
HAL Id: hal-00130307
https://hal.science/hal-00130307

Submitted on 7 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3+1 spinfoam model of quantum gravity with spacelike
and timelike components

Alejandro Perez, Carlo Rovelli

To cite this version:
Alejandro Perez, Carlo Rovelli. 3+1 spinfoam model of quantum gravity with spacelike and timelike
components. Physical Review D, 2001, 64, pp.064002. �hal-00130307�

https://hal.science/hal-00130307
https://hal.archives-ouvertes.fr


ar
X

iv
:g

r-
qc

/0
01

10
37

v1
  1

0 
N

ov
 2

00
0

3+1 spinfoam model of quantum gravity with spacelike and timelike components

Alejandro Perez and Carlo Rovelli
Centre de Physique Théorique - CNRS, Case 907, Luminy, F-13288 Marseille, France, and

Physics Department, University of Pittsburgh, Pittsburgh, Pa 15260, USA

We present a spinfoam formulation of Lorentzian quantum General Relativity. The theory is
based on a simple generalization of an Euclidean model defined in terms of a field theory over a
group. The model is an extension of a recently introduced Lorentzian model, in which both timelike
and spacelike components are included. The spinfoams in the model, corresponding to quantized
4-geometries, carry a natural non-perturbative local causal structure induced by the geometry of
the algebra of the internal gauge (sl(2, C)). Amplitudes can be expressed as integrals over the
spacelike unit-vectors hyperboloid in Minkowski space, or the imaginary Lobachevskian space.

I. INTRODUCTION

Most of the work in non-perturbative quantum gravity is restricted to the unphysical Euclidean sector, deferring
the construction of the physical Lorentzian theory. A step towards the Lorentzian theory has been recently taken in
Refs. [1,2], with the definition of spinfoam models based on SL(2, C) representation theory. However, these models
includes only (simple) representations in the continuous series, and not the ones in the discrete series. Since the
signature of the surfaces in the spinfoam is determined by the sign of the Casimir, which is opposite in the two
series, all surfaces of the model turn out to have the same signature. In a more realistic model, on the other hand,
we expect spacelike as well as timelike surfaces to appear, and thus all (simple) representation to contribute. In
this paper, we introduce a new model, which includes both kinds of representations. As a consequence, the model
incorporates a combinatorial non-perturbative notion of local causality associated to quantum spacetime. Surfaces in
a given spinfoam can be classified as timelike or spacelike, according to the kind of simple representations by which
they are colored.
We recall that spinfoam models provide a framework for background independent diffeomorphism-invariant quan-

tum field theory and quantum gravity in particular [3–9]. They provide a rigorous implementation of the Wheeler-
Misner-Hawking [10,11] sum over geometries formulation of quantum gravity. The 4-geometries summed over are
represented by spinfoams. These are defined as colored 2-complexes. A 2-complex J is a (combinatorial) set of ele-
ments called “vertices” v, “edges” e and “faces” f , and a boundary relation among these. A spinfoam is a 2-complex
plus a “coloring” N , that is an assignment of an irreducible representation Nf of a given group G to each face f and
of an intertwiner ie to each edge e. The model is defined by the partition function

Z =
∑

J

N (J)
∑

N

∏

f∈J

Af (Nf )
∏

e∈J

Ae(Ne)
∏

v∈J

Av(Nv), (1)

where Af , Ae and Av correspond to the amplitude associated to faces, edges, and vertices respectively (they are
given functions of the corresponding colors). N (J) is a normalization factor for each 2-complex.
Spinfoam models can be obtained as the perturbative expansion of a field theory over a group manifold [17]. In

this language, spinfoams appear as Feynman diagrams of a scalar field theory over a group. More precisely equation
(1) can be obtained by the perturbative expansion of

Z =

∫

Dφ e−S[φ] (2)

in momentum space. In particular, the topological models of BF theory can be described in this framework [18–21].
The field theory approach has several advantages. It implements automatically the sum over 2-complexes J , and
in particular, fixes the N (J) value in (1). This sum restores full general covariance of a theory with local degrees
of freedom such as general relativity (GR) [5,16]. Other advantages of the field theory formulation are related to
the possibility of performing formal manipulations directly on configuration space of the field theory, which turn
out to be much simpler than working directly with the state sum model of equation (1) (i.e., momentum space).
Examples of this are the proof of topological invariance for the BF models due to Ooguri [19], and the definition
of the Lorentzian model mentioned above. In this last case, the non-compactness of SL(2, C) introduces additional
complications that are easier to deal with in the field theory formulation.
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Spinfoam models related to gravity have been obtained as modifications of topological quantum field theories by
implementing the constraint that reduce BF theory to GR [9,12–14]. Essentially this constraint amounts to restrict
to simple representations only. The resulting models correspond to a diffeomorpism invariant lattice-like quantization
of Plebanski’s formulation of GR [15]. In the field theory framework, the constraints reducing BF theory to GR are
naturally implemented by imposing a symmetry requirement on the field action defining the BF model [16]. In the
Euclidean models, the field is defined over SO(4), and the BF to GR constraint is imposed as a symmetry under an
SO(3) subgroup. Amplitudes turn out to be expressed as integrals over the homogeneous space S3 = SO(4)/SO(3)
and the theory is controlled by the harmonic analysis on S3, which contains the simple representations of SO(4).
In the Lorentzian models introduced in Refs. [1,2], the field is defined over SL(2, C), and the BF to GR constraint
is imposed as a symmetry under an SU(2) subgroup. Amplitudes turn out to be expressed as integrals over the
homogeneous space SL(2, C)/SU(2), which is the (real) Lobachevskian space: the upper hyperboloid of unit norm
timelike vectors in in Minkowski space. The theory is controlled by the harmonic analysis on this space, which
contains the continuous simple representations of SL(2, C) only.
In the model we introduce here, the field is still defined over SL(2, C), but the BF to GR constraint is imposed as a

symmetry under an SU(1, 1)×Z2 subgroup. Amplitudes turn out to be expressed as integrals over the homogeneous
space SL(2, C)/(SU(1, 1)×Z2), which is the imaginary Lobachevskian space: the hyperboloid of unit norm spacelike
vectors in in Minkowski space, with opposite points identified. The theory is controlled by the harmonic analysis on
this space, which contains simple representations of SL(2, C) in the continuous as well as in the discrete series. Thus,
we obtain a model that implements the BF to GR constraints and in which the quantum four geometries summed
over have spacelike as well as timelike surfaces.
The paper is organized as follows. In the next section we describe the general setting in which the Lorentzian

spinfoam model of reference [2] was defined. The new model is defined in the same framework in terms of a simple
modification of the one in [2]. Both variants are presented in the corresponding subsections. We obtain the edge
and vertex amplitudes of the models as integrals over the Lobachevskian spaces of a kernel K±. In section III we
compute these kernels for the two models. In the appendix we present a compendium of known results on harmonic
analysis and representation theory of SL(2, C) on which our construction is based.

II. SL(2, C) STATE SUM MODELS OF LORENTZIAN QG

In this section we briefly discuss the general framework of spinfoam models defined as a field theory over a group.
In particular we review the derivation of the Lorentzian spinfoam model of [2]. The implementation of the simplicity
constraints is encoded the symmetries of the interaction. Those symmetries are implemented in the field action by
means of group averaging techniques. The new model differs from its previous relative in the kind of symmetries
required (different implementation of the constraints). For that reason we start the section with the simultaneous
treatment of both theories since the formal manipulation necessary to derive the model are the same in each one of
them. In the two subsection that follow this general derivation we explicitly state the results for both models.
We start with a field φ(g1, g2, g3, g4) over SL(2, C)× SL(2, C)× SL(2, C)× SL(2, C). We assume the field has

compact support and is symmetric under arbitrary permutations of its arguments. 1 We define the projectors Pγ

and P (±)
u as

Pgφ(gi) ≡

∫

dγ φ(giγ), (3)

and

P (±)

u φ(gi) ≡

∫

U(±)

du(±)

i φ(giui), (4)

with γ ∈ SL(2, C), and ui ∈ U (±) ⊂ SL(2, C), where U (±) correspond the SL(2, C) subgroups defined as follows.
Think of the vector representation of SL(2, C), i.e., four dimensional irreducible representation defined on ℜ4. The
SL(2, C) action defines a Minkowski metric in ℜ4. Let it be of signature (+,−,−,−). Consider the time-like line
(λ, 0, 0, 0) and the space-like line (0, 0, 0, λ) for λ ∈ ℜ, and associate to them the one parameter family of 2 × 2
matrices ℓ+ = λσ0 and ℓ− = λσ3 respectively (σµ being the identity matrix for µ = 0 and the Pauli matrices for

1 This symmetry guarantees arbitrary 2-complexes J to appear in the Feynman expansion [16].
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µ = 1, 2, 3). We define the subgroup U (±) ⊂ SL(2, C) as the subgroup leaving invariant ℓ± respectively under the
action ℓ → uℓu†. Clearly U (+) is isomorphic to SU(2). U (−), on the other hand, is isomorphic to SU(1, 1) × Z2

2.
Finally, dγ and du(±) denote the corresponding invariant measures.
We define the following two actions which give rise to the spinfoam models considered in the paper

S(±)[φ] =

∫

dgi [Pγφ(gi)]
2
+

1

5!

∫

dgi [PγP
(±)

u φ(gi)]
5
, (5)

where γi ∈ SL(2, C), φ(gi) denotes φ(g1, g2, g3, g4), and the fifth power in the interaction term is notation for

[φ(gi)]
5
:= φ(g1, g2, g3, g4) φ(g4, g5, g6, g7) φ(g7, g3, g8, g9) φ(g9, g6, g2, g10) φ(g10, g8, g5, g1). (6)

The γ integration projects the field into the space of gauge invariant fields, namely, those such that φ(gi) = φ(giµ)
for µ ∈ SL(2, C).3 We continue the construction of the spinfoam models corresponding to S(+)[φ], and S−[φ]
in general and we particularize to each case in the following two subsections. The vertex and propagator of the
theories are simply given by a set of delta functions on the group, as illustrated in [14], to which we refer for details.
Feynman diagrams correspond to arbitrary 2-complex J with 4-valent edges (bounding four faces), and 5-valent
vertices (bounding five edges). Once the configuration variables gi are integrated over, the Feynman amplitudes
reduce to integrals over the group variables γ and u in the projectors in (5). These end up combined as arguments
of one delta functions per face [14]. That is, a straightforward computation yields

A(±)(J) =

∫

U(±)

du(±)dγ
∏

e

∏

f

δ(γ(1)

e1 u
(±)

1f
γ(2)

e1 u
′(±)

1f
γ(3)

e1 . . . γ
(1)

eNu
(±)

Nf
γ(2)

eNu
′(±)

Nf
γ(3)

eN ), (7)

where e and f denote the set of edges and faces of the corresponding 2-complex J . In this equation, γ(1)
e , and γ(3)

e

come from the group integration in the projectors Pγ in the two vertices bounding the edge e. γ(2)
e comes from

the projector Pγ in the propagator defining the edge e. Finally, u(±)

1f and u′(±)

1f are the integration variables in the
projector Ph in the two vertices. Notice that each u integration variable appears only once in the integrand, while
each γ integration variable appears in four different delta’s (each edge bounds four faces). The index N denotes
the number of edges of the corresponding face. Now we use equation (A26) to expand the delta functions in terms
of irreducible representations of SL(2, C). Only the representations (n, ρ) in the principal series contribute to this
expansion. We obtain

A(±)(J) =
∑

n

∫

ρf

dρ
∏

f

(ρ2f + n2
f )

∫

∏

e

dγdu(±) Tr
[

D̄nfρf (γ(1)

e1 u
(±)

1f γ
(2)

e1 u
′(±)

1f γ(3)

e1 . . . γ
(1)

eNu
(±)

Nf γ
(2)

eNu
′(±)

Nf γ
(3)

eN )
]

. (8)

Next, we rewrite this equation in terms of the matrix elements D̄nρ
j1q1j2q2

(γ) of the representation (n, ρ) in the canonical
basis, defined in the appendix. The trace becomes

Tr
[

D̄nfρf (γ(1)

e1 u
(±)

1f γ
(2)

e1 u
′(±)

1f γ(3)

e1 . . . γ
(1)

eNu
(±)

Nf γ
(2)

eNu
′(±)

Nf γ
(3)

eN )
]

=

D̄
nfρf

j1q1j2q2
(γ(1)

e1 )D̄
nfρf

j2q2j3q3
(u(±)

1f
)D̄

nfρf

j3q3j4q4
(γ(2)

e1 ) . . . D̄
nfρf

j.q.j1q1
(γ(3)

eN ). (9)

Repeated indices are summed, and the range of the jn and qn indices is specified in the appendix. The integration
of D̄nfρf (u(±)

1f )j2q2j3q3 over u(±)

1f is zero if in the corresponding representation there are no invariant vectors under the
action of U (±). 4 It can be written as

2 The elements of Z2 can be realized as the 2× 2 matrices

[

1 0
0 1

]

, and

[

0 i

i 0

]

respectively.

3Because of this gauge invariance, the action (5) is proportional to the trivial diverging factor
∫

dγ. This divergence could be
fixed easily, for instance by gauge fixing and just dropping one of the group integrations. For the clarity of the presentation,
however, we have preferred to keep gauge invariance manifest, use the action formally to generate the Feynman expansion,
and drop the redundant group integration whenever needed.
4This projection implements the constraint that reduces BF theory to GR. Indeed, the generators of SL(2, C) are identified

with the classical two-form field B of BF theory. The generators of the simple representations satisfy precisely the BF to GR
constraint. Namely B has the appropriate e ∧ e form [9,5].
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∫

U(±)

du(±)D̄nρ(u(±))j1q1j2q2 = W (±)nρ

j1q1
W̄ (±)nρ

j2q2
, (10)

where W (±)nρ

jq is the invariant vector under U (±) in the representation (n, ρ). According to (10), the magnitude of

W (±)nρ

jq are given by the volume of U (±); as a consequence, W (−)nρ

jq are not normalizable. 5 Equation (10) defines
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FIG. 1. Structure of the propagator and interaction. The black dots represent the projections W(±) produced by the U (±)

averaging in equation (7).

a projection operator only with the + sign, while in the other case we will have to take care of the infinite volume
factor every time we square (10). This fact does not cause any problems in our deduction. This is addressed in
section (III).
One of the two W (±)nρ in (10) appears always contracted with the indices of the D̄(γ) associated to a vertex;

while the other is contracted with a propagator. We observe that the representation matrices associated to prop-
agators (γ(2)

e ) appear in four faces in (8). The ones associated to vertices appear also four times but combined
in the ten corresponding faces converging at a vertex. Consequently, they can be paired according to the rule
D̄nρ

jqkl(γei)D̄
nρ
klst(γej ) = D̄nρ(γeiγej )jqst. In Fig. (1) we represent the structure described above. A continuous line

represents a representation matrix, while a dark dot a contraction with an invariant vector W (±)nρ. Taking all this
into account, and denoting D̄nρ

W(±)W(±)(γ) the matrix element W̄ (+)n,ρ

j1q1
D̄n,ρ(γ)j1q1j2q2W

(+)n,ρ

j2q2
, we obtain

A(±)(J) =
∑

nf

∫

ρf

∏

f

(ρ2f + n2
f)

∏

e

A(±)

e (ρe1
, . . . ρe4

;ne1
, . . . ne4

)
∏

v

A(±)

v (ρv1
, . . . ρv10

;nv1
, . . . nv10

), (14)

where A(±)
e is given by

5 The invariant vectors under U (+) are non-vanishing for the representations of the type (0, ρ). In this case the invariant
vectors can be given explicitly as functions in the representation (A4), namely

W(+)0ρ(z1, z2) = (|z1|2 + |z2|2)
i
2
ρ−1

. (11)

The U (−) case is more subtle, invariant vectors are not zero in the representations of the type (0, ρ), and (4k, 0) (k = 1, 2, . . .)(see
[26]). The invariant vectors for the representations (0, ρ) are given by

W(−)0ρ(z1, z2) = (|z1|2 − |z2|2)
i
2
ρ−1 + (|z2|2 − |z1|2)

i
2
ρ−1

, (12)

while the ones corresponding to representations of the type (4k, 0) (k = 1, 2, . . .) are

W(−)4k0(z1, z2) = δ(|z1|2 − |z2|2)
(

z1

z̄2

)2k

. (13)
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A(±)

e (ρ1, . . . ρ4;n1, . . . n4) =

∫

dγ D̄n1ρ1

W(±)W(±)(γ) . . . D̄
n4ρ4

W(±)W(±) (γ), (15)

and A(±)
v by

A(±)

v (ρ1, . . . ρ10;n1, . . . n10) =
∫ 5

∏

i=1

dγi D̄
n1ρ1

W(±)W(±) (γ1γ
−1
5 )D̄n2ρ2

W(±)W(±)(γ1γ
−1
4 )D̄n3ρ3

W(±)W(±)(γ1γ
−1
3 )D̄n4ρ4

W(±)W(±) (γ1γ
−1
2 )

D̄n5ρ5

W(±)W(±)(γ2γ
−1
5 )D̄n6ρ6

W(±)W(±) (γ2γ
−1
4 )D̄n7ρ7

W(±)W(±) (γ2γ
−1
3 )D̄n8ρ8

W(±)W(±)(γ3γ
−1
5 )D̄n9ρ9

W(±)W(±)(γ3γ
−1
4 )D̄n10ρ10

W(±)W(±) (γ4γ
−1
5 ). (16)

In Fig. (1), each D̄nρ

W(±)W(±)(γ) in the previous expressions corresponds to a line bounded by two dark dots. Up to
this point we have treated the two theories simultaneously. In the following section we review the properties of the
S+[φ]-model introduced in [2], and then we present the new S+[φ]-model.

A. Lorentzian spinfoam over the Lobachevskian space

In this section we summarize the results presented in [2] corresponding to the model defined by the action S+[φ]
above. The functions D̄nρ

W(+)W(+)(γ) are realized as functions over the hyperboloid yµyµ = 1, y0 > 0 in Minkowski

space, known as Lobachevskian space (here denoted as H+). They are computed in the following section, using the
theory of harmonic analysis overH+ defined in [26]. However, in this case they can be also computed, in a much more
explicit way, using the canonical basis defined in the appendix, and (A27) (this is a consequence of the definition of
the canonical basis which is given in terms of functions on SU(2), see [2]). Here we choose the derivation based on
[26], because it is easier to extend to the new model in the following subsection. According to equation (40) we have

D̄nρ

W(+)W(+)(γ1γ
−1
2 ) = δn0K

+
ρ (η(γ1γ

−1
2 )) := K+

ρ (y1, y2), (17)

where K+
ρ (η) is given in (39). Finally, the invariant measure on SL(2, C) is simply the product of the invariant

measures of the hyperboloid and SU(2), that is dγ = du+ dy. Using all this, the vertex and edge amplitudes can be
expressed in simple form. The edge amplitude (15) becomes

Ae(ρ1, . . . ρ4) =

∫

dy K+
ρ1
(y)K+

ρ2
(y)K+

ρ3
(y)K+

ρ4
(y), (18)

where we have dropped the n’s from our previous notation, since now they all take the value zero. This expression
is finite, and its explicit value is computed in [1]. Finally, the vertex amplitude (16) results

Av(ρ1, . . . ρ10) =

∫

dy1 . . . dy5 K
+
ρ1
(y1, y5)K

+
ρ2
(y1, y4)K

+
ρ3
(y1, y3)K

+
ρ4
(y1, y2)

K+
ρ5
(y2, y5)K

+
ρ6
(y2, y4)K

+
ρ7
(y2, y3)K

+
ρ8
(y3, y5)K

+
ρ9
(y3, y4)K

+
ρ10

(y4, y5). (19)

The previous amplitude is proportional to the infinite volume of the gauge group SL(2, C). We can now remove this
trivial divergence by dropping one of the group integrations (see footnote 3 above). The vertex amplitude (19) is
precisely the one defined by Barrett and Crane in [1]. The spinfoam model is finally given by

A(+)(J) =

∫

ρf

dρf
∏

f

ρ2f
∏

e

A+
e (ρe1

, . . . ρe4
)
∏

v

A+
v (ρv1

, . . . ρv10
), (20)

It corresponds to the Lorentzian model presented in [2]. As it was argued there, a more realistic model should include
also simple representations of the kind (n, 0). In the following subsection we show that this is the case in the theory
defined by the action S(−)[φ].

B. Lorentzian spinfoam over the imaginary Lobachevskian space

Here we introduce the new model defined by the action S(−)[φ] above. As it is shown in the next section, the matrix
elements D̄nρ

W(−)W(−)(γ) in (15) and (16) are realized as functions on the imaginary Lobachevskian space (in Minkowski
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space realized as the 1-sheeted hyperboloid yµyµ = −1 where the point y is identified with −y). They correspond to
the irreducible components in the harmonic expansion of the delta distribution on this space. According to equation
(63)

D̄nρ
W(−)W(−)(γ1γ

−1
2 ) = K−

nρ(η(γ1γ
−1
2 ), r̂z(γ1γ

−1
2 )) := K−

nρ(y1, y2), (21)

where K−
nρ(η, r̂z) is defined as

K−
nρ(η, r̂z) = δn0K

−
ρ (η, r̂z) + δ4k0δ(ρ)K

−
4k(η, r̂z), (22)

according to (53) and (61). The invariant measure on SL(2, C) is simply the product of the invariant measures of
the imaginary Lobachevskian space and U (−) respectively, that is dγ = du− dy. The edge and vertex amplitudes then
become

Ae(ρ1, . . . ρ4;n1, . . . n4) =

∫

dy K−
n1ρ1

(y)K−
n2ρ2

(y)K−
n3ρ3

(y)K−
n4ρ4

(y), (23)

and

A−

v (ρ1, . . . ρ10;n1, . . . n10) =

∫

dy2 . . . dy5 K
−
n1ρ1

(y1, y5)K
−
n2ρ2

(y1, y4)K
−
n3ρ3

(y1, y3)K
−
n4ρ4

(y1, y2)

K−
n5ρ5

(y2, y5)K
−
n6ρ6

(y2, y4)K
−
n7ρ7

(y2, y3)K
−
n8ρ8

(y3, y5)K
−
n9ρ9

(y3, y4)K
−
n10ρ10

(y4, y5) (24)

respectively. Where as in the previous model we have dropped one of the integration variables from the definition
of the vertex amplitude to remove a trivial infinite volume factor. In the spinfoam model defined by S(−)[φ] the
amplitude of a given 2-complex J is finally

A(−)(J) =
∑

nf

∫

ρf

dρf
∏

f

(ρ2f + n2
f )

∏

e

A−
e (ρe1

, . . . ρe4
;ne1

, . . . ne4
)
∏

v

A−
v (ρv1

, . . . ρv10
;nv1

, . . . nv10
). (25)

III. CALCULATION OF THE KERNELS K±

In this section we compute the values of the projector K± which appear in the vertex and edge amplitudes of the
two models.

A. Functions on the Lobachevskian space

Take the 2-sheeted hyperboloid on Minkowski space defined by xνxν = 1. Every point on upper sheet of the
hyperboloid can be written as

xg = gg†. (26)

This space is a possible realization of the Lobachevskian space (from now on denoted byH+). The theory of harmonic
analysis on this space is relevant for the spinfoam model defined by the action S(+)[φ] as can be seen from the fact

that H+ = SL(2, C)/SU(2). Given a square integrable function f̃(g) over SL(2, C) we can define a square integrable

function f(x) ∈ L2(H+) by means of averaging f̃ over the subgroup U (+) = SU(2). Namely,

f(x) =

∫

U(+)

f̃(gxu
(+))du(+), (27)

where gx ∈ SL(2, C) represents the equivalence class of transformations taking the apex (1, 0, 0, 0) to the point x on

the hyperboloid. Expanding f̃(g) in modes, using (A24), we can construct the theory of harmonic analysis of f(x).
Thus

f(x) =

∞
∑

n=0

∫ ∞

ρ=0

∫

U(+)

D̄n,ρ
j1q1j2q2

(gxu
(+))f̃ j1q1j2q2

n,ρ (n2 + ρ2)dρdu(+), (28)
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then using (10) and defining f j1q1
n,ρ := f̃ j1q1jq

n,ρ W̄ (+)n,ρ

jq we obtain

f(x) =

∞
∑

n=0

∫ ∞

ρ=0

[

D̄n,ρ
j1q1j2q2

(gx)W
(+)n,ρ

j2q2

]

f j1q1
n,ρ (n2 + ρ2)dρ. (29)

Finally using (A25),(10), and the fact that any g ∈ SL(2, C) can be written as gxu
(+)

f j1q1
n,ρ =

∫

f̃(gxu
(+))Dn,ρ

j1q1jq
(gxu

(+))W̄ (+)n,ρ

j2q2
d(gxu

(+))

=

∫

f̃(gxu
(+))Dn,ρ

j1q1jq
(gx)W̄

(+)n,ρ

j2q2
dxdu(+)

=

∫

f(x)
[

Dn,ρ
j1q1jq

(gx)W̄
(+)n,ρ

jq

]

dx. (30)

In the second line we used d(gxu
(+)) = dxdu(+), where dx is the invariant measure on H (+) and invariance of W (+)n,ρ

under U+. In the last line we used equation (27). Combining these two equations we can write

δ(x) =

∞
∑

n=0

∫ ∞

0

(n2 + ρ2)dρ W̄ (+)n,ρ

j1q1
D̄n,ρ(gx)j1q1j2q2W

(+)n,ρ

j2q2
. (31)

The term in brackets in (29) and (30) corresponds to the analogous of spherical harmonics in the case of functions over
S2 = SU(2)/U(1). They are different from zero only for simple irreducible representations of the type (0, ρ). This
can be explicitly shown using the properties of the canonical basis defined in the appendix (see also [2]). However,
this method can not be easily extended to the case which is relevant to the new model introduced in the paper. We
therefore complete the construction in the more general framework of reference [26], where the theory of harmonic
analysis over the SL(2, C) homogeneous spaces is defined with the aid of integral geometry elements.
Given f(x) ∈ L2(H+), square integrable function over the Lobachevskian space, its Gelfand transform is defined

as

F (ξ; ρ) =

∫

H−

f(x) (xνξν)
iρ/2−1

dx, (32)

where ρ ∈ [0,∞) and ξ is a vector on the null cone C+ normalized such that ξ0 = 1. The invariant measure dx on the
hyperboloid is defined up to a constant factor that we choose in order to simplify some equations (our measure differs
from the one in [26] by a (4π)2 factor). It turn out that the function F (ξ; ρ) lives in the irreducible representation of
the type (0, ρ) of SL(2, C). Moreover, it corresponds to the Fourier component of f(x) in the balance representation
(0, ρ) as can be explicitly seen writing the inversion formula for (32). Choosing coordinates this inversion formula
can be written as

f(x) =

∫ ∞

0

ρ2dρ

∫

C+

F (ξ; ρ) (xνξν)
−iρ/2−1

dω, (33)

where

dω =
1

4π
sin(θ)dθdφ, (34)

is the normalized measure on the sphere defined by the null cone with normalization ξ0 = 1. Combining (33) with
(32) the resolution of the identity on H+ becomes

δ(x, y) =

∫ ∞

0

ρ2dρ

∫

Γ+

(yνξν)
iρ/2−1

(xνξν)
−iρ/2−1

dω (35)

The previous equation can be express as a sum over the projectors K(+)
ρ (x, y) over the representation (0, ρ), namely

δ(x, y) =

∫ ∞

0

ρ2dρKρ(x, y), (36)

where
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K(+)

ρ (x, y) =

∫

Γ+

(yνξν)
iρ/2−1

(xνξν)
−iρ/2−1

dω. (37)

It is easy to see that the previous function depends only on the hyperbolic distance between x and y. To compute
explicitly its value we chose x to be the hyperboloid apex (x = (1, 0, 0, 0)), while we take y = (cosh(η), 0, 0, sinh(η)).
In our normalization the 4-vector ξ can be written as

ξ = (1, sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)) . (38)

With all this the previous equation becomes

K(+)

ρ (η) =
1

4π

∫

(cosh(η)− cos(θ)sinh(η))
iρ/2−1

sin(θ)dθdφ

=
2 sin(12ρη)

ρ sinh(η)
(39)

Comparing equation (31) with (36) we conclude that

Dn,ρ

W(+)W(+)(gy) := W̄ (+)n,ρ

j1q1
D̄n,ρ(gy)j1q1j2q2W

(+)n,ρ

j2q2
= δn0K

(+)

ρ (x, y) (40)

B. Functions on the imaginary Lobachevskian space

The 1-sheeted hyperboloid on Minkowski space is given by the points such that xνxν = −1. Every point on the
hyperboloid can be written as

xg = gσ3g
†. (41)

The imaginary Lobachevskian space H− corresponds to the 1-sheeted hyperboloid where the point x is identified with
−x. This is exactly the homogeneous space SL(2, C)/U (−) relevant for the construction of the new model presented
in the paper. In analogy to the previous section we can defined a function on the imaginary Lobachevskian space by
means of averaging functions on SL(2, C) over the sub-group U (−) = SU(1, 1)× Z2. Given f̃(g) ∈ L2(SL(2, C)) we
can define f(x) ∈ L2(H (−)) as

f(x) =

∫

U(−)

f̃(gxu
(−))du(−), (42)

where gx ∈ SL(2, C) represents the equivalence class of transformations taking the point (0, 0, 0, 1) to the point x on
the hyperboloid. The difficulty now is that the sub-group U (−) is no longer compact. As a consequence the RHS of
the previous equation is not a square integrable as a function on SL(2, C). Expanding f̃(g) in modes, using (A24),

f(x) =
∞
∑

n=0

∫ ∞

ρ=0

∫

U(−)

D̄n,ρ
j1q1j2q2

(gxu
(−))f̃ j1q1j2q2

n,ρ (n2 + ρ2)dρdu(−), (43)

then using (10) and defining f j1q1
n,ρ := f̃ j1q1jq

n,ρ W (−)n,ρ

jq we obtain

f(x) =

∞
∑

n=0

∫ ∞

ρ=0

[

D̄n,ρ
j1q1j2q2

(gx)W
(−)n,ρ

j2q2

]

f j1q1
n,ρ (n2 + ρ2)dρ, (44)

where

f j1q1
n,ρ =

∫

f̃(gxu
(−))Dn,ρ

j1q1jq
(gxu

(−))W̄ (−)n,ρ

j2q2
d(gxu

(−))

=

∫

f̃(gxu
(−))Dn,ρ

j1q1jq
(gx)W̄

(−)n,ρ

j2q2
dxdu(−)

=

∫

f(x)
[

Dn,ρ
j1q1jq

(gx)W̄
(−)n,ρ

jq

]

dx. (45)
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The non-compactness of U (−) implies the non-normalizability of the W (−)n,ρ invariant vectors. Their presence in
(A24) correspond to a distributional factor in the Fourier components of f(x) thought as a SL(2, C) function. 6

Combining the last two equations we can read off the expression for the delta distribution on H (−), namely

δ(x) =

∞
∑

n=0

∫ ∞

0

(n2 + ρ2)dρ W̄ (−)n,ρ

j1q1
D̄n,ρ(gx)j1q1j2q2W

(−)n,ρ

j2q2
. (46)

Now we present the results of [26] on the harmonic analysis on H− based on Gelfand’s integral transforms. Given
f(x) ∈ L2(H−), square integrable function over the imaginary Lobachevskian space, it can be expanded in terms of
its irreducible SL(2, C) components as

f(x) =

∫ ∞

0

ρ2dρ

∫

Γ+

F (ξ; ρ) |xνξν |
−iρ/2−1

dω +

32 π

∞
∑

k=1

(4k)2
∫

C+

F (ξ, x; 2k)δ(xνξν)dω, (47)

where C+, and dω are defined as in the previous section. The functions F (ξ; ρ) and F (ξ, x; 2k) correspond to the
Fourier components in the balance representation (0, ρ) and (4k, 0) respectively. They are explicitly given by

F (ξ; ρ) =

∫

H−

f(x) |xνξν |
iρ/2−1 dx, (48)

and

F (ξ, x; 2k) =
1

k

∫

H−

f(y)e−2ikΘ(x,y)δ(yνξν)dy, (49)

where the function Θ(x, y) is defined by the following equation

cos(Θ) = |xνyν | . (50)

The geometric interpretation of the angle Θ defined in the previous equation can be done as follows. The line
generators of the 1-sheeted hyperboloid correspond to null geodesics known as isotropic lines [26]. For each point

6A simple analogy corresponds to the following example in Fourier analysis on ℜ2. Take the square integrable function
f̃(x, y) = exp(−x2 − y2). The analogous to the group SL(2, C) is here the group of translations in ℜ2. Every function f̃(x, y)
can be thought of as a function of the group element that takes the origin into the point (x, y). We can define an invariant
function under the action of the subgroup U of translations in the y direction by averaging f̃(x, y) under the action of U ,
namely

f(x) =

∫

∞

−∞

f̃(x, y + u)du =
√
πe

−x2

,

where in the last equality we have used our Gaussian example for f̃(x, y). The function f(x) is a perfectly square integrable
function of one variable but is no longer square integrable on ℜ2. Writing the previous equation in momentum space we have

f(x) =
1

4π2

∫

F̃ (kx, ky)e
i(xkx+(y+u)ky)dudkxdky

=
1

2π

∫

F̃ (kx, 0)e
ixkxdkx,

where

F̃ (kx, 0) =

∫

f̃(x, y)e−ixkxdxdy =

∫

f(x)e−ixkxdx

is the Fourier component of f(x) in one dimension. If we think of f(x) as a function on ℜ2 then its Fourier transform takes
distributional values in ky, namely F (kx, 0)δ(ky).
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x ∈ H− the null geodesic x(λ) = x + λξ for λ ∈ ℜ and ξ ∈ C+ such that xµξµ = 0 is on H−1 for all values
of λ. Fixing x there is a circle worth of such lines. Consider a second point y and search for an isotropic line
containing y and parallel to one crossing x (i.e., having the same null generator ξ). In order for it for exist, we need
xµξµ = yµξµ = 0. In general, the two lines will intersect the sphere given by the section x0 = 0 of the hyperboloid
in two different points. One can easily verify that the scalar product x(λ1)

µyµ(λ2) is independent of the values of
λ1 and λ2. Therefore we can calculate the scalar product of eq.(50) at the λ-values for which the two lines intersect
the sphere. By doing that we conclude that the value of Θ(x, y) corresponds to the azimuthal separation of those
points on the sphere. Combining (47) with previous equations the resolution of the identity on H− becomes

δ(x, y) =

∫ ∞

0

ρ2dρ

∫

Γ+

|yνξν |
iρ/2−1 |xνξν |

−iρ/2−1 dω +

32 π
∞
∑

k=1

(4k)2
∫

Γ+

e−2ik[Θ(x,y)]δ(xνξν)δ(y
νξν)dω. (51)

The previous equation can be express as a “sum” over the projectors K(−)
ρ (x, y) and K(−)

4k (x, y), namely

δ(x, y) =

∫ ∞

0

ρ2dρK(−)

ρ (x, y) +

∞
∑

k=1

(4k)2K(−)

4k (x, y), (52)

where

K(−)

ρ (x, y) =

∫

Γ+

|yνξν |
iρ/2−1 |xνξν |

−iρ/2−1 dω, (53)

and

K(−)

4k (x, y) =
32 π

k

∫

Γ+

e−2ik[Θ(x,y)] δ(xνξν) δ(y
νξν)dω. (54)

Lets analyze equation (53); we take ξ = (1, sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)), and x = (0, 0, 0, 1). We parameterize y
in the following way

y = (sinh(η), cosh(η) r̂) , (55)

where r̂ represents a point on the unit sphere. In terms of these coordinates (53) becomes

K(−)

ρ (η, r̂) =
1

4π

∫

sin(θ) dθdφ ×

|sinh(η)− cosh(η) [sin(θ)cos(φ)r̂x + sin(θ)sin(φ)r̂y + cos(θ)r̂z ]|
iρ/2−1 |cos(θ)|−iρ/2−1

=
∫

dtdφ
∣

∣

∣
sinh(η)− cosh(η)

[

(1− t2)(1/2) (cos(φ)r̂x + sin(φ)r̂y) + tr̂z

]∣

∣

∣

iρ/2−1

|t|−iρ/2−1 . (56)

Finally using that A sin(α) +B cos(α) = (A2 +B2)1/2sin(α+ α0) we obtain

K(−)

ρ (η, r̂) =
1

4π

∫

dtdφ
∣

∣

∣
sinh(η) − cosh(η)

[

(1− t2)(1/2)(1− r̂2z)
(1/2)sin(φ) + tr̂z

]∣

∣

∣

iρ/2−1

|t|−iρ/2−1 . (57)

From the previous equation we conclude that K(−)
ρ (η, r̂) behaves asymptotically as

K(−)

ρ (η, r̂) = α̃ρ(r̂z) e
−η eiηρ/2, (58)

where α̃(r̂z) is an integral of a finite function over the compact space [0, 1]× S1 and therefore is finite. When r̂z = 1
the integral above can be performed and we obtain

K(−)

ρ (η, r̂z = 1) =
2sin(12ρη)

ρ sinh(η)
. (59)

When the points x and y lay on the same boost orbit the projector K(−)
ρ (x, y) has the same form as K(+)

ρ (x, y). In

the same parametrization the projector K(−)

4k (x, y) becomes
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K(−)

4k (η, r̂z) =
8 e−2ikΘ(η,r̂z)

k

∫

δ
(

sinh(η)− cosh(η)(1 − r̂2z)
(1/2)sin(φ)

)

dφ

=
8 e−2ikΘ(η,r̂z)

k
(

1− r̂2zcosh
2(η)

)1/2

∫

δ

(

φ− arcsin

[

tanh(η)

(1− r̂2z)
(1/2)

])

dφ. (60)

The integral on the right vanishes unless
∣

∣

∣

tanh(η)
(1−r̂2z)

(1/2)

∣

∣

∣
≤ 1. Notice that therefore K(−)

4k (η, r̂z) has support on the values

of η, and r̂z for which Θ = arcos(|cosh(η)r̂z |) is real with a range 0 ≤ Θ ≤ π
2 . Using that cos(Θ) = |cosh(η)r̂z |

(equation (50)) we finally obtain

K(−)

4k (η, r̂z) =
8 e−2ikΘ

k sin(Θ)
(61)

for 0 ≤ Θ(η, r̂z) ≤ π
2 and zero otherwise. The real part of the previous projector diverges at Θ = 0, i.e., on the

curve r̂z = ±cosh−1(η). If we define J = k − 1
2 then J takes all the half-integer values and the imaginary part of

K(−)

4k (η, r̂z) becomes

Im
[

K(−)

4k (η, r̂z)
]

=
8

J + 1
2

sin ((2J + 1)Θ)

sin(Θ)
(62)

for 0 ≤ Θ ≤ π and vanishes otherwise. The imaginary part of the projector on the discrete representations has
the same form as the one appearing in the Euclidean Barrett-Crane models. Finally, comparing (46) with (52) for
x = (0, 0, 0, 1) we conclude that

Dn,ρ

W(−)W(−)(gy) = δn0K
(−)

ρ (x, y) + δn,4kδ(ρ)K
(−)

4k (x, y). (63)

IV. DISCUSSION

We have carried over a generalization of the model defined in [2]. The new model is given by an SL(2, C) BF
quantum theory plus a quantum implementation of the constraints that reduce BF theory to Lorentzian general
relativity. This corresponds to the restriction to simple representations, those for which the Casimir Ĉ2 vanishes (see
(A31)). In contrast with the previous model, the present one includes also elements of the discrete series in the set
of simple representations.
Four dimensional Lorentzian quantum spacetime appears as a fully combinatorial notion represented by spinfoams

colored by simple representations of SL(2, C). The model possesses an intrinsically defined local causal structure
with is non-perturbative and background independent. Causality in the model is induced by the algebra of SL(2, C)
(see equations (A30) and (A31)). In particular, the Casimir (A30) can be interpreted as the square of the area
operator corresponding to quantized bivectors [5]. Space-like and time-like bivectors can be classified according to

the two possibilities Ĉ1 > 0 or Ĉ1 < 0. We define a space-like section of a given spinfoam as the colored graph (spin
network) defined by the intersection of a 3-surface with the corresponding 2-complex such that it is labeled by simple

representations in the discrete series. On this representations the area operator Â reduces to

Â ∼
√

J(J + 1) 1̂, (64)

where J := k − 1/2 (k = 1, 2 . . .) and therefore takes only half-integer values. Notice that the spectrum of the area
on spatial sections of the spinfoams of the model is contained in the one predicted by Loop Quantum Gravity in the
canonical formalism [22]. 7 Only those eigenvalues corresponding to half integer spin appear. This is associated to
the fact that the model was based on the harmonic analysis of even functions on the one sheeted hyperboloid, the

7Our definition of space-like section should be in agreement with the geometrical analysis of the discretization of BF theory
with the corresponding passage to GR through the implementation of Plebanski’s constraints. As it is pointed out in [1] this
is a delicate issue. To answer this question a rigorous definition of the area operator as well as a deeper understanding of the
geometry of the quantization prescription is needed. This important issue will be study in the future.
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imaginary Lobachevkian space. The extension of the model including the other part of the spectrum seems possible
and it will be study elsewhere.
A necessary condition for the model to be well defined is the finiteness of the edge and vertex amplitudes appearing

in (25). Both amplitudes turn out to be finite in the S+[φ] model [24]. We do not address this issue in the paper,
but we want to make a few comments on some of the results that might be relevant for future research in this
respect. In the new model the projectors K(−)

ρ (x, y) have the same asymptotic behavior of K(+)
ρ (x, y) (they even

coincide when the two points are located in the same spatial direction (see eq. (59)). Therefore, one would expect no
divergences coming from this kind of projectors. The analysis of the discrete projectors K(−)

4k (x, y) is more delicate.
The imaginary part

Im
[

K(−)

4k (x, y)
]

∼
sin ((2J + 1)Θ(x, y))

sin(Θ(x, y))
(65)

is well behaved and has the same functional form of the corresponding projector in the Euclidean Barrett-Crane
model [25]. The real part diverges on Θ = 0 which according to the geometrical interpretation given in the last
section corresponds to the situation in which x and y lay on the same null generator of the hyperboloid. The study
of the convergence of the different amplitudes appearing in the new model is left for future studies.
Another problem is the the convergence of the sum over representations in (25). This problem appears also in

the Euclidean models. To cure it, the Barrett-Crane model was defined in terms of a quantum deformation of the
gauge group (SOq(4), with q

n = 1). The quantum deformation introduces a cut-off in the summ over representations
that regularizes the amplitudes. In the limit in which the quantum deformation is removed (q → 1), divergences
appear whenever the 2-complex J includes bubbles. A similar regularization for the Lorentzian state sum model is
suggested by Barrett and Crane in [1]. A different strategy for dealing with this infinity was suggested in reference
[14], using the field theory over group technology. In this reference, we have defined a natural variant of the Euclidean
Barrett-Crane model based on a different implementation of the BF-to-GR constraints which, however, turns out to
be finite [23]. On this model, see also [30]. The Lorentzian model presented in [2] as well as its extension presented
here correspond to the finite version of the Euclidean model. Accordingly, although further study is certainly needed,
we suspect that the Lorentzian models presented here might also be finite.
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APPENDIX A: REPRESENTATION THEORY OF SL(2, C)

We review a series of relevant facts about SL(2, C) representation theory. Most of the material of this section can
be found in [26,27]. For a very nice presentation of the subject see also [28].
We denote an element of SL(2, C) by

g =

[

α β
γ δ

]

, (A1)

with α, β, γ, δ complex numbers such that αδ − βγ = 1. All the finite dimensional irreducible representations of
SL(2, C) can be cast as a representation over the set of polynomials of two complex variables z1 and z2, of order
n1 − 1 in z1 and z2 and of order n2 − 1 in z̄1 and z̄2. The representation is given by the following action

T (g)P (z1, z2) = P (αz1 + γz2, βz1 + δz2). (A2)

The usual spinor representations can be directly related to these ones.
The infinite dimensional representations are realized over the space of homogeneous functions of two complex

variables z1 and z2 in the following way. A function f(z1, z2) is called homogeneous of degree (a, b), where a and b
are complex numbers differing by an integer, if for every λ ∈ C we have

f(λz1, λz2) = λaλ̄bf(z1, z2), (A3)

where a and b are required to differ by an integer in order to λaλ̄b be a singled valued function of λ. The infinite
dimensional representations of SL(2, C) are given by the infinitely differentiable functions f(z1, z2) (in z1 and z2 and
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their complex conjugates) homogeneous of degree (µ+n
2 − 1, µ−n

2 − 1), with n an integer and µ a complex number.
The representations are given by the following action

Tnµ(g)f(z1, z2) = f(αz1 + γz2, βz1 + δz2). (A4)

One simple realization of these functions is given by the functions of one complex variables defined as

φ(z) = f(z, 1). (A5)

On this set of functions the representation operators act in the following way

Tnµ(g)φ(z) = (βz + δ)
µ+n

2 −1(β̄z̄ + δ̄)
µ−n

2 −1φ

(

αz + γ

βz + δ

)

. (A6)

Two representations Tn1µ2(g) and Tn1µ2(g) are equivalent if n1 = −n2 and µ1 = −µ2.
Unitary representations of SL(2, C) are infinite dimensional. They are a subset of the previous ones corresponding

to the two possible cases: µ purely imaginary (Tn,iρ(g) µ = iρ, ρ = ρ̄, known as the principal series), and n = 0,
µ = µ̄ = ρ, ρ 6= 0 and −1 < ρ < 1 (T0ρ(g)the supplementary series). From now on we concentrate on the principal
series unitary representations Tniρ(g) which we denote simply as Tnρ(g) (dropping the i in front of ρ). The invariant
scalar product for the principal series is given by

(φ, ψ) =

∫

φ̄(z)ψ(z)dz, (A7)

where dz denotes dRe(z)dIm(z).
There is a well defined measure on SL(2, C) which is right-left invariant and invariant under inversion (namely,

dg = d(gg0) = d(g0g) = d(g−1)). Explicitly, in terms of the components in (A1)

dg =

(

i

2

)3
dβdγdδ

|δ|2
=

(

i

2

)3
dαdγdδ

|γ|2
=

(

i

2

)3
dβdαdδ

|β|2
=

(

i

2

)3
dβdγdα

|α|2
, (A8)

where dα, dβ, dγ, and dδ denote integration over the real and imaginary part respectively.
Every square-integrable function, i.e, f(g) such that

∫

|f(g)|2dg ≤ ∞, (A9)

has a well defined Fourier transform defined as

F (n, ρ) =

∫

f(g)Tn,ρ(g)dg. (A10)

This equation can be inverted to express f(g) in terms of Tn,ρ(g). This is known as the Plancherel theorem which
generalizes the Peter-Weyl theorem for finite dimensional unitary irreducible representations of compact groups as
SU(2). Namely, every square-integrable function f(g) can be written as

f(g) =
1

8π4

∑

n

∫

Tr[F (n, ρ)Tn,ρ(g
−1)](n2 + ρ2)dρ, (A11)

where only components corresponding to the principal series are summed over (not all unitary representations are
needed) 8 , and

Tr[F (n, ρ)Tn,ρ(g
−1)] =

∫

Fnρ(z1, z2)Tnρ(z2, z1; g)dz1dz2. (A12)

8If the function f(g) is infinitely differentiable of compact support then it can be shown that F (n, ρ) is an analytic function
of ρ and an expansion similar to (A11) can be written in terms of non-unitary representations.

13



Fnρ(z1, z2), and Tnρ(z2, z1; g) correspond to the kernels of the Fourier transform and representation respectively
defined by their action on the space of functions φ(z) (they are analogous to the momenta components and repre-
sentation matrix elements in the case of finite dimensional representations), namely

F (n, ρ)φ(z) :=

∫

f(g)Tnρ(g)φ(z)dg :=

∫

Fnρ(z, z̃)φ(z̃)dz̃, (A13)

and

Tn,ρ(g)φ(z) :=

∫

Tnρ(z, z̃; g)φ(z̃)dz̃. (A14)

From (A6) we obtain that

Tnρ(z, z̃; g) = (βz + δ)
ρ+n
2 (β̄z̄ + δ̄)

ρ−n
2 δ

(

z̃ −
αz + γ

βz + δ

)

. (A15)

The resolution of the identity takes the form

δ(g) =
1

8π4

∑

n

∫

Tr[Tn,ρ(g)](n
2 + ρ2) dρ. (A16)

a. The canonical basis

There exists an alternative realization of the representations in terms of the space of homogeneous functions
f(z1, z2) defined above [27]. Because of homogeneity (A3) any f(z1, z2) is completely determined by its values on
the sphere S3

|z1|
2 + |z2|

2 = 1. (A17)

As it is well now there is an isomorphism between S3 and SU(2) given by

u =

[

z̄2 − z̄1
z1 z2

]

(A18)

for u ∈ SU(2) and zi satisfying (A17). Alternatively we can define the function φ(u) of u ∈ SU(2) as

φ(u) := f(u21, u22), (A19)

with f as in (A3). Due to (A3) φ(u) has the following “gauge” behavior

φ(γu) = eiω(a−b)φ(u) = eiωnφ(u), (A20)

for γ =

[

eiω 0
0 e−iω

]

. The action of Tnρ(g) on φ(u) is induced by its action on f(z1, z2) (A4). We can now use Peter-

Weyl theorem to express φ(u) in terms of irreducible representations Dj
q1q2(u) of SU(2). However, due to (A20) only

the functions φjq(u) = (2j +1)1/2Dj
nq2(u) are needed (where j = |n|+ k, k = 0, 1, . . .). Therefore φ(u) can be written

as

φ(u) =

∞
∑

j=n

j
∑

q=−j

djq φjq(u). (A21)

This set of functions is known as the canonical basis. This basis is better suited for generalizing the Euclidean spin
foam models, since the notation maintains a certain degree of similarity with the one in [16,14]. We can use this
basis to write the matrix elements of the operators Tn,ρ(g), namely

Dnρ
j1q1j2q2

(g) =

∫

SU(2)

φ̄j1q1 (u)
[

Tnρ(g)φ
j2
q2 (u)

]

du. (A22)
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Since Tn1n2(u0)φ(u) = φ(uu0), invariance of the SU(2) Haar measure implies that

Dnρ
j1q1j2q2

(u0) = δj1j2 D
j1
q1q2(u0). (A23)

In terms of these matrix elements equation (A11) acquires the more familiar form

f(g) =

∞
∑

n=0

∫ ∞

ρ=0





∞
∑

j1,j2=n

j1
∑

q1=−j1

j2
∑

q2=−j2

D̄n,ρ
j1q1j2q2

(g)f j1q1j2q2
n,ρ



 (n2 + ρ2)dρ, (A24)

where

f j1q1j2q2
n,ρ =

∫

f(g)Dn,ρ
j1q1j2q2

(g)dg, (A25)

and the quantity in brackets represents the trace in (A11). In the same way we can translate equation (A16) obtaining

δ(g) =

∞
∑

n=0

∫ ∞

ρ=0





∞
∑

j=n

j
∑

q=−j

D̄n,ρ
jqjq(g)



 (n2 + ρ2)dρ =

∞
∑

n=0

∫ ∞

ρ=0

Tr
[

D̄n,ρ(g)
]

(n2 + ρ2)dρ. (A26)

Using equations (A22) and (A23), we can compute

∫

SU(2)

Dn,ρ
j1q1j2q2

(u) du = δjj2

∫

SU(2)

Dj
qq2(u)du = δj20δj10. (A27)

b. On the tensor product of two irreducible representations

The tensor product of two irreducible representations of the principal series Tn1ρ1 and Tn2ρ2 decomposes into a
direct integral of irreducible representations Tnρ for those n’s such that n+n1+n2 is an even integer and no restriction
for ρ. For a proof of this assertion, and for explicit realizations of the tensor product of two representations of the
principal series see [29].

c. Generators and Casimir operators

An infinitesimal g ∈ SL(2, C) in the adjoint representation can be parametrized by the six numbers λµν = −λνµ
as

g = e+ iλµνL
µν +O(λ2), (A28)

where iLµν ∈ sl(2, c), the algebra of SL(2, C). The corresponding irreducible representation operator T nρ(g) has the
form

Tnρ(g) = 1̂ + iλµν L̂
µν
(nρ) +O(λ2). (A29)

There are two Casimir operators in SL(2, C) corresponding to LµνL
µν and Lµν

∗Lµν respectively, namely

Ĉ1(n,ρ) = L̂(nρ)µν L̂
µν
(nρ) =

1

4
(n2 − ρ2 − 4) 1̂, (A30)

and

Ĉ2(n,ρ) = ǫµναβL̂
µν
(nρ)L̂

αβ
(nρ) =

1

4
nρ 1̂. (A31)
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