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Gwénël Richomme
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Abstract

Based on Lyndon words, a new Sudoku-like puzzle is presented and

some relative theoretical questions are proposed.

1 Introduction

Lyndon words are basic tools in Combinatorics on Words (see for instance [6, 7])
and appear in many problems that can be expressed using words (see for instance
[4, 5, 9]). While preparing a course, I thought about the puzzle presented in
Section 2 for a pleasant first contact with Lyndon words (see also Section 5 for
some possible variants). I propose to nickname Sudo-Lyndon this puzzle since,
as in the now famous (who did not hear about it?) Sudoku game, also known
as Number Place puzzle, a grid has to be filled from partial informations, and
only a unique solution is expected as a result (may be a better name should be
Lyndon place).

2 The puzzle

For our purpose a word is nothing else than a finite non-empty sequence of
letters: here the meaning of the word does not care.

A Lyndon word is a word smaller, with respect to the lexicographic order,
than all its suffixes except itself (See for instance [6] for equivalent definitions
and properties). For example, when considering the usual ordering of the letters,
one can verify that cocoon or acacias are Lyndon words while bananas, acacia,
anagram or eighteen are not.

Here we will play only with two letters a and b, but we will simultaneously
consider Lyndon words over {a < b} (that is over the alphabet {a, b} with a < b)
and over {b < a}. The shortest Lyndon words over {a < b} are a, b, ab, aab,
abb, aaab, aabb, abbb, aaaab, aaabb, aabab, aabbb, ababb and abbbb. The shortest

1



ones over {b < a} are of course obtained replacing each a by a b and each b by
an a. Lyndon words of length 6 over {b < a} are bbbbba, bbbbaa, bbbaaa, bbbaba,
bbabaa, bbaaba, bbaaaa, babaaa, baaaaa.

The aim of the puzzle is to fill each cell of a grid with a letter a or b so
that each row read from left to right and each column read top-down yields
a Lyndon word over {a < b} or over {b < a}. For each initial grid, the set
of predetermined cells is defined in such a way that one and only one correct
solution exists. Let us give an example with its solution :

Puzzle

a b

b a

Solution

a a b b

a a b b

b b a a

b b a a

Here follow two other examples (solutions can be found on my home page) :

Puzzle 1

a

b b

a b a

a a

b

Puzzle 2

a

a b a a b

b a

b a b

a a

a a b a a b

a a b a

3 Educational matters

As explained in the introduction, my aim when designing my first grid was
educational. Let me narrate my experience with it. I tested it with some
students (Puzzle 1 was made as an introductory exercise and Puzzle 2 was
given as homework). Most of the students managed to find the solution, often
empirically, sometimes bactracking. We then discussed on the way to obtain the
solution the most directly as possible. Quickly it was observed by students that
the first and last letters of a Lyndon word must be different. I then introduced
the fact that “a Lyndon word is unbordered ” (a word w is unbordered if the
only word which is both prefix and suffix of w is w itself w) and its corollary “a
Lyndon word is primitive ” (that is, it is not a power of a strictly smaller word).
We deduced basic rules to fill a (enough large) grid, as for instance:

Rule 1 : ?a . . . b? → aa . . . bb

Rule 2 : ab . . .?? → ab . . . bb
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Symbol ? in rules denotes an unknown letter. Rule 1 means that if we do
not know the first and penultimate letter of a Lyndon word, if the second letter
is a and if the last letter is a b, then the Lyndon word must start with aa and
must end with bb. Rule 2 means that any Lyndon word starting with ab must
end with bb.

One can observe that Puzzle 1 can be solved using only the unborderedness
of Lyndon words. Hence Puzzle 2 should be a better introduction. It allows to
remark that if a Lyndon word w starts with anb for a non-zero integer n, then
an+1 is not a factor of w (a factor of a word is a subsequence of consecutive
letters).

To end with educational matters, I would like to notice that before starting
the exercise with students, I just defined Lyndon words and give few examples.
While discussing the solution, I mentioned that another approach could have
been to enumerate Lyndon words of length 5 (only 6 such words exist over
{a < b}) and to try to put them in the grid. To explain it, I gave the lists of
Lyndon words over {a < b} for each length from 1 to 5. This lead a student to
ask for the number of Lyndon words for each length (see [6] for an answer).

4 Some theoretical questions

All grids presented here were handmade. Hence a natural question is:
Problem 1 : How to generate (effectively) a Sudo-Lyndon puzzle?

To answer this question, one would certainly need to know the structure of
possible solutions of a Sudo-Lyndon puzzle. Without any information of this
kind, a basic idea is to generate a candidate grid until it has a unique solution.
But for this we need an answer to the following second natural question:
Problem 2 : Given a grid partially filled with letters a and b, how to know
(effectively) if there exists a unique solution?

Of course, for each of the previous questions, we vould like to know its
complexity class. In particular is Problem 2 NP-complete as is the similar
question for Sudoku game [10]?

We observe that it can be determined in linear time with respect to the
number of cells whether a grid filled with letters a and b is a possible solution of
a puzzle, that is, whether each row and column yields a Lyndon word. This is
an immediate consequence of the existence of a linear time algorithm to check
whether a word is a Lyndon word (see [8, chapter 1] for references).

A sub-question to Problem 2 concerns words or more precisely partial words
as defined by J. Berstel and L. Boasson [1] and studied in depth by F. Blanchet-
Sadri (see for instance [2]). A partial word is a word with holes, that is, with
positions where letters are undetermined. Each row/column in a Sudo-Lyndon
puzzle is a partial word. Hence:
Problem 3 : given a partial word, can we replace a letter in such a way that the
result yields a Lyndon word?

This third problem is being studied by Blanchet-Sadri and Davis [3].
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The grid on the right shows that a positive answer to
Problem 3 is not sufficient to solve Problem 2 since
in the unique hole an occurrence of the letter b is
needed to have a horizontal Lyndon word whereas an
occurrence of the letter a is needed to have a vertical
Lyndon word.

No solution!

a a b b b

a a b a b

a a b b b

a b a b

b b a a a

To end this section, we consider the question, connected to Problems 1 and
2, of the enumeration of all the possible solutions of the puzzle. The scheme
below shows that the number of such grids grows exponentially with the number
of rows and columns. Indeed in the scheme each ∗ symbol can be replaced
independently by an a or a b in order to obtain a possible solution of a puzzle.
Hence 2(⌊n

2
⌋−1)(⌊m

2
⌋−1) different solutions of the puzzle can be available with

this scheme.

1 2 . . . ⌊m

2
⌋ ⌊m

2
⌋ + 1 . . . m-1 m

1 a a . . . a b . . . b b
2 a a . . . a b . . . b b

...
...

. . .
...

...
. . .

...
...

⌊n

2
⌋ a a . . . a b

. . . b b

⌊n

2
⌋ + 1 b b . . . b ∗

. . . ∗ a
...

...
. . .

...
...

. . .
...

...
n-1 b b . . . b ∗ . . . ∗ a
n b b . . . b a . . . a a

5 Variants

When constructing the grids presented here, I was annoying by the feeling that
two much cells were filled in the initial grid of the puzzle. This leads to the
problems:
Problem 4 : given a puzzle for which we know there exists a unique solution,
can we determine if it is minimal in the sense that no letter in the grid can be
deleted without losing the uniqueness of the solution?
Problem 5 : given integers n, m, what is the minimal number f(n, m) such that
there exists at least one grid that starts with f(n, m) initial values and has a
unique solution?

In the particular case of a word, one can see that the ratio of this minimal
amount over the length of a word tends to 0 when the length of the word tends
to infinity. Indeed the partial word (each hole is indicated by a ? character)

abp?a?2p+2[a?2p+3]p

is of length 2p2 + 7p + 5 and contains only 2p + 2 known letters, and the
Lyndon word abp+1ab2p+2[ab2p+3]p is the unique solution to this one dimension
puzzle.
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Finally, to deal with the problem of having too much information, I have
thought about the following variants. For each variant, the aim is still to fill
each cell of a grid with a letter a or b so that each row read from left to right and
each column read top-down yields a Lyndon word over {a < b} or over {b < a}.

Variant 1: For each row/column, the number of occurrences of the letter a is
given.

Variant 2: As for variant 1, but the value of some cells are also given.
Variant 3:(As for the original Sudoku puzzle), the grid is divided into subgrids.

For each subgrid, we consider the word obtained reading the rows of the
subgrid from the top one and from left to right (One can prefer to concate-
nate columns and so naturally other variant is to consider simultaneously
the two possibilities). In this variant the global grid should be filled in
such a way a Lyndon word is written on each row, column and subgrid.

Variant 4: As for variant 3, but moreover some cells can be initially filled with
the * character meaning that in the final solution the value of the cell can
be equally the letter a and b. Of course, as for the initial puzzle, there
is only one manner to fill a cell (except those marked with a *) for which
the value is not known at the beginning.

Variant 1

4 5 3 3 2 2

2

2

4

2

5

4

Variant 2

3 4 2 2 2

2 a

3

2

3

3

Variant 3

a b

b

b a a a

a

Variant 4

b a a

a b b b b

a b b a

b b ∗

∗ ∗

b ∗

b ∗ a ∗ a
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6 Conclusion

We have already mentioned that Puzzle 1 could be solved using only unbor-
derdness. This kind of puzzle can of course be generalized to larger grid, but it
can also open the question to find interesting puzzles based on other properties
of words. For instance all Lyndon words in the grid below do not contain the
words aaa and bbb as factors.

a b a

a b

b

a

b

I hope that you get fun playing Sudo-Lyndon.

Acknowledgements. Many thanks to my beta-testers students, to Richard
Groult and especially to Patrice Sbold who encourages me to widen the com-
munication of the present puzzle.
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