α
√

α2 − 4a

√
α2 − 4a α


 .
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5 Proof of Theorem 3

This section is devoted to verifying (APB) for system (10), by applying the
Gidas-Spruck blow up method to a class of systems containing (10). This
method was first used in [22] for scalar equations, we refer to [14] and [17]
for a review of its use for systems of two equations. We note that a different
class of systems was recently studied in [41], for a special type of domains.

We first prove the following combinatorial lemma.

Lemma 5.1 Given two sequences of positive numbers {zk}n
k=1 and {βk}n

k=1,
there exists at least one k ∈ {1, . . . , n}, such that

z
βj

k ≥ zβk

j for all j ∈ {1, . . . , n}.

Proof. Suppose the lemma is false, that is, for each k we can find an index

jk 6= k such that z
βjk

k < zβk

jk
. We apply this with k = 1, then with k = j1 6= 1

which yields j2 6= j1 such that z
βj2

j1
< z

βj1

j2
, then with k = j2, etc. We get

z
βj1

1 < zβ1

j1
< zj2

βj1

β1
βj2 .

If j2 = 1 this is a contradiction. If not, we find j3 6= j2 such that

z
βj1

1 < zβ1

j1
< zj2

βj1

β1
βj2 < zj3

βj1

β1
βj3 .

Again if j3 = 1 or j3 = j1 we get a contradiction. If not, we continue the
process, which will clearly lead to a contradiction after a finite number of
steps. ✷

Recall we have to prove an a priori bound for solutions of (we shall write
n instead of m, to conform with the notations in the previous sections)

(Pt)





−Liui = ui+1 + t, i = 1, . . . , n − 1,
−Lnun = f(x, u1 + t) + a2u2 + . . . + anun + t

∑n

i=2 ai,
ui ≥ 0 in Ω, i = 1, . . . , n
ui = 0 on ∂Ω, i = 1, . . . , n,

(31)

where t ∈ [0, t0]. Note that if (u1, . . . , un) is a solution of (31) and uj ≡ 0
for some j then uk ≡ 0 for all k ≥ j (by using successively the j-th till the
(n − 1)-th equation in (31)). On the other hand, if uj ≡ 0 then by applying
successively the Alexandrov-Bakelman-Pucci inequality (Theorem (7) (i)-(c)
for n = 1) to the (j − 1)-th equation −Lj−1uj−1 = t, then to the (j − 2)-th,
till the first, we see that uk are uniformly bounded for all k < j. The desired
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a priori bound is then true, so we can suppose in what follows that uj 6≡ 0
for all j = 1, . . . , n.

Suppose there is not such bound, that is, for all l ∈ N there exist tl ∈ [0, t0]
and u(l) which solves (31) with t = tl, such that

max
1≤i≤n

‖u(l)
i ‖L∞(Ω) → ∞ as l → ∞. (32)

We shall now develop the blow-up method – in a more general context
than (31), in view of some further applications.

Let us have the system (setting un+1 = u1)




−Liui = fi(x, u1, . . . , un), i = 1, . . . , n
ui ≥ 0 in Ω, i = 1, . . . , n
ui 6≡ 0 in Ω, i = 1, . . . , n
ui = 0 on ∂Ω, i = 1, . . . , n.

(33)

We suppose the functions fi are such that for some matrices Q ∈ Mn(R),
Q ≥ 0 and A(x) ∈ C(Ω), A(x) ≥ 0 in Ω, there exist continuous functions
hi(x, u1, . . . , un) for which

fi(x, s) =
n∑

j=1

aij(x)s
qij

j + hi(x, s), lim
s2→∞

hi(x, s)∑n

j=1 aij(x)s
qij

j

= 0, (34)

uniformly in x ∈ Ω, for all i. We suppose that pi := qi,i+1 > 0 (of course
again the index n + 1 replaces 1) and bi(x) := ai,i+1(x) ≥ b0 > 0, for all i.

Further, we assume that the second order coefficients of Lk coincide, that
is,

a
(k)
ij (x) is independent of k, for all i, j = 1, . . . , N. (35)

We set

γ1 = 1 +
n−1∑

i=1

p1 . . . pi, γ2 = 1 +
n∑

i=2

p2 . . . pi,

γk = 1 + pk + pkpk+1 + . . . + pk . . . pn

(
1 +

k−2∑

i=1

p1 . . . pi

)
, 3 ≤ k ≤ n.

Suppose the exponents pi satisfy

δ0 := p1p2 . . . pn − 1 > 0. (36)

Note this is the weakest possible superlinearity condition for the limiting
system (39) below. This condition is standard for n = 2, when one can
employ variational methods to treat (39), but is not studied for larger n.
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Set

βi =
2γi

δ0

. (37)

We shall suppose in addition that

qijβj − βi < 2, for all j 6= i + 1, i, j = 1, . . . , n (38)

(obviously this hypothesis is satisfied if qij = 0). Then we have the following
result.

Lemma 5.2 Suppose (u
(l)
1 , . . . , u

(l)
n ) is a solution of (33) satisfying (32), and

(34), (35), (36), (38) hold. Then the system (setting vn+1 = v1)





−∆vi = vpi

i+1 i = 1, . . . , n
vi > 0 in G, i = 1, . . . , n
vi = 0 on ∂G, if ∂G 6= ∅,

(39)

has a solution with G = R
N or G = R

N
+ = {x ∈ R

N : xN > 0}.

Proof. For any fixed l we apply Lemma 5.1 to the sequences zkl := ‖u(l)
k ‖L∞(Ω)

and βk given by (37). Note that all zkl are positive, since u
(l)
k 6≡ 0. So by

Lemma 5.1 for any l there exists k = k(l) ∈ {1, . . . , n}, such that z
βj

kl ≥ zβk

jl ,
for all j ∈ {1, . . . , n}. By taking a subsequence of l → ∞, we can suppose
that k is independent of l, say k = 1. We set

νl = ‖u(l)
1 ‖−

1

β1

L∞(Ω), and v
(l)
i (x) = νβi

l u
(l)
i (νlx + xl),

where xl is a point of maximum of u
(l)
1 in Ω. Recall that νl → 0 as l → ∞,

by (32). Then, setting Ωl =
1

νl

(Ω− xl), by the above considerations we have

v
(l)
1 (0) = 1 and v

(l)
i ≤ 1 in Ωl, for all i ∈ {1, . . . , n}, l ≥ 1. (40)

It is trivial to check that the sequence (v
(l)
1 , . . . , v

(l)
n ) satisfies the system





−L̃
(l)
i v

(l)
i =

∑

j 6=i+1

aij(·)νβi+2−qijβj

l v
(l)
i + bi(·)νβi+2−piβi+1

l v
(l)
i+1 + h̃

(l)
i

v
(l)
i > 0 in Ωl

v
(l)
i = 0 on ∂Ωl,

(41)
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in the domain Ωl, where the dot stands for νlx + xl, we have denoted h̃
(l)
i =

hi

(
·, ν−β1

l v
(l)
1 , . . . , ν−βn

l v
(l)
n

)
, and

L̃
(l)
k =

N∑

i,j=1

a
(k)
ij (·)∂ij + νl

(
N∑

i=1

b
(k)
i (·)∂i + νlc

(k)(·)
)

.

By compactness we can assume that {xl} tends to some point x0 ∈ Ω.
It is then a very standard fact that the domain Ωl tends either to the

whole space or to a half-space, when l → ∞. Note that in (37) we have
chosen βi to be the solution of the linear system

βi − piβi+1 = −2, i = 1, . . . , n

(we have set βn+1 = β1 ; the determinant of this system is 1−p1 . . . pn, which
is strictly negative, by (36)). In addition (38) guarantees that for these βi

the powers of νl which appear in the sums in the right-hand sides of (41) are
strictly positive.

Therefore, thanks to the uniform boundedness of (v
(l)
1 , . . . , v

(l)
n ) in L∞(Ωl),

elliptic regularity theory permits to us to pass to the limit in (41) (we recall
once more that νl → 0). We thus obtain a vector (v1, . . . , vn), which satisfies
the limiting system





−tr(AD2vi) = vpi

i+1 i = 1, . . . , n
vi ≥ 0 in G, i = 1, . . . , n
vi = 0 on ∂G, if ∂G 6= ∅,

(42)

where G is either R
N or R

N
+ , A = (aij(x0))

N
i,j=1 is a constant positive definite

matrix, and D2vi stands for the matrix of the second derivatives of vi. Note
also that v1(0) = 1, so all vi are strictly positive, by the strong maximum
principle, applied to all equations in (42), starting from the last, and going
to the first. Finally, by rotating and stretching the coordinates, we obtain a
solution of (39). ✷

It is obvious that if (32) holds then system (31) satisfies the hypotheses of
Lemma 5.2 with pi = 1, i = 1, . . . , n− 1, pn = p > 1, qij = 0 for all j ≥ i + 2
and all j ≤ i < n, while qnj = 1 for all 2 ≤ j ≤ n. This lemma implies that
the problem





(−∆)nv = vp, in G
(−∆)iv > 0 in G, i = 0, . . . , n − 1

v = 0 on ∂G
(43)
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has a bounded solution with either G = R
N or G = R

N
+ . The first of these

is impossible by Theorem 1.4 of [40], which states that (−∆)nv = vp has no
positive classical solutions in R

N , for p ∈ (1, p∗), p∗ = (N + 2n)/(N − 2n).
Note that when N ≤ 2n and p > 1 even the inequality (−∆)nv ≥ vp does
not have nontrivial solutions such that (−∆)ku > 0, k ∈ {0, . . . , n − 1}, see
for instance [28].

The following result provides a contradiction in the case G = R
N
+ and

proves the a priori bound, Theorem 3.

Theorem 9 Problem (43) with G = {x ∈ R
N : xN > 0} does not have

bounded solutions, provided

p <
N + 2n − 1

N − 2n − 1
(or p < ∞ if N ≤ 2n + 1).

The proof of this theorem relies on an idea by Dancer [13], which consists
in the following : if there is a solution of (43) with G = R

N
+ , and if one is

able to show that any such solution is increasing in the xN -direction, then,
after eventually some supplementary work, one should be able to pass at the
limit as xN → ∞ and thus get a solution of the same equation in R

N−1,
which in turn permits to use nonexistence results for the whole space (note
the exponent in Theorem 9 is p∗ with N replaced by N − 1).

General monotonicity results for second-order scalar equations were ob-
tained in [5]. Corresponding results for systems of two scalar equations were
recently proved in [17]. The reasoning for the system we are interested in
here uses an approach similar to the one in [17] and relies on a moving planes
argument and the Harnack-Krylov-Safonov estimates for nonlinear elliptic
systems obtained in [9].

We have the following monotonicity result.

Theorem 10 Suppose U = (u1, . . . , un) is a bounded solution to the problem





−∆ui = ui+1, i = 1, . . . , n − 1,
−∆un = up

1,
ui > 0 in G, i = 1, . . . , n

(44)

with G = {x ∈ R
N : xN > 0} and p ≥ 1. Suppose U = 0 on {xN = 0}.

Then
∂ui

∂xN

> 0 in G, for all i.

This theorem was proved in [17] for n = 2, more precisely, for the system
of two equations −∆u1 = uq

2, −∆u2 = up
1 (see Theorem 1.2 in that paper).

Although the condition q > 1 is stated there, absolutely the same proof
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works for q = 1, and in an even simpler way. We shall omit the extension to
arbitrary n, since it involves only trivial technicalities.

We note that an essential role in the proof of Theorem 10 is played by
the following Harnack inequality, which is a consequence of the results in [9].
The reader can find a simple proof in this particular case in [17], for n = 2
(extension to arbitrary n is rather straightforward).

Theorem 11 Let (u1, . . . , un) be a positive solution of




−Liui = ui+1, i = 1, . . . , n − 1
−Lnun = up

1,
ui > 0 in G, i = 1, . . . , n

(45)

in some domain G. Suppose K is a compact set properly included in G and

max

{
inf
x∈K

u1, . . . , inf
x∈K

un

}
≤ 1, max

{
sup
x∈G

u1, . . . , sup
x∈G

un

}
≤ M.

Then

sup
x∈K

max{u1, . . . , un} ≤ C min

{(
inf
x∈K

u1

) 1

p

, inf
x∈K

u2, . . . , inf
x∈K

un

}
.

where C depends only on N,M, G, Ω.

Finally, the nonexistence result in a half-space, Theorem 9, is obtained
by combining the nonexistence result in R

N−1 from [40] (Theorem 1.4 in that
paper) with the following theorem.

Theorem 12 If there exists a bounded solution U of (44) with G = R
N
+ , such

that U = 0 on {xN = 0}, then there exists a solution of (44) with G = R
N−1.

Proof. This theorem can be proved by a somewhat standard and tedious
argument involving multiplication by test functions and integration by parts,
see for instance [17] for such a reasoning. We shall give here a simpler proof,
which also applies to elliptic operators in non-divergence form. Suppose U is
a solution of (44) with G = R

N
+ , 0 ≤ U ≤ M~1 in R

N
+ , U = 0 on {xN = 0} (so

all components of U are monotonous in the xN direction, by Theorem 10).
For each x = (x1, . . . , xN) in the strip Σ1 = {x : 0 < xN < 1} and each

l ∈ N we set
U (l)(x) = U(x1, . . . , xN−1, xN + l).

Now U (l) satisfies the same system as U so, using once more the elliptic regu-
larity and convergence results, we see that the bounded vector U (l) converges
uniformly on compact subsets of Σ1 to a vector function Ũ which satisfies
(44) with G = Σ1. However, the monotonicity of U (l) in xN trivially implies

that Ũ is independent of the xN -variable. This means that (44) is actually
satisfied with G = R

N−1. ✷
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6 Existence results in R
N

In this section we prove Theorem 5. One of our main observations is con-
tained in the following proposition.

Proposition 6.1 For G ⊆ R
N we consider the system

{
−Liui = fi(x, u1, . . . , un) in G, i = 1, . . . , n

ui > 0 in G, i = 1, . . . , n,
(46)

with elliptic operators Li in general non-divergence form, as in Section 2, and
fi ∈ C(Ω × R

n
+). We suppose that for some positive constants a, c1, . . . , cn

and some function g

c(i)(x) ≤ −ci < 0, , i = 1, . . . , n, (47)

fi(x, u1, . . . , un) ≤ ui+1, i = 1, . . . , n − 1, (48)

fn(x, u1, . . . , un) ≤ g(u1) and lim sup
t→0

g(t)

t
≤ a <

n∏

i=1

ci . (49)

Assume also that (46) with G = BR := {x ∈ R
N : |x| < R} has a solution

uR, such that ‖uR‖L∞(BR) is uniformly bounded in R, for R ≥ R0 > 0, and
ui,R has a point of maximum xi,R ∈ BR, such that x1,R belongs to a fixed ball
Bd, for all R ≥ R0. Then (46) with G = R

N has a solution such that u1 6≡ 0.

Proof. First, by elliptic theory, the uniform boundedness of uR in L∞ implies
that this sequence is bounded in W 2,p

loc (RN), p < ∞, and converges, up to a
subsequence, locally uniformly to a solution of (46) in R

N . We only have to
show that the limit function u1 is not identically zero. This will certainly
be the case if u1,R(x1,R) ≥ ε > 0 for some subsequence of R → ∞ (we can
assume that x1,R tends to a point x0 ∈ Bd). So we suppose for contradiction
that u1,R(x1,R) → 0 as R → ∞, that is, u1 converges uniformly to zero (we
do not write the subscript R for ui in what follows).

We evaluate the first equation in (46) at x1,R. Since x1,R is a point of
maximum of u1, by (47) we have −L1u1(x1,R) ≥ c1u1(x1,R). Hence, by (48),

c1u1(x1,R) ≤ u2(x1,R) ≤ u2(x2,R)

(the last inequality follows from the definition of x2,R). Then we evaluate the
second equation at x2,R, and get in the same way

c1c2u1(x1,R) ≤ c2u2(x2,R) ≤ u3(x2,R) ≤ u3(x3,R), etc.
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We repeat the same procedure n − 1 times and at the end evaluate the n-th
equation at xn,R, to get

(
n∏

i=1

ci

)
u1(xn,R) ≤

(
n∏

i=1

ci

)
u1(x1,R)

≤ cnun(xn,R) ≤ fn(xn,R, u1(xn,R), . . . , un(xn,R)).

This is a contradiction with u1 ⇒ 0 and (49). ✷

Proof of Theorem 5. System (12) clearly satisfies (47)–(49).
Let us show that (12), written in the matrix form

−∆U = F (U),

where

fi(U) = −aiui + ui+1, i < n, fn(U) = −anun + f(u1),

satisfies conditions (H0), (H∞), (APB) in Theorem 4 if Ω = BR, for any
fixed R. Set A0 := lim supu→0 u−1f(u) and λR = λ1(−∆, BR).

Then it is easy to see that checking (H0) amounts to verifying the condi-
tion M ≺ λRI, where

M =




−a1 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −an−1 1
m 0 0 . . . 0 −an


 ,

with m = A0. A trivial computation shows this is equivalent to

A0 < (a1 + λR) . . . (an + λR),

which is a consequence of hypothesis (11), for all R > 0.
Similarly, by (26) we have limu→∞ u−1f(u) = ∞, so (H∞) is satisfied if

M ≻ λRI for some (large) number m, which is also easy to check.
We have already verified (APB), for any fixed R. Indeed, system (12) is

of type (31), which we already studied. Therefore, by Theorem 4, (12) has a
solution uR > 0 (we have already explained the fact that if one component
of a nonnegative solution of (12) is not identically zero, then all components
are strictly positive).

Next, by a result of Troy [38], all components of any positive solution of
(12) in a ball are radially symmetric, and attain their unique maximum at
the origin. So, to verify the hypotheses of Proposition 6.1, it only remains
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to show that ui,R(0) is bounded as R → ∞, for all i. This can be done by
exactly the same contradiction argument as the one we used in order to prove
an priori bound for (31). More precisely, we suppose that ui,Rl

(0) → ∞ for
some Rl → ∞ (as l → ∞), we introduce the normalized functions

v
(l)
i (x) = νβi

l ui,Rl
(νlx),

and pass to the limit as l → ∞, thus getting a solution of (−∆)nu = up in
R

N or in a half-space (note that in the passage to the limit Rl → ∞ only
improves the speed of convergence), which is a contradiction.

Finally, the L∞-a priori bound together with the variational structure of
(12) easily imply an a priori bound in H1

0 (BR) for solutions of (12), from
which the condition ui → 0 as |x| → ∞ is an easy consequence. ✷
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