
HAL Id: hal-00130322
https://hal.science/hal-00130322

Submitted on 11 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feasible reactivity in a synchronous pi-calculus
Roberto M. Amadio, Frederic Dabrowski

To cite this version:
Roberto M. Amadio, Frederic Dabrowski. Feasible reactivity in a synchronous pi-calculus. ACM
SIGPLAN Principles and Practice of Declarative Programming, Jul 2007, Wroclaw, Poland. pp.221-
231. �hal-00130322�

https://hal.science/hal-00130322
https://hal.archives-ouvertes.fr

ha
l-

00
13

03
22

, v
er

si
on

 1
 -

 1
1

Fe
b

20
07

Feasible reactivity in a synchronous π-calculus∗

Roberto M. Amadio

Université Paris 7 †
Frédéric Dabrowski

INRIA Sophia-Antipolis

February 11, 2007

Abstract

Reactivity is an essential property of a synchronous program. Informally, it guar-
antees that at each instant the program fed with an input will ‘react’ producing an
output. In the present work, we consider a refined property that we call feasible
reactivity. Beyond reactivity, this property guarantees that at each instant both the
size of the program and its reaction time are bounded by a polynomial in the size
of the parameters at the beginning of the computation and the size of the largest
input. We propose a method to annotate programs and we develop related static
analysis techniques that guarantee feasible reactivity for programs expressed in the
Sπ-calculus. The latter is a synchronous version of the π-calculus based on the SL
synchronous programming model.

1 Introduction

Mastering the computational complexity of programs is an important aspect of computer
security with applications ranging from embedded systems to mobile code and smartcards.
One approach to this problem is to monitor at run time the resource consumption and to
rise an exception when some bound is reached. A variant of this approach is to instrument
the code so that bounds are checked at appropriate time. An alternative approach is to
analyse statically the program to guarantee that during the execution it will respect certain
resource bounds. In other words, the first approach performs a dynamic verification while
the second relies on a static analysis. As usual, the main advantage of the first approach
is its flexibility while the advantage of the second approach is the fact that it does not
introduce an overhead at run time and, perhaps more importantly, that it allows an early
detection of ‘buggy’ programs. In this work, we will focus on the static analyses which
offer the more challenging problems while keeping in mind that the two approaches are
complementary. For instance, static analyses may be helpful in reducing the frequency of
dynamic verifications.

∗Work partially supported by ACI CRISS and ANR-06-SETI-010-02.
†Laboratoire Preuves,Programmes et Systèmes, UMR-CNRS 7126.

1

When addressing the issue of resource control, there is a variety of properties of a
program that one may check. Termination is probably the first one that comes to mind.
However, in the context of interactive programs, this property should be refined into reac-
tivity. In general, the set of reactive programs can be defined (co-inductively) as the largest
set R of programs that terminate and such that each interaction with the environment leads
to a program which is again in the set R.

If a program manipulates data values of variable size such as lists, trees, graphs, . . . then
the analysis can go beyond reactivity and, for instance, it can establish that the program
reacts while using a feasible amount of resources where feasible can be understood, for
instance, as computable in polynomial time. In this case, the analysis produces a function
that bounds the time (or space) needed for the reaction depending on the size of certain
parameters.

There is a large collection of static analysis techniques (see, e.g., [11, 7, 12, 13, 14, 9]
that allow to establish feasible reactivity of functional programs. A common feature of
these methods is the combination of traditional termination methods with what could be
called a data-size flow analysis. By this we mean a method to describe how the size of the
values computed by a program depends on the size of the values taken in input.

In [5, 6], we have started a research programme that aims at extending this approach
to a synchronous, concurrent programming language. In the present work, we focus in
particular on the Sπ-calculus [2]. This is a synchronous version of the π-calculus [18]
which is based on the SL (synchronous language) model [10]. The latter can be regarded
as a relaxation of the Esterel model [8] where the reaction to the absence of a signal
within an instant can only happen at the next instant. Various full fledged concurrent and
synchronous programming languages have been developed on top of the SL model (see,
e.g., [19, 15]) and the Sπ-calculus can be regarded as a more refined model capturing some
essential aspects of those languages.

Our contribution includes (i) a methodology to annotate programs and (ii) related static
analysis methods that guarantee feasible reactivity for finite control programs expressed in
the Sπ-calculus.

Programs come with two kinds of annotations that concern thread identifiers and sig-
nals. A characteristic of synchronous programs is that each thread performs some set of
actions in a cyclic way. A cycle is different from an instant in that it can span several
instants (possibly an unbounded number of them). We require that a subset of the thread
identifiers mark the end of a cycle and the beginning of a new one. This annotation has no
effect on the operational semantics but it is used to produce certain static conditions. The
first condition is what we call the read once condition. Informally, this condition requires
that each thread within each cycle can only read a finite number of signals. The technical
consequence of this restriction is that the behaviour of a thread within an instant can be
described as a function of its parameters and the (finitely many) values read within the
same cycle.

Thread identifiers carry two additional annotations. A basic goal is to show that each
instant terminates. We are then naturally lead to compare thread identifiers and their
parameters according to some suitable well-founded order. For this reason we assume

2

that each thread identifier is annotated with a status that describes how its parameters
should be compared (typically, according to a lexicographic or multi-set order). Another
important goal towards feasible reactivity, is to show that the parameters of a thread are
in a sense non-size increasing. It turns out that it is not always appropriate to consider all
parameters and therefore we require that we explicitly associate with each thread identifier
the (possibly proper) subset of parameters that should be considered in the analysis of its
size. To summarise, a thread identifier has three kinds of annotations: one saying whether
it marks the end of a cycle, another, that we call status, describing how its parameters
have to compared for termination analysis, and a final one specifying the subset of the
parameters that are relevant to the computation of its size.

On one hand, a program should be allowed to emit values on a signal that depend on
values read on other signals. On the other hand, we want to avoid situations where, for
example, a program repeatedly reads a value on a signal and emits a larger value on the
same signal. To address this issue, we assume that signal names are partitioned into a
finite number of regions which are ordered. More precisely, we refine the type system so
that signal types come with a region ρ as in the type Sigρ(t). In other terms, the type
of a signal name explicitly carries the information on the region to which the signal name
belongs. Again, this annotation does not affect the operational semantics but it is used
in the generation of static conditions that guarantee feasible reactivity. Informally, the
condition states that the size of a value emitted on a signal at region ρ is bound by a
function of the size of the values read from signals of smaller regions.

Next, we move on to an informal description of the static conditions. First of all, we
have to find an abstract way to describe the data-size flow of a program. To this end,
we import and adapt the concept of quasi-interpretation that has been proposed in the
context of the analysis of the computational complexity of first-order functional programs
[9, 4]. As a second step, we describe a method to associate with a program a finite set
of inequalities on first-order terms and prove that whenever these inequalities are satisfied
by a (polynomially bounded) quasi-interpretation the program is feasibly reactive. The
inequalities can be classified in three categories according to their purpose which is to
ensure: (1) the termination of each instant, (2) that the size of the parameters of a thread
at the beginning of each cycle is non-size increasing, (3) that the size of the values computed
by a thread within a cycle is bounded by a polynomial in the size of the parameters of the
thread and the size of the values read on the signals within the cycle. Obviously, these
inequalities depend on the signal and thread annotations we described above.

The rest of the paper is organised as follows. In section 2 we introduce the syntax of
the Sπ-calculus along with some programming examples and an informal comparison with
the π-calculus. In section 3, we provide the formal reduction semantics of the Sπ-calculus
and we introduce the notion of feasible reactivity. In section 4, we define the different
kinds of thread and signal annotations mentioned above, we show how to associate a set of
inequalities with an annotated program, and we introduce the notion of assignment which
provides an interpretation of the inequalities in terms of numerical functions. A quasi-
interpretation is a polynomially bounded assignment which satisfies the inequalities. Our
main result states that a program that admits a quasi-interpretation is feasibly reactive.

3

We devote section 5 to an outline of the proof techniques leaving the details in an appendix.

2 The Sπ-calculus

We introduce the syntax of the Sπ-calculus along with some programming examples and
an informal comparison with the π-calculus.

2.1 Programs

Programs P, Q, . . . in the Sπ-calculus are defined as follows:

P ::= 0 || A(e) || se || s(x).P, K || [s1 = s2] P1, P2 || [u � p] P1, P2 || νs P || P1 | P2

K ::= A(r)

We use the notation m for a vector m1, . . . , mn, n ≥ 0. The informal behaviour of programs
follows. 0 is the terminated thread. A(e) is a (tail) recursive call of a thread identifier A
with a vector e of expressions as argument; as usual the thread identifier A is defined by
a unique equation A(x) = P such that the free variables of P occur in x. se evaluates
the expression e and emits its value on the signal s. s(x).P, K is the present statement
which is the fundamental operator of the SL model. If the values v1, . . . , vn have been
emitted on the signal s then s(x).P, K evolves non-deterministically into [vi/x]P for some
vi ([/] is our notation for substitution). On the other hand, if no value is emitted then
the continuation K is evaluated at the end of the instant. [s1 = s2] P1, P2 is the usual
matching function of the π-calculus that runs P1 if s1 = s2 and P2, otherwise. Here both
s1 and s2 are free. [u � p] P1, P2, matches u against the pattern p. We assume u is either
a variable x or a value v and p has the shape c(p), where c is a constructor and p is a
vector of patterns. We also assume that if u is a variable x then x does not occur free
in P1. At run time, u is always a value and we run σP1 if σ is the substitution matching
u against p if it exists, and P2 otherwise. Note that as usual the variables occurring in
the pattern p (including signal names) are bound. νs P creates a new signal name s and
runs P . (P1 | P2) runs in parallel P1 and P2. The continuation K is simply a recursive
call whose arguments are either expressions or values associated with signals at the end of
the instant in a sense that we explain below. We will also write pause.K for νs s(x).0, K
with s not free in K. This is the program that waits till the end of the instant and then
evaluates K.

4

2.2 Expressions

The definition of programs relies on the following syntactic categories:

Sig ::= s || t || · · · (signal names)
Var ::= Sig || x || y || z || · · · (variables)
Cnst ::= ∗ || nil || cons || c || d || · · · (constructors)
Val ::= Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)
Pat ::= Var || Cnst(Pat , . . . ,Pat) (patterns p, p′, . . .)
Fun ::= f || g || · · · (first-order function symbols)
Exp ::= Var || Cnst(Exp, . . . ,Exp) || Fun(Exp, . . . ,Exp) (expressions e, e′, . . .)
Rexp ::= !Sig || Var || Cnst(Rexp, . . . ,Rexp) ||

Fun(Rexp, . . . ,Rexp) (exp. with deref. r, r′, . . .)

As in the π-calculus, signal names stand both for signal constants as generated by the ν
operator and signal variables as in the formal parameter of the present operator. Variables
Var include signal names as well as variables of other types. Constructors Cnst include ∗,
nil, and cons. Values Val are terms built out of constructors and signal names. The size of
a value |v| is defined as |s| = |c| = 0 if c is a constant, and |c(v1, . . . , vn)| = 1 + Σi=1,...,n|vi|
if n ≥ 1. Patterns Pat are terms built out of constructors and variables (including signal
names). We assume first-order function symbols f, g, . . . whose behaviour will be defined
axiomatically. Expressions Exp are terms built out of variables, constructors, and func-
tion symbols. Finally, Rexp are expressions that may include the value associated with
a signal s at the end of the instant (which is written !s, following the ML notation for
dereferenciation). Intuitively, this value is a list of values representing the set of values
emitted on the signal during the instant. If P, p are a program and a pattern then we
denote with fn(P), fn(p) the set of free signal names occurring in them, respectively. We
also use FV (P),FV (p) to denote the set of free variables (including signal names).

2.3 Typing

Types include the basic type 1 inhabited by the constant ∗ and, assuming t is a type, the
type Sig(t) of signals carrying values of type t, and the type list(t) of lists of values of
type t with constructors nil and cons. In the examples, it will be convenient to abbreviate
cons(v1, . . . , cons(vn, nil) . . .) with [v1; . . . ; vn]. 1 and list(t) are examples of inductive types.
More inductive types (booleans, numbers, trees,. . .) can be added along with more con-
structors. We assume that variables (including signals), constructor symbols, and thread
identifiers come with their (first-order) types. For instance, a constructor c may have a
type (t1, t2) → t meaning that it waits two arguments of type t1 and t2 respectively and
returns a value of type t. It is then straightforward to define when a program is well-typed
and verify that this property is preserved by the following reduction semantics. We just
notice that if a signal name s has type Sig(t) then its dereferenced value !s should have type
list(t). In the following, we will tacitly assume that we are handling well typed programs,
expressions, substitutions,. . .

5

2.4 Comparison with the π-calculus

The syntax of the Sπ-calculus is similar to the one of the π-calculus, however there are
some important semantic differences to keep in mind.

Deadlock vs. End of instant. What happens when all threads are either terminated or
waiting for an event that cannot occur? In the π-calculus, the computation stops. In the
Sπ-calculus (and more generally, in the SL model), this situation is detected and marks
the end of the current instant. Then suspended threads are reinitialised, signals are reset,
and the computation moves to the following instant.

Channels vs. Signals. In the π-calculus, a message is consumed by its recipient. In the
Sπ-calculus, a value emitted along a signal persists within an instant and it is reset at the
end of it. We note that in the semantics the only relevant information is whether a given
value was emitted or not, e.g., we do not distinguish the situation where the same value is
emitted once or twice within an instant.

Data types. The (polyadic) π-calculus has tuples as basic data type, while the Sπ-calculus
has lists. The reason for including lists rather than tuples in the basic calculus is that at
the end of the instant we transform a set of values into a suitable data structure (in our
case a list) that represents the set and that can be processed as a whole in the following
instant. Note in particular, that the list associated with a signal is nil if and only if no
value was emitted on the signal during the instant. This allows to detect the absence of a
signal at the end of the instant.

We consider a simple example that illustrates our discussion. Assume v1 6= v2 are two
distinct values and consider the following program in Sπ:

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)) , 0) , 0)

If we forget about the underlined parts and we regard s1, s2 as channel names then P could
also be viewed as a π-calculus process. In this case, P would reduce to

P1 = νs1, s2 (s2(z).A(σ(x), σ(y))

where σ is a substitution such that σ(x), σ(y) ∈ {v1, v2} and σ(x) 6= σ(y). In Sπ, signals
persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(σ(x), σ(y)), B(!s1)))

where σ(x), σ(y) ∈ {v1, v2}. What happens next? In the π-calculus, P1 is deadlocked and no
further computation is possible. In the Sπ-calculus, the fact that no further computation
is possible in P2 is detected and marks the end of the current instant. Then an additional
computation represented by the relation 7→ moves P2 to the following instant:

P2 7→ P ′
2 = νs1, s2 B(v)

where v ∈ {[v1; v2], [v2; v1]}. Thus at the end of the instant, a dereferenced signal such as
!s1 becomes a list of (distinct) values emitted on s1 during the instant and then all signals
are reset.

6

2.5 Programming examples

We introduce a few programming examples on which we will rely in the following to illus-
trate our static analysis techniques.

Example 1. The synchronous model is particularly adapted to the simulation of various
kinds of systems (we refer to [17] for a number of examples). Here, we describe the be-
haviour of a cell of a generic cellular automaton. Each cell relies on three parameters: its
own activation signal s, its state q, and the list ℓ of activation signals of its neighbours.
The cell performs the following operations in a cyclic fashion: (i) it emits its current state
on the activation signals of its neighbours, (ii) it suspends for the current instant, and (iii)
it collects the values emitted by its neighbours and computes its new state. This behaviour
can be programmed as follows:

Cell(s, q, ℓ) = Send(s, q, ℓ, ℓ)
Send(s, q, ℓ, ℓ′) = [ℓ′ � cons(s′, ℓ′′)] (s′q | Send(s, q, ℓ, ℓ′′)),

pause.Cell(s, next(q, !s), ℓ)

where next is a function that computes the following state of the cell according to its current
state and the state of its neighbours. We assume some finite enumerated type ‘state’ that
contains a constant for each state. The type of the signals s, s′ is Sig(state), the type of the
lists ℓ, ℓ′ is list(Sig(state)), and the type of the function next is state , list(state) → state.

Example 2. This example describes a ‘server’ handling a list of requests emitted in the
previous instant on the signal s. For each request of the shape req(s′, x), it provides an
answer which is a function of x along the signal s′.

Server(s) = pause.Handle(s, !s)
Handle(s, ℓ) = [l � cons(req(s′, x), ℓ′)] (s′f(x) | Handle(s, ℓ′)), Server(s)

Assume the function f has type t → t′ and assume an inductive type treq with a constructor
req : Sig(t′), t → treq. Then the parameters s have type Sig(treq) and the lists ℓ, ℓ′ have
type list(treq).

Example 3. This example describes two threads: the thread A(s) re-emits on s the values
that were emitted on s in the previous instant while the thread C(s) emits a (fresh) value
on s.

A(s) = pause.B(s, !s)
B(s, ℓ) = [ℓ � cons(n, ℓ′)] (sn | B(s, ℓ′)), A(s)
C(s) = νn sn | pause.C(s)

Assuming n has type Sig(1), s has type Sig(Sig(1)), and the list ℓ has type list(Sig(1)).

3 Reduction semantics and feasible reactivity

We provide the formal reduction semantics of the Sπ-calculus and we introduce the notion
of feasible reactivity.

7

3.1 Expression evaluation

We assume an evaluation relation ⇓ such that for every function symbol f and val-
ues v1, . . . , vn of suitable type there is a unique value v such that f(v1, . . . , vn) ⇓ v,
fn(v) ⊆

⋃

i=1,...,n fn(vi), and moreover we suppose that the value v can be computed in
time polynomial in the size of the values v1, . . . , vn. As already mentioned, the techniques
for defining first-order functional programs that enjoy these properties are well-studied.
The evaluation relation ⇓ is extended to expressions as usual:

s ⇓ s
ei ⇓ vi i = 1, . . . , n

c(e1, . . . , en) ⇓ c(v1, . . . , vn)
ei ⇓ vi i = 1, . . . , n f(v1, . . . , vn) ⇓ v

f(e1, . . . , en) ⇓ v

We will abbreviate e1 ⇓ v1, . . . , en ⇓ vn with e ⇓ v.

3.2 Reduction semantics

The (internal) behaviour of a program is specified by (i) a reduction system → describing
the possible reductions of the program during an instant and (ii) an evaluation relation 7→
determining how a program evolves at the end of each instant. These definitions rely on a
structural equivalence relation ≡ that we introduce first.

3.2.1 Structural equivalence

The structural equivalence ≡ is the least equivalence relation on programs that identifies
programs up to α-renaming and that satisfies the following standard equations:

P | 0 ≡ P, P1 | P2 ≡ P2 | P1, (P1 | P2) | P3 ≡ P1 | (P2 | P3),
νs P ≡ P if s /∈ fn(P), νs P1 | P2 ≡ νs (P1 | P2) if s /∈ fn(P2) .

3.2.2 Reduction relation

We introduce the following reduction rules:

e ⇓ v
se | s(x).P, K −⊲ se | [v/x]P

A(x) = P e ⇓ v
A(e) −⊲ [v/x]P

[s = s]P1, P2 −⊲ P1

s 6= s′

[s = s′]P1, P2 −⊲ P2

match(v, p) = σ
[v � p] P1, P2 −⊲ σP1

match(v, p) undefined
[v � p] P1, P2 −⊲ P2

A static context C is defined by C ::= [] || νs C || (C | P). The reduction relation → is then
defined by the rule:

P ≡ C[P ′] P ′ −⊲ Q′ C[Q′] ≡ Q
P → Q

8

3.2.3 Suspension and evaluation at the end of the instant

We write P ↓ if ¬∃Q (P → Q) and say that the program P is suspended. When P is
suspended the instant ends and an additional computation is carried on to move to the
next instant. This goes in three steps that amount to: (1) collect in lists the set of values
emitted on every signal, (2) extrude the signal names contained in values visible at the end
of the instant, and (3) initialise the continuations K of the present statements.

To this end, we introduce first some notation. A suspended program P is structurally
equivalent to:

νs(S | In) (1)

where the signal names s are all distinct, S ≡ s1e1 | · · · | snen, In ≡ t1(x1).P1, A1(r1) | · · · |
tm(xm).Pm, Am(rm), and n, m ≥ 0 (by convention an empty parallel composition equals
the program 0). We write se ∈ S to mean that se occurs in the parallel composition S.
We can now formalise the steps (1–3).

1. Let V be a function from signal names to lists of values. We say that V represents S
and write V ‖−S if for all signal names s, if {v1, . . . , vn} = {v | se ∈ S, e ⇓ v} then
V (s) = [vπ(1); · · · ; vπ(n)] for some permutation π.

2. We define Free(νs S) as the least set of signal names such that Free(νs S) ⊇ fn(νs S)
and if s ∈ Free(νs S), se ∈ S, e ⇓ v, and s′ ∈ fn(v) then s′ ∈ Free(νs S). For
instance, Free(νs1, s2 ss1 | s1s2) = {s, s1, s2}.

3. If r is an expression with dereferenciation then V (r) is the expression resulting from
the replacement of all dereferenced signals !s with V (s). If A(r) is a continuation K
of a present statement, where r are closed expressions, then Eval(A(r), V) = A(v)
if V (r) ⇓ v. Finally, if In is defined as in (1) then Eval(In, V) = Eval(A1(r1), V) |
· · · | Eval(Am(rm), V).

With these conventions, we can now state the evaluation rule at the end of the instant:

P ↓ P ≡ νs (S | In) V ‖−S {s′} = {s}\Free(νs S) P ′ ≡ νs′Eval(In, V)
P 7→ P ′

In this rule, (i) we decompose the suspended program in emissions and inputs, (ii) we
compute a representation of the emission, (iii) we compute the signal names extruded, and
finally (iv) we remove the emitted names and initialise the continuations of the present
statements.

3.3 Feasible reactivity

At the beginning of each instant, a program receives an input that we may represent as a
(fresh) thread identifier Env defined by the equation Env() = s1v1 | · · · | snvn. Then we
write

P
Env
7→ P ′ if P 7→ P ′′ and P ′ ≡ (P ′′ | Env)

9

By the properties of the model, we may assume without loss of generality that in the input
all values emitted on a signal s are distinct.

Definition 1 (computation). A computation of a program P is an infinite and countable
sequence of programs P1, P2, . . . such that

P ≡ P1
∗
→ Pi1

Env17→ Pi1+1
∗
→ Pi2

Env27→ Pi2+1 · · ·

In general, the reduction of P1, Pi1+1, Pi2+1, . . . may fail to reach the end of the instant.
We call reactive the programs that are guaranteed to suspend.

Definition 2 (reactivity). A program P is reactive if in all computations that start with
P , the evaluation at the end of the instant occurs infinitely often.

Example 4. With reference to the example 3, a possible computation of the program A(s) |
C(s) is as follows:

A(s) | C(s)
∗
→ pause.B(s, !s) | νn0 sn0 | pause.C(s)

Env17→ B(s, [n0]) | C(s)
∗
→ sn0 | pause.B(s, !s) | νn1 sn1 | pause.C(s)

Env27→ B(s, [n0; n1]) | C(s) · · ·

In this case, we assume that the input at the beginning of each instant is empty, Env i() = 0
for i = 1, 2, Note that the order of the signal names in the list ℓ, which is a parameter
of the identifier B, is chosen non-deterministically at the beginning of each instant.

We assume that initially a program has the shape

νs(A1(v1) | · · · | An(vn)) (2)

Then, by the definition of the present instruction and the input, a program will have this
shape at the beginning of each instant, up to structural equivalence. The definition of
feasible reactivity is relative to the size of the initial program and the size of the (largest)
input. By convention, the size of a program with the shape (2) is n plus the sum of the
sizes of the values v1, . . . ,vn. The size of an input Env defined by an equation Env =
s1v1 | · · · | snvn is the size of the list [v1; . . . ; vn].

Definition 3 (feasible reactivity). A program P of the shape (2) is feasibly reactive if
there exists a polynomial Q such that for every computation

P ≡ Pi0+1
∗
→ Pi1

Env17→ Pi1+1
∗
→ Pi2

Env27→ Pi2+1 · · ·

if d bounds the size of P and the sizes of Env1, . . . ,Envk for k ≥ 1 then (i) Pik+1 (the
program at the beginning of the instant k) has size bounded by Q(d) and (ii) it is guaranteed
to suspend in time less than Q(d),

For instance, the program in example 3 fails to be feasibly reactive because the size of
the parameter ℓ of the identifier B grows by one every instant.

10

4 Annotations and Constraints Generation

Programs come with a finite system of recursive equations. Our static analysis actually
concerns this system and it is independent of the particular program that is used to initialise
the computation. The reader should keep in mind that the analysis of a program is actually
the analysis of the associated system. We restrict our attention to finite control programs.
To this end, we inspect the system of equations and we check that in each equation A(x) =
P , P cannot spawn two recursive calls that run in parallel. Also, the static analysis makes
abstraction of the actual signal names while keeping track of the region they belong to.
It will be convenient to suppose that the program does not contain trivial matchings such
as a value matching a pattern ([v � p] P1, P2) and the comparison of two identical names
([s = s] P1, P2). Such matchings can be removed by a trivial symbolic execution.

4.1 Reset annotations and read once condition

We denote with Reset a subset of the thread identifiers containing those thread identifiers
that correspond to the beginning of a new ‘cycle’. To be in Reset a thread identifier A has
to satisfy one of the following conditions: either it is defined by an equation of the shape
A(. . .) = pause.K or all its occurrences in the program are in the else branch of a present

statement. By these syntactic conditions, we guarantee that the end of a cycle for a given
thread always entails the end of its computation for the current instant. For instance, in
the example 2, it is natural to assume that Server ∈ Reset and Handle /∈ Reset .

As we have seen, a program may read a signal during an instant with the present
statement or at the end of the instant through dereferencing. The read once condition is
the hypothesis that for every thread, in every cycle, there is a bound on the number of
times the reading of a signal can be performed. Specifically, we require and statically check
on the call graph of the program (see below) that the computation performed starting from
any thread identifier can execute any given read instruction at most once within a cycle.

1. We assign to every present statement and to every dereferencing in a program a
distinct fresh label (a variable), y, and we collect all these labels in an ordered
sequence, y1, . . . , ym. In the following, we will use the notation sy(x).P, K and !ys
to make the labels explicit. If r is a vector of expressions with dereferenciation, we
denote with Lab(r) the finite set of labels that occur in r.

2. With every thread identifier A defined by an equation A(x) = P , we associate a node
of the graph. We also introduce a fresh thread identifier O and a related node that
plays the role of a sink in the call graph.

3. We define a function Call that takes in input a program and a finite set of labels and
produces in output a finite set of pairs composed of a thread identifier and a set of

11

labels. The function Call is defined as follows:

Call(0, L) = {(O, L)}
Call(se, L) = {(O, L)}

Call(sy(x).P, A(r), L) =

{

Call(P, L ∪ {y}) ∪ {(A, L ∪ Lab(r))} if A /∈ Reset
Call(P, L ∪ {y}) ∪ {(O, L ∪ Lab(r))} otherwise

Call(A(e), L) =

{

{(A, L)} if A /∈ Reset
{(O, L)} otherwise

Call([s1 = s2] P1, P2, L) = Call(P1, L) ∪ Call(P2, L)
Call([x � p] P1, P2, L) = Call(P1, L) ∪ Call(P2, L)
Call(P1 | P2, L) = Call(P1, L) ∪ Call(P2, L)
Call(νs P, L) = Call(P, L)

4. Suppose the identifier A is defined by an equation A(x) = P and that C = Call(P, ∅).
We introduce an edge from A to an identifier B (possibly O) if (B, L) ∈ C. In this
case, we label the edge with the set

⋃

{L | (B, L) ∈ C}.

5. We denote with R(A) the union of the sets of labels of the edges accessible from A
and with yA the ordered sequence of labels in R(A).

The definition of Call is such that for every sequence of calls in the execution of a
thread within the cycle we can find a corresponding path in the call graph.

Definition 4 (read once condition). A program satisfies the read once condition if in
the call graph there are no loops that go through an edge whose label is a non-empty set.

Note that while the number of reads is bounded by a constant, the amount of informa-
tion that can be read is not. Thus, for instance, a ‘server’ thread can just read one signal
in which is stored the list of requests produced so far and then it can go on scanning the
list and replying to all the requests within the same instant. In the following, we will focus
on programs that satisfy the read once condition. For such programs, we introduce for
each thread identifier A with parameters x, a fresh thread identifier A+ whose parameters
are those of A plus the parameters yA that can be read within a cycle. The idea is that
the behaviour generated by the thread identifier A within a cycle can be described as a
function of its parameters x which are determined at the beginning of the cycle and the
values yA of the signals read within the cycle. We will also refer to x as proper parameters
and to yA as auxiliary parameters of the identifier A+.

Example 5. Consider example 1 and suppose that Cell ∈ Reset marks the end of a cycle
and that the label associated with the dereferenciation is y. The graph resulting from the
analysis has three nodes {Cell , Send , O} and the following labelled edges: (Cell , ∅, Send),
(Send , ∅, Send) and (Send , {y}, O). The program satisfies the read once condition since the
only possible loop, namely the one form Send to Send, is composed of edges (just one in
this case) whose label is the empty set. Both Send+ and Cell+ have an auxiliary parameter
y.

12

Next consider example 2 and suppose that Server ∈ Reset and the label associated
with the dereferenciation is y. The call graph has three nodes Server ,Handle, O and the
following labelled edges: (Server , {y},Handle), (Handle, ∅,Handle), and (Handle, ∅, O).
Again the read once condition is satisfied. Server+ has an additional parameter y while
Handle+ has no additional parameter.

Finally, consider example 3 and suppose that A, C ∈ Reset and the label associated
with the dereferenciation is y. The graph has four nodes: C, A, B, O and the following
labelled edges: (A, {y}, B), (B, ∅, B), (B, ∅, O), and (C, ∅, C). In this case too, the read
once condition is satisfied. A+ has an additional parameter y while B+ and C+ have no
additional parameter.

4.2 Status annotations

We associate a status, either lexicographic (lex) or multi-set (mset), with every thread
identifier. We assume that thread identifiers which are equivalent with respect to a pre-
order ≥F that we define below have the same arity and the same status. We note that this
implies that A+, B+ have the same arity too.

To define the pre-order ≥F , we introduce first a call graph within an instant by modify-
ing the definition given in section 4.1 so that Call(A(e), L) = {(A, L)} and Call(s(x).P, K,
L) = Call(P, L). Thus there is an edge from the identifier A to the identifier B if in the
definition of A, say A(x) = P , it is possible to call B within the same instant A is called.
Second, we build the least pre-order (reflexive and transitive) ≥F over thread identifiers
such that A ≥F B if there is an edge from A to B in the call graph within an instant. We
write A =F B if A ≥F B and B ≥F A, and A >F B if A ≥F B and A 6=F B. The rank of
the thread identifier A, noted rank(A), is the length of the longest chain A >F B >F . . .

4.3 Parameter annotations

One of our goals is to control the size of the proper parameters of a thread. However, it is
sometimes appropriate to neglect some parameters. For instance, consider the example 2.
One of the parameters of the thread identifier Handle is a list ℓ that is read on a signal s
whose size is unrelated to the size of the parameter s of the thread identifier Server . We
observe that the parameter ℓ is needed by Handle to perform some computation and that
this parameter is then neglected at the end of the cycle. We then introduce a mechanism
to mask parameters such as ℓ. Let 0 be a fresh constant that stands for a parameter
of size 0. If h is a function of arity n and I ⊆ {1, . . . , n} is a subset of its parameters
then h(e1, . . . , en)I is defined as h(e′1, . . . , e

′
n) where e′i = ei if i ∈ I and e′i = 0 otherwise.

Intuitively, in h(e1, . . . , en)I ‘we set to 0’ all arguments that are not in I. For each thread
identifier A defining a behaviour of arity n, we assume a set IA ⊆ {1, . . . , n} with the
condition that IA = {1, . . . , n} if A marks the end of a cycle in the program (thus in the
latter case, no parameter can be set to 0). Note that the mask acts only on the proper
parameters of the identifier A and not on the auxiliary parameters yA corresponding to
the values read within a cycle.

13

4.4 Signal annotations

One purpose of the signal annotations is to reject programs such as the one in example 3.
Let us consider in particular the thread A. At each instant, this thread re-emits on a signal
s the values emitted on the same signal s at the previous instant. We want to reject this
kind of behaviour while allowing –under suitable conditions– a slightly different behaviour
where a thread emits on a signal s a series of values (possibly the same) that depend on
the values emitted on a different signal s′ at the previous instant. For instance, we want to
be able to program a ‘server’ (cf. example 2) that receives a series of requests at the end of
the instant and produces a series of related answers in the following instant. The idea is to
partition the signal names into a finite collection of regions. Then regions are ordered and
the behaviour of the server described above is allowed if the signal s belongs to a region
that is strictly below the region to which s′ belongs. For instance, in the example 2, we
emit on signal s′ a value which depends on a value read on a signal s. If we admit that
this value has arbitrary size then we should require that the signal s is associated with a
region smaller than the region associated with s′.

Formally, we assume a set of regions R = {ρ1, ρ2, . . .} with a strict order >R and we
denote with rank(ρ) the length of the longest sequence ρ >R ρ1 >R · · · >R ρn. We assume
that every signal type comes with a region annotation Sigρ(t) so that the type of a signal
name also provides the region to which the signal name belongs. In section 4.6, we will
rely on these annotations to derive inequalities that guarantee that the size of the values
emitted on a signal of region ρ can be bound as a function of the size of the values received
on signals belonging to regions of smaller rank.

4.5 Inequalities

We rely on the annotations to produce a set of inequalities. We use the notation r for r
where each !ys is replaced with y. Given a system of equations, for each thread identifier
A defined by an equation A(x) = P , we compute Ci(P, A+(x,yA)), with index i = 0, 1, 2
according to the rules described in table 1. The definition of the functions Ci amounts
to perform a ‘symbolic execution’ of the body P of the equation while keeping track of
the shape of the parameters x and the values read yA. More precisely, the functions Ci

explore the finitely many control points of a computation starting with a recursive call
to the thread identifier A. At some critical points, namely (i) when a value is emitted,
(ii) when a value is received, and (iii) when a recursive call is executed, the functions Ci

produce certain inequalities whose purpose is discussed next.

4.5.1 Inequalities for termination of the instants

In our model, the only way a computation may fail to be reactive is that a thread goes
through a recursive call infinitely often within an instant. To avoid this situation, we have
to make sure that whenever the identifiers A1, . . . , An may call each other, a certain well-
founded measure decreases. This is the purpose of the inequalities of index 0. Moreover,

14

Ci(P, A+(p)) = case P of

0 : ∅

[x � p] P1, P2 : Ci(P1, A
+([p/x]p)) ∪ Ci(P2, A

+(p))

[s1 = s2]P1, P2 : Ci(P1, A
+(p)) ∪ Ci(P2, A

+(p))

(P1 | P2) : Ci(P1, A
+(p)) ∪ Ci(P2, A

+(p))

νs P ′ : Ci(P
′, A+(p))

se, i = 0, 1 : ∅

, i = 2 {A+(p)↓ρ ≥2 e} s : Sigρ(t)

B(e), i = 0 :

{

∅ if A >F B

{A+(p) >0 B+(e,yB)} otherwise

, i = 1 : {A+(p)IA
≥1 B+(e,yB)IB

}

, i = 2 :

{

{A+(p)↓ρ ≥2 B+(e,yB)↓ρ | ρ ∈ W(B)} B 6∈ Reset

∅ otherwise

sy(x).P ′, B(r), i = 0 : C0([y/x]P ′, A+(p))

, i = 1 : C1([y/x]P ′, A+(p)) ∪ {A+(p)IA
≥1 B+(r,yB)IB

}

, i = 2 : C2([y/x]P ′, A+(p))

∪

{

{A+(p)↓ρ ≥2 B+(r,yB)↓ρ | ρ ∈ W(B)} B 6∈ Reset

∅ otherwise

Table 1: Inequalities of index 0, 1, 2

15

the inequalities will be interpreted so as to make sure that a decrement step can only be
taken polynomially many times in the size of the values.

Example 6. We rely on the call graphs computed in example 5. For the example 1,
we obtain: Send+(s, q, ℓ, cons(s′, ℓ′′), y) >0 Send+(s, q, ℓ, ℓ′′, y), for the example 2, we ob-
tain: Handle+(s, cons(req(s′, x), ℓ′)) >0 Handle+(s, ℓ′), and for the example 3, we obtain:
B+(s, cons(n, ℓ′)) >0 B+(s, ℓ′).

4.5.2 Inequalities for size control at the beginning of a cycle

The purpose of the inequalities of index 1 is to ensure that the size of the parameters of a
thread at the beginning of a new cycle is bounded by a function (a polynomial) of the size
of the initial parameters of the computation. Of course, a cycle starting with A may span
several instants and may go through several recursive calls before a new cycle is started
again. For this reason, the invariant we have to maintain concerns all recursive calls both
within and at the end of the instant.

Example 7. We rely again on the computation of the call graphs in example 5. For
example 1, assuming ICell = {1, 2, 3} and ISend = {1, 2, 3, 4} we obtain:

Cell+(s, q, ℓ, 0) ≥1 Send+(s, q, ℓ, ℓ, 0), Send+(s, q, ℓ, ℓ′, 0) ≥1 Cell+(s, next(q, y), ℓ, 0),
Send+(s, q, ℓ, cons(s′, ℓ′′), 0) ≥1 Send+(s, q, ℓ, ℓ′′, 0) .

For example 2, assuming IServer = IHandle = {1} we obtain:

Server+(s, 0) ≥1 Handle+(s, 0), Handle+(s, 0) ≥1 Handle+(s, 0),
Handle+(s, 0) ≥1 Server+(s, 0) .

For example 3, assuming IA = IB = IC = {1}, we obtain:

A+(s, 0) ≥1 B+(s, 0), B+(s, 0) ≥1 B+(s, 0), B+(s, 0) ≥1 A+(s, 0), C+(s) ≥1 C+(s) .

4.5.3 Inequalities for size control within a cycle

Finally, the purpose of the inequalities of index 2 is to ensure that the size of any value
emitted during a cycle in a given region as well as the number of these emissions within
an instant is polynomial in the size of the parameters at the beginning of the cycle, the
inputs provided by the environment, and the size of the values read in regions of smaller
rank.

1. Given a thread identifier A, we compute an over approximation of the set of regions
associated with an output within a cycle starting from A. To this end, we use the call
graph defined in section 4.1 and we compute all thread identifiers that are reachable
from A within a cycle. Then we inspect the definition of each thread identifier
(different from O) and determine the regions associated with the emissions that may
arise in the definition. We denote with W ′(A) this set. Moreover, let ρ⊤ be a region
whose rank is higher than the rank of all the regions used in the program and let
W(A) equal {ρ⊤} if W ′(A) = ∅, and W ′(A) otherwise.

16

2. Let A be a thread identifier of arity n with auxiliary parameters yA = y1, . . . , ym. We
can associate with each position 1, . . . , m in the list of auxiliary parameters a unique
region γ(i) which is the region associated with the corresponding read instruction.
Given a region ρ, we denote with ↓ ρ the set of regions of rank smaller than ρ. In
particular, if rank(ρ) = 0 then we ↓ ρ = ∅. Given a set M of regions we introduce
the notation A+(p)M for A+(p)I where I = {1, . . . , n} ∪ {n + i | γ(i) ∈ M}. Thus,
this amounts to set to 0 all auxiliary parameters whose region is not in M . Note that
this masking only affects the auxiliary parameters of the thread identifiers.

Example 8. Consider example 1, assuming all the signals on which the automata interact
belong to the same region ρ. In this case, W(Cell) = W(Send) = {ρ} and the resulting
inequalities are:

Cell+(s, q, ℓ, 0) ≥2 Send+(s, q, ℓ, ℓ, 0),
Send+(s, q, ℓ, cons(s′, ℓ′′), 0) ≥2 Send+(s, q, ℓ, ℓ′′, 0), Send+(s, q, ℓ, cons(s′, ℓ′′), 0) ≥2 q .

Next consider example 2, assuming the region ρ of the signal on which the Server receives
the requests is below the region ρ′ of the signals on which it provides an answer. In this
case, W(Server) = W(Handle) = {ρ′} and the resulting inequalities are:

Server+(s, y) ≥2 Handle+(s, y), Handle+(s, cons(req(s′, x), ℓ′)) ≥2 Handle+(s, ℓ′),
Handle+(s, cons(req(s′, x), ℓ′)) ≥2 f(x) .

Finally, consider example 3. Here we have just one signal belonging, say, to a region ρ. In
this case, W(A) = W(B) = W(C) = {ρ} and the resulting inequalities are:

A+(s, 0) ≥2 B+(s, y), B+(s, cons(n, ℓ′)) ≥2 B+(s, ℓ′), B+(s, cons(n, ℓ′)) ≥2 n,
C+(s) ≥2 C+(s), C+(s) ≥2 n .

We anticipate that the inequality A+(s, 0) ≥2 B+(s, y) is not going to be satisfiable since
A does not depend on y which is a list of arbitrary size.

4.6 Assignments and quasi-interpretations

We introduce first the notion of assignment which interprets the inequalities in terms of
certain numerical functions. A quasi-interpretation is then an assignment that satisfies the
inequalities associated with the program.

4.6.1 Assignments

Let h denote either a constructor c or a function symbol f or a thread identifier A+. An
assignment associates with each symbol h of arity n of the program a function qh : N

n → N

subject to a series of conditions that we specify below.
First we have to introduce some notation. Let E denote a formula which is either an

expression e or the application of a thread identifier to expressions A+(e1, . . . , en). Suppose

17

E contains the variables x1, . . . , xn. Once an assignment is fixed, we can associate with
E a function over the natural numbers of arity n by defining qxi

= xi and qh(e1,...,en) =
qh(qe1

, . . . , qen
). In particular, we note that if v is a value then qv is a numerical constant.

A ground substitution is a substitution that associates values with variables (while
respecting the types). Given two formulae E1, E2, we write q |= E1 > E2 (q |= E1 ≥ E2) if
for all ground substitutions σ, qσE1

> qσE2
(qσE1

≥ qσE2
).1

We will also compare vectors of formal expressions. For lexicographic comparison, we
write q |= (E1, . . . , En) >lex (E ′

1, . . . , E
′
n) if there is an i ≤ n such that q |= Ej ≥ E ′

j for
j = 1, . . . , i−1 and q |= Ei > E′

i. For multi-set comparison, we write q |= (E1, . . . , En) >mul

(E ′
1, . . . , E

′
n) if for all ground substitutions σ, {|qσE1

, . . . , qσEn
|} >N

mset {|qσE′

1
, . . . , qσE′

n
|},

where {| . . . |} is our notation for multi-sets and >N

mset is the well-founded multi-set order
over the finite multi-sets of natural numbers. We notice the following simple combinatorial
fact about lexicographic and multi-set orders which is instrumental to establish polynomial
time termination.

Lemma 1. Suppose a1, . . . , an, c are natural numbers and a1, . . . , an < c. Then the length
of any strictly decreasing sequence of the shape (a1, . . . , an) >lex (b1, . . . , bn) >lex · · · or of
the shape {|a1, . . . , an|} >N

mset {|b1, . . . , bn|} >N

mset · · · is bounded by cn.

Definition 5. An assignment should satisfy the following conditions.

(1) If s is a signal name or c is a constructor with arity 0 then qs = qc = 0. Otherwise, if
c is a constructor with positive arity n then qc = dc + Σi=1,...,nxi for some natural number
dc ≥ 1.

(2) For all symbols h of arity n it holds that: (i) q |= h(x1, . . . , xn) ≥ xi for i = 1, . . . , n and
(ii) qh is monotonic, i.e., aj ≥ bj for j = 1, . . . , n implies qh(a1, . . . , an) ≥ qh(b1, . . . , bn).

(3) Let f be a function symbol of arity n. Then f(v1, . . . , vn) ⇓ v implies that qf(v1,...,vn) ≥
qv.

It follows from condition (1) that there is a constant k ≥ 1 (that can be taken as the
largest additive constant dc) such that for any value v, |v| ≤ qv ≤ k · |v|. Also note that
condition (1) implies condition (2) for constructors.

The definition of an assignment q ensures that σe ⇓ v implies qσe ≥ qv. We say that a
function U : N → N bounds the assignment q if for all symbols h and all natural numbers
n it holds that qh(n, . . . , n) ≤ U(n). We say that an assignment is polynomially bounded
if it can be bound by a function U which is a polynomial. In the following, we will restrict
our attention to polynomially bounded assignments.

1Sometimes, a stronger definition of satisfaction is considered that requires e.g., qE1
≥ qE2

where
qE1

, qE2
are regarded as functions over the natural numbers. We prefer the definition based on ground

substitutions because it allows to exploit some information on the data size. For instance, we may satisfy
a constraint f(x) ≥ c(x, y) if we know that all the values that may replace y have bounded size. On the
other hand, with the stronger definition such constraint cannot be satisfied.

18

4.6.2 Quasi-interpretations

A quasi-interpretation is a polynomially bounded assignment which satisfies the constraints
of index 0, 1, 2.

Definition 6 (quasi-interpretation). An assignment q is a quasi-interpretations if:

(1) For all constraints of the shape A+(p1, . . . , pn) >0 B+(e1, . . . , en) where A =F B, with
status st, we have:

q |= (p1, . . . , pn) >st (e1, . . . , en) .

(2) For all constraints of the shape A+(p1, . . . , pn) ≥i B+(e1, . . . , em) (i = 1, 2) and
A+(p1, . . . , pn) ≥2 e we have:

q |= A+(p1, . . . , pn) ≥ B+(e1, . . . , em) and q |= A+(p1, . . . , pn) ≥ e .

Example 9. Consider example 1 and assume that we attribute the lexicographic status to
Cell and Send. We note that Cell >F Send. The inequality of index 0 is satisfied because
the quasi-interpretation of cons(s′, ℓ′′) is always strictly larger than the quasi-interpretation
of ℓ′′. To satisfy the remaining inequalities of index 1, 2 it suffices to interpret Cell+

and Send+ as the maximum function, noticing that next(q, y) is always a state which is
represented by a constant of size 0.

Next, consider example 2 and assume lexicographic status for the thread identifiers. We
note that Handle >F Server. Again the inequality of index 0 is satisfied because the quasi-
interpretation of cons(req(s′, x), ℓ′) is always larger than the quasi-interpretation of ℓ′. To
satisfy the inequalities of index 1, 2, 3 it suffices to suppose that the quasi-interpretation
of Handle+ and Server+ is a function g : N

2 → N such that g(0, x) is pointwise larger
than the quasi-interpretation of the function f . Finally, consider example 3. We note that
A >F B. We can satisfy the inequalities of index 0, 1 but as anticipated there is no way the
inequality A+(s, 0) ≥2 B+(s, y) can be satisfied since y ranges over lists of arbitrary size.

We can now state our main result whose proof will be discussed in the following section
5.

Theorem 1. A program that admits a polynomial quasi-interpretation is feasibly reactive.

5 Proofs outline

We are given a finite system of recursive equations. The initial configuration of a program
relatively to such a system has the shape: R = νs (A1(v1) | · · · | An(vn)). Since we have
assumed that the system is finite control during the computation we will have at most n
main parallel threads plus a variable number of auxiliary threads that may just branch
and emit signals and that disappear at the end of each instant. Of course one of our goals
is to show that this variable number of threads can be polynomially bounded.

19

Lemma 2. Let R be a program admitting a polynomial quasi-interpretation. There is a
polynomial Q(x) such that if c bounds the size of R, the size of the inputs, and the sizes
of the parameters of all calls within a given instant then the program in that instant will
suspend in time less than Q(c).

The computation performed by the program is simply the interleaving of the compu-
tations performed by the n main threads. It is clear that the computation a thread may
perform within an instant before running a recursive call is polynomially bounded in c.
Thus it is enough to show that each thread may perform at most polynomially many re-
cursive calls before suspending and to this end we rely on the inequalities of index 0 and
the lemma 1. Note that the size and the number of the values emitted during the instant
is polynomial in c and that therefore their concatenation in a list has size polynomial in
c too. We anticipate that the proof we have sketched of the lemma 2 actually shows that
each thread whose parameters and inputs are bound by c will suspend in time polynomial
in c.

Lemma 3. Let R be a program admitting a polynomial quasi-interpretation. There is a
polynomial Q(x) such that if c bounds the size of R and A ∈ Reset then, in all computations
of R, the sizes of the parameters in every call to A are bounded by Q(c).

The inequalities of index 1 guarantee that a computation that starts with B(v) will
have the property that B(v) will ‘dominate’ (up to quasi-interpretation and modulo the
parameter annotations) all the following calls A(u) including those that correspond to a
reset point and in this case all parameters of the call are taken into account by the definition
of IA.

Lemma 4. Let R be a program admitting a polynomial quasi-interpretation. There exists
a polynomial Q(x) such that in every computation

R ≡ Ri0+1
∗
→ Ri1

Env17→ Ri1+1
∗
→ Ri2

Env27→ Ri2+1 . . .

if c bounds the size of R and of the inputs Env1, . . . , Envk for k ≥ 0 then the size of every
value computed within the instant k is bounded by Q(c).

First of all we show by induction on the rank of a region that the size of every value
computed in that region is polynomial in c.

If the region ρ has rank 0 the inequalities of index 2 (in the case where all auxiliary
parameters are set to 0) guarantee that (i) the size of an emitted value and (ii) the size
of a parameter in a recursive call to a thread identifier that may emit on the region ρ is
polynomial in the parameters at the beginning of a cycle. Now, by lemma 3, the size of
the parameters at the beginning of a cycle is polynomial in c. Thus from (the proof of)
lemma 2, we can derive that the number of values emitted is polynomial in c. We can
then conclude that all the values emitted or computed at the end of the instant by list
concatenation have a size that is polynomial in c.

20

Next suppose the region ρ has rank greater than 0. This time the inequalities of index
2 (in the case where we restrict the auxiliary parameters to those that depend on regions
of rank strictly smaller than ρ) guarantee that (i) the size of an emitted value and (ii) the
size of a parameter in a recursive call to a thread identifier that may emit on the region ρ,
is polynomial in the size of the parameters at the beginning of a cycle and the values read
from regions strictly smaller than ρ. Using the fact that the composition of polynomials
is again a polynomial we can appeal again to lemmas 2 and 3 to conclude that all values
emitted or computed at the end of the instant by list concatenation in the region ρ have a
size that is polynomial in c.

There is one situation that remains to be considered. The computation may reach a
thread identifier that that does not emit any value within its current cycle. By lemma 2, it
is enough to make sure that the size of its parameters is polynomial in c. This is guaranteed
again by the inequalities of index 2 since by convention a region with the largest rank is
in W(B).

Thus we have shown that the size of the values is polynomial in the size of the initial
configuration and the size of the largest input. By applying again lemma 2 we can conclude
that the program is feasibly reactive.

6 Conclusion

We have introduced the property of feasible reactivity in the context of a synchronous
π-calculus and we have provided static conditions that enforce it. The read-once condition
builds on the cyclic behaviour of typical synchronous applications and allows to regard
each thread as a function of its parameters and of the finitely many inputs it receives
within a cycle. Reactivity is obtained as usual through a well-founded measure. In our
case, this measure is tuned so as to ensure termination in time polynomial in the size of
the values. Feasible reactivity requires that we control both the number and the size of the
threads. This is achieved in particular by requiring that each thread at the beginning of a
cyle is non-size increasing. To escape certain circular situations, a final condition requires
a stratification of the signals in regions so that, intuitively, a value emitted on a certain
region can be polynomially bounded in the size of the values read in lower regions.

Various directions for further research can be mentioned. First, it is clear that an au-
tomatisation of our approach relies on the possibility of synthesizing quasi-interpretations.
Preliminaries experiences suggest that quasi-interpretations are not too hard to find in
practice (see, e.g., [4]), but it remains to be seen whether this approach scales up to large
programs. Second, one might wonder whether the read-once condition can be dropped.
Currently, it plays an essential role in the proofs and its eventual removal seems to require
new ideas on the abstraction of threads’ execution. Third, our analysis is tailored towards
the synchronous model and a signal based interaction mechanism. It remains to be seen
whether similar analyses could be performed on different models of concurrent threads.
For instance a model based on shared references and possibly asynchronous execution.

21

References

[1] R. Amadio. The SL synchronous language, revisited. Journal of Logic and Algebraic Programming,
70:121-150, 2007.

[2] R. Amadio. A synchronous π-calculus. Technical Report, Université Paris 7, Laboratoire PPS, June
2006. http://hal.ccsd.cnrs.fr/PPS/. To appear in Information and Computation.

[3] R. Amadio, G. Boudol, F. Boussinot and I. Castellani. Reactive programming, revisited. In Proc.
Workshop on Algebraic Process Calculi: the first 25 years and beyond, Electronic Notes in Theoretical
Computer Science, 162:49-60, 2006.

[4] R. Amadio. Synthesis of max-plus quasi-interpretations. In Fundamenta Informaticae, 65(1-2):29–60,
2005.

[5] R. Amadio, S. Dal-Zilio. Resource control for synchronous cooperative threads. In Theoret. Comp.
Sci, 358:229-254, 2006.

[6] R. Amadio, F. Dabrowski. Feasible reactivity for synchronous cooperative threads. In Proc. EX-
PRESS, ENTCS, 154(3), 2006,

[7] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functions.
Computational Complexity, 2:97–110, 1992.

[8] G. Berry and G. Gonthier, The Esterel synchronous programming language. Science of computer
programming, 19(2):87–152, 1992.

[9] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space bound certifications.
In Proc. Perspectives of System Informatics, Springer LNCS 2244, 2001.

[10] F. Boussinot and R. De Simone, The SL Synchronous Language. IEEE Trans. on Software Engineer-
ing, 22(4):256–266, 1996.

[11] A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic, Methodology, and
Philosophy of Science II, North Holland, 1965.

[12] M. Hofmann. The strength of non size-increasing computation. In Proc. ACM-POPL, 2002.

[13] N. Jones. Computability and complexity, from a programming perspective. MIT-Press, 1997.

[14] D. Leivant. Predicative recurrence and computational complexity i: word recurrence and poly-time.
Feasible mathematics II, Clote and Remmel (eds.), Birkhäuser:320–343, 1994.

[15] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Proc. ACM Principles and
Practice of Declarative Programming, 2005.

[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[17] Reactive Programming, INRIA, Mimosa Project. http://www-sop.inria.fr/mimosa/rp.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1-2. Information and
Computation, 100(1):1–77, 1992.

[19] M. Serrano, F. Boussinot, and B. Serpette. Scheme fair threads. In Proc. ACM Principles and practice
of declarative programming, 2004.

22

http://www-sop.inria.fr/mimosa/rp

A Proof of lemma 1

Suppose an−1, . . . , a0 are natural numbers strictly smaller than a constant c. We define

Blex (an−1, . . . , a0)(c) = Σi=0,...,n−1aic
i

which is simply the value in base c of the sequence (an−1, . . . , a0). We also define

Bmset(an−1, . . . , a0)(c) = Σi=0,...,n−1aπ(i)c
i

where π is a permutation over {0, . . . , n − 1} such that aπ(0) ≤ · · · ≤ aπ(n−1). The per-
mutation π is not uniquely determined but the definition of Bmset does not depend on its
choice.

Now suppose an−1, . . . , a0, bn−1, . . . , b0 are natural numbers strictly smaller than a con-
stant c and note that Bst(an−1, . . . , a0)(c) < cn for st ∈ {lex ,mset}. If (an−1, . . . , a0) >lex

(bn−1, . . . , b0) then clearly Blex (an−1, . . . , a0)(c) > Blex (bn−1, . . . , b0)(c). Therefore, the
length of a decreasing sequence with respect to the lexicographic order is bounded by
cn.

On the other hand, suppose M = {|an−1, . . . , a0|} >mset {|bn−1, . . . , b0|} = N . Also
assume that π, π′ are permutations such that aπ(0) ≤ · · · ≤ aπ(n−1) and bπ′(0) ≤ · · · ≤
bπ′(n−1). By definition of the multi-set order, we know that there is a non-empty multi-
subset of M whose largest element is, say, a which is replaced in N by another multi-set
(with the same cardinality) whose largest element is strictly smaller than a. For instance,
{|1, 2, 5, 5, 5, 7|} >mset {|4, 4, 4, 4, 5, 7|} and {|1, 2, 5, 5|} is replaced by {|4, 4, 4, 4|}. Then for
some k ∈ {0, . . . , n−1} we have: aπ(n−1) = bπ′(n−1), . . . , aπ(k+1) = bπ′(k+1), a = aπ(k) > bπ′(k).
If follows that Bmset(an−1, . . . , a0)(c) > Bmset(bn−1, . . . , b0)(c) and again the length of a
decreasing sequence with respect to the multi-set order is bounded by cn.

B Abstraction

We are given a finite system of recursive equations. Our goal is to analyse the possible
computations of a program whose initial shape is R = νs (A1(v1) | · · · | An(vn)). We will
assume that initially all thread identifiers are reset points, i.e., A1, . . . , An ∈ Reset . We
will proceed in two steps. First, we will abstract the program (the system of equations,
actually) as a term-rewriting system. Second, we will show that the inequalities we have
produced in table 1 guarantee feasible reactivity for the abstracted system and therefore
for the concrete one.

B.1 Abstracting signal names

The only information we will keep of a signal name is its type Sigρ(t). Thus we know its
region ρ and the type of the values it may carry. Formally, we select a distinct canonical
constant, say s, for every type Sigρ(t) and replace in the program every occurrence of

23

a signal name of the same type with s. Following this operation, we remove all name
generation instructions νs. As for the operation [s1 = s2]P1, P2 that compares signal
names, we will simply disregard it and systematically explore the situations where one of
the programs P1 or P2 is executed. This is like replacing a conditional [s1 = s2]P1, P2 with
an internal choice P1 ⊕ P2.

B.2 Abstracting pattern matching

Consider a pattern matching instruction [x � p] P1, P2. As in the name comparison opera-
tion, we will systematically consider the situations where P1 or P2 are executed. However,
in the case where the first branch P1 is selected, we will remember that x must match the
pattern p.

B.3 Abstracting the input

In section 4, we have associated a distinct label (a variable) y with every input. We rely
on this variable to compute ‘abstractly’ beyond an input. Namely, in the input operations,
say, sy(x).P, A(f(!y

′

s′)) we will consider both the possibility where a signal is received on
s and the computation continues within the instant with [y/x]P and the possibility that
the computation suspends and resumes in the following instant with A(f(y′)).

B.4 Rewriting rules

We will rely on rewriting rules of the shape

A+(p) → se (3)

to express the situation where the thread identifier A with parameters and inputs that
match the patterns p emits within the same instant the value resulting from the evaluation
of the expression e on the signal s.

We will also rely on rewriting rules of the shape:

A+(p) ; T (4)

to describe the situation where the thread identifier A with parameters and inputs that
match the patterns p evolves into a continuation T . Here, the reduction symbol ; can be
either → or 7→ with the convention that we use → to describe a situation where the con-
tinuation T runs in the same instant and 7→ to describe a situation where the continuation
T runs in the following instant.

Moreover, the continuation T can have two shapes:

• Either B /∈ Reset , T = B+(e,yB), and p = p′,yB,

• or B ∈ Reset and T = λyB.B+(e,yB).

24

Thus the rule (4) is declined into four cases: the continuation T can run in the same instant
or not and it can be a reset point or not.

Here the notation e,yB (or p′,yB) should be understood with a grain of salt. We just
mean that the parameters can be partitioned into two groups one of which corresponds
to the auxiliary variables of the thread identifier B; the parameters yB do not necessarily
follow the others. In case yB is empty, we will take the convention that λyB is a dummy
abstraction. As usual in term-rewriting, it is assumed that the variables free in the emitted
expression e or the continuation T are contained in the variables in the patterns p (recalling
that the abstraction of a signal name is treated as a constant).

B.5 Generating the rewriting rules

Given a finite system of recursive equations, the computation of the term rewriting rules
follows quite closely the generation of the inequalities described in table 1. Namely for
each equation A(x) = P we compute the function R(P, A+(x,yA)) which is defined on the
structure of P as follows:

R(P, A+(p)) = case P of

0 : ∅

[x � p] P1, P2 : R(P1, A
+([p/x]p)) ∪R(P2, A

+(p))

[s1 = s2]P1, P2 : R(P1, A
+(p)) ∪R(P2, A

+(p))

(P1 | P2) : R(P1, A
+(p)) ∪R(P2, A

+(p))

νs P ′ : R(P ′, A+(p))

se : {A+(p) → se}

B(e) :

{

{A+(p) → B+(e,yB)} if B /∈ Reset
{A+(p) → λyB.B+(e,yB)} if B ∈ Reset

sy(x).P ′, B(r) :

{

R([y/x]P ′, A+(p)) ∪ {A+(p) 7→ B+(r,yB)} if B /∈ Reset
R([y/x]P ′, A+(p)) ∪ {A+(p) 7→ λyB.B+(r,yB)} if B ∈ Reset

Here the abstracted variables λyB are supposed to be fresh. Also note that by the shape
of the rules we can never rewrite an emission se or an abstraction such as λyB.B+(e,yB)
since these terms never match the left-hand side of a rule.

Example 10. We compute the term rewriting rules associated with our running examples.
For example 1, we derive:

Cell+(s, q, ℓ, y) → Send+(s, q, ℓ, ℓ, y)
Send+(s, q, ℓ, cons(s′, ℓ′′), y) → Send+(s, q, ℓ, ℓ′′, y)

Send+(s, q, ℓ, cons(s′, ℓ′′), y) → s′q
Send+(s, q, ℓ, ℓ′, y) 7→ λy′.Cell+(s, next(q, y), ℓ, y′)

25

For example 2, we derive:

Server+(s, y) 7→ Handle+(s, y) Handle+(s, cons(req(s′, x), ℓ′)) → Handle+(s, ℓ′)
Handle+(s, cons(req(s′, x), ℓ′)) → s′f(x) Handle+(s, ℓ) 7→ λy.Server+(s, y)

Finally, for example 3, we derive:

A+(s, y) 7→ B+(s, y) B+(s, cons(n, ℓ′)) → sn
B+(s, cons(n, ℓ′)) → B+(s, ℓ′) B+(s, ℓ) 7→ λy.A+(s, y)

C+(s) → sn C+(s) 7→ λ().C+(s)

Remark 1. The reader might have noticed that the rewriting rules and the inequalities we
have produced do not keep track of events that can happen in parallel like “emitting two
signals and calling another thread”. This information can be neglected because we have
assumed we are handling finite control programs. In such programs a call to an identifier
A may generate at most one call to another thread identifier (either in the current instant
or in the following one) plus a number of emissions that is bounded by a constant that
depends on the size of the program only. Alternatively, we could have considered rewriting
rules such as:

A+(p) → s1e1 ‖ s2e2 ‖ B+(e,yB)

where the right hand side carries a composition operator ‖ to express the parallelism of the
events. We note that this approach may produce exponentially more rules than the previous
one because one needs to distribute the parallel composition through the non-determinism.

C Analysis

We proceed to an analysis of the abstracted system, i.e., of the term rewriting system.
Table 2 summarizes the inequalities that are associated with each kind of term rewriting
rule.

A term rewriting rule describes a family of ground rewriting rules which is obtained by
replacing the variables with ground substitutions σ and by evaluating the ground expres-
sions according to the evaluation axioms. We write

A+(v)
R1
→ sv

if there is a term rewriting rule A+(p) → se and a ground substitution σ such that σp = v
and σe ⇓ v. In a similar way, we write

A+(v,u)
R2
→ B+(v′,u) (or A+(v,u)

R4
7→ B+(v′,u))

if there is a term rewriting rule A+(p,yB) → B+(e,yB) (or A+(p,yB) 7→ B+(r,yB)) and
a ground substitution σ such that σp = v, σyB = u, and σe ⇓ v′ (or σr ⇓ v′). Finally, we
write

A+(v)
R3
→ λyB.B+(v′,yB) (or A+(v)

R5
7→ λyB.B+(v′,yB))

26

Rewriting Rules Associated Inequalities

(R1) A+(p) → se, s : Sigρ(t) A+(p)↓ρ ≥2 e

(R2) A+(p,yB) → B+(e,yB)







A+(p,yB) >0 B+(e,yB) if A =F B
A+(p, 0)IA

≥1 B+(e, 0)IB

A+(p,yB)↓ρ ≥2 B+(e,yB)↓ρ if ρ ∈ W(B)

(R3) A+(p) → λyB.B+(e,yB) A+(p)IA
≥1 B+(e, 0)

(R4) A+(p,yB) 7→ B+(r,yB)

{

A+(p, 0)IA
≥1 B+(r, 0)IB

A+(p,yB)↓ρ ≥2 B+(r,yB)↓ρ if ρ ∈ W(B)

(R5) A+(p) 7→ λyB.B+(r,yB) A+(p)IA
≥1 B+(r, 0)

Table 2: Inequalities associated with the term rewriting rules

if there is a term rewriting rule A+(p) → λyB.B+(e,yB) (or A+(p) 7→ λyB.B+(r,yB))
and a ground substitution σ such that σp = v, and σe ⇓ v′ (or σr ⇓ v′).

Consider a ground rewriting rule representing a computation step. As we have seen this
rule is an instance of a term rewriting rule. In turn, we have associated a set of inequalities
with every term rewriting rule. Let us now assume we have an assignment q that satisfies
all generated inequalities. Table 3 spells out what this means in terms of the ground
rewriting rule. To this end, we need some notation to distinguish the parameters e of a
thread identifier A+ (remember that a list of variables yB or a list of patterns p is also a list
of expressions and that r is a list of expressions too since, by definition, the dereferenced
signals are replaced by variables). We distinguish between proper parameters and auxiliary
parameters (those corresponding to an input). Among the former, we distinguish those
in the set IA (eIA

) and the others (eIA
). Among the latter, for a given region ρ, we

distinguish those whose rank is smaller than ρ (e↓ρ) and the others (e↓ρ). To summarise,
given a list of parameters e and a region ρ, we can always partition it into four parts:
e = eIA

, eIA
, e↓ρ, e↓ρ.

We also notice that A+(e,yA)IA
= A+(e, 0)IA

since by definition all auxiliary parame-
ters are set to 0. Moreover, if A is a reset point then A+(e, 0)IA

= A+(e, 0) since for the
reset points, IA coincides with the proper parameters. Finally, we recall that the restriction
↓ ρ acts only on the auxiliary parameters.

C.1 Proof of lemma 2

We analyse ground reductions of the shape:

A+
1 (v1)

R2
→ · · ·

R2
→ A+

k (vk)

These reductions correspond to a sequence of recursive calls that happen within the same
instant (and the same cycle). Suppose the maximum arity of a thread identifier A+ in

27

(R1)
A+(p) → se, s : Sigρ(t), p = p1,p2, p2 = p↓ρ,

σ(p1,p2) = v1,v2, σe ⇓ v
q |= A+(v1, 0) ≥ v

(R2)

A+(p,yB) → B+(e,yB), ρ ∈ W(B), p,yB = p1, . . . ,p4,y5,y6,
p1 = pIA

, p2 = pIA
, p3 = p↓ρ, p4 = p↓ρ, y5 = (yB)↓ρ, y6 = (yB)↓ρ,
e = e1, e2, e1 = eIB

, e2 = eIB

σ(p1, . . . ,p4,y5,y6) = v1, . . . ,v4,u5,u6 = v,u, σ(e1, e2) ⇓ (v′
1,v

′
2) = v′

q |= (v,u) >st (v′,u), if A =F B, status(A) = status(B) = st ,
q |= A+(v1, 0, 0, 0, 0, 0) ≥ B+(v′

1, 0, 0, 0),
q |= A+(v1,v2,v3, 0,u5, 0) ≥ B+(v′

1,v
′
2,u5, 0)

(R3)
A+(p) → λyB.B+(e,yB), p = p1,p2, p1 = pIA

,
σ(p1,p2) = v1,v2, σe ⇓ v′

q |= A+(v1, 0) ≥ B+(v′, 0)

(R4)

A+(p,yB) 7→ B+(r,yB), ρ ∈ W(B), p,yB = p1, . . . ,p4,y5,y6,
p1 = pIA

, p2 = pIA
, p3 = p↓ρ, p4 = p↓ρ, y5 = (yB)↓ρ, y6 = (yB)↓ρ,
r = r1, r2, r1 = rIB

, r2 = rIB

σ(p1, . . . ,p4,y5,y6) = v1, . . . ,v4,u5,u6, σ(r1, r2) ⇓ v′
1,v

′
2

q |= A+(v1, 0, 0, 0, 0, 0) ≥ B+(v′
1, 0, 0, 0),

q |= A+(v1,v2,v3, 0,u5, 0) ≥ B+(v′
1,v

′
2,u5, 0)

(R5)
A+(p) 7→ λyB.B+(r,yB), p = p1,p2, p1 = pIA

,
σ(p1,p2) = v1,v2, σr ⇓ v′

q |= A+(v1, 0) ≥ B+(v′, 0)

Table 3: What the quasi-interpretation guarantees of a ground rewriting step

28

a given program is n. Moreover, suppose c is a bound on the size of the values vj for
j = 1, . . . , k. Then the length k of the reduction sequence is O(cn). To see this, notice
that Ai ≥F Ai+1 for i = 1, . . . k − 1. The inequality ≥F can be strict at most a constant
number of times that depends on the program. Thus, it suffices to prove the assertion
when Ai =F Ai+1, for i = 1, . . . , k − 1 knowing that the thread identifiers have the same
status st and the same arity n. By the existence of a quasi interpretation q (case (R2) in
table 3), we have:

q |= v1 >st v2 >st · · · >st vk

By the properties of assignments, we know that the interpretation of a value is proportional
to its size. Thus we can conclude by applying lemma 1.

C.2 Proof of lemma 3

We analyse ground reductions of the shape:

A+
1 (v1) ; · · · ; A+

n (vn) ; λyAn+1
.A+

n+1(v,yAn+1
)

where A1 ∈ Reset , ;∈ {→, 7→}, and the last reduction is optional. These reductions
correspond to a sequence of recursive calls that start with a reset point and continue
within a cycle (but may span several instants). Optionally, these reductions may reach
another reset point. Let us denote with (vj)IAj

the parameters whose indexes correspond

to IAj
. Recall that if B is a reset point then IB coincides with the proper parameters. By

the cases (R2) and (R4) in table 3 we have:

q |= A+
1 ((v1)IA1

, 0) ≥ · · · ≥ A+
n ((vn)IAn

, 0) .

Moreover, at the last optional step, by inspection of the cases (R2) and (R4) in table 3,
we deduce:

q |= A+
n ((vn)IAn

, 0) ≥ A+
n+1(v, 0) .

In other terms, we know that if starting from a call A(v) we arrive at a call B(u) then
q |= A+(v, 0) ≥ B+((u)IB

, 0). In particular, we see that, up to the quasi-interpretation,
the initial configuration A(v) dominates all the following configurations at the beginning
of a cycle.

C.3 Proof of lemma 4

We analyse ground reductions of the shape:

A+
1 (v1) ; · · · ; A+

n (vn)
R1
→ sv

where A1 ∈ Reset , ;∈ {→, 7→}, ρ ∈ W(An), and the last reduction R1 is optional with s
also belonging to region ρ.

29

These reductions correspond to a sequence of recursive calls that start with a reset point
and continue within a cycle (but may span several instants). Optionally, these reductions
may reach a point where a value is emitted.

Let c be a bound on the size of the parameters at the beginning of the computation
and the size of the values emitted by the environment at the beginning of an instant. Each
vector vj can be decomposed in v′

j,v
′′
j where v′′

j correspond to the auxiliary parameters
on regions whose rank is not smaller than ρ’s. Applying cases (R1), (R2) and (R4) in table
3, we deduce:

q |= A+
1 (v′

1, 0) ≥ · · · ≥ A+
n (v′

n, 0) ≥ v

Therefore we establish:

Property A The size of the emitted value v is polynomial in c and the size of the values
read in regions whose rank is smaller than ρ’s.

How many times can a value be emitted on a region ρ within an instant? Between
two calls, a thread can only emit a number of messages which is bounded by a constant.
Therefore, as in lemma 2, it is enough to focus on the length of computations that happen
within an instant. We focus on ground reductions of the shape:

A+
1 (v1) ; · · · ; A+

k (vk)
R2
→ · · ·

R2
→ A+

n (vn)

where A1 ∈ Reset , ;∈ {→, 7→}, Ak =F · · · =F An, st = status(Ak) = · · · = status(An),
and ρ ∈ W(Aj), for j = k, . . . , n.

These reductions are a particular case of those considered above, where we suppose
that after an initial sequence of recursive calls the computation reaches a series of calls
among thread identifiers that can mutually call each other. Let u be the arguments that
correspond to the auxiliary parameters of A+

j for j = k, . . . , n. Each vector vj can be
decomposed in v′

j ,u for j = 1, . . . , n.
Applying cases (R2) and (R4) in table 3, we deduce:

q |= A+
1 (v1)↓ρ ≥ · · · ≥ A+

k (v′
k, (u)↓ρ, 0)) ≥ A+

n (v′
n, (u)↓ρ, 0))

Property B The parameters v′
j for j = k, . . . , n are polynomial in c and the size of

values read in regions whose rank is smaller than ρ’s.

Remember that by construction there is always a region ρ in W(Ak). Therefore, prop-
erty B guarantees that the size of the proper parameters of a call to a thread identifier is
under control.

Now, applying case (R2) in table 3, we deduce:

q |= (v′
k,u) >st · · · >st (v′

n,u)

Because the values u are constant, we are forced to decrease the parameters v′
j with respect

to the status st . By Property B, these parameters are polynomial in c and the size of the

30

values read in regions whose rank is smaller than ρ’s. By lemma 2, we know that the length
of the sequence is polynomial in the size of the largest parameter. Thus we compose the
polynomials to obtain the following.

Property C The number of times a value can be emitted within an instant in a region
ρ is polynomial in c and the size of values read in regions whose rank is smaller than ρ’s.

It remains to analyse how in our model the size of the values read from a region depends
on the size of the values emitted in that region. We have the following property.

Property D The values read from a region ρ are the concatenation of some of the values
emitted in the region ρ within the same instant.

We can now proceed by induction on the rank of region ρ to show that the size of the
concatenation of some of the values emitted in the region ρ is polynomial in c. At rank 0,
we use directly properties A and C noticing that the concatenation of polynomially many
values whose size is polynomial in c produces a value which is again polynomial in c. At
rank n + 1, we use again properties A and C and the inductive hypothesis. Obviously the
degree of the polynomial will depend on the highest rank of a region which depends on the
program only.

C.4 Proof of theorem 1

We can now conclude our proof. Since the size of the computed values is polynomial in
c, we can apply lemma 2 and derive that each instant terminates in time polynomial in c.
Thus the existence of a quasi-interpretation entails feasible reactivity.

31

