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Formulary of geodesics of the projected averaged Kepler Hamiltonian
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This short note gives the quadratures of the geodesics of the averaged Hamiltonian of the controlled Kepler equation (energy criterion) projected on S 2 . The endpoints of the corresponding cut locus are also deduced, as well as the injectivity radius of the associated Riemannian metric on the 2-sphere.

The Hamiltonian is

H = 1 2 p 2 θ G(ϕ) + p 2 ϕ with G(ϕ) = sin 2 ϕ 1 -(1 -µ 2 ) sin 2 ϕ •
Herebefore, µ is a parameter which is equal to 1/ √ 5 in the case of the Kepler equation [START_REF] Bonnard | A global optimality result with application to orbital transfer[END_REF][START_REF] Bonnard | Conjugate and cut loci in averaged orbital transfer[END_REF][START_REF] Bonnard | Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust[END_REF][START_REF] Caillau | Sur la géométrie des transferts orbitaux[END_REF]. The system is clearly integrable, and the geodesics on the level set {H = 1/2} of the corresponding Riemannian metric are as parameterized by p θ (note that θ is cyclic) as follows:

ϕ = asin (1 + b) -(1 -b) cos(a(t -t 1 )) 2 ,
and

θ = sign(p θ ) atan tan (a(t -t 1 )/2) √ b t 0 -(1 -µ 2 )p θ t.
These two quadratures are valid for t in [t 1 , t 1 + T /4] with nonegative p ϕ 0 , and extended on [t 1 , t 1 + T ] by using the obvious symmetries of the Hamiltonian (a -2t 1 time translation gives the case when p ϕ 0 is negative). The coordinate ϕ and the time derivative θ are T -periodic and hence clearly extended to the whole real line. The period T , the time t 1 , and the parameters a and b have the following expression (θ 0 is assumed to be zero by symmetry):

a = 2 1 + (1 -µ 2 )p 2 θ , b = p 2 θ /(1 + (1 -µ 2 )p 2 θ ), t 1 = (1/a) -π/2 -asin 2 sin 2 ϕ 0 -(1 + b) 1 -b , T = 4π/a.
The cut locus [START_REF] Bonnard | Conjugate and cut loci in averaged orbital transfer[END_REF] of the Riemannian metric is then easily deduced. For symmetry reasons, it is included in the antipodal parallel {π -ϕ 0 }, and the coordinates of its left endpoint are

θ l = π(1 -(1 -µ 2 ) sin ϕ 0 ), ϕ l = π -ϕ 0 .
The time, that is the distance to the cut locus is

t l = π 1 -(1 -µ 2 ) sin 2 ϕ 0 ,
which gives the injectivity radius of the Riemannian metric G(ϕ)dθ 2 + dϕ 2 on S 2 , that is the infimum of distances from a point to its cut locus (clearly reached on the equator, for ϕ 0 = π/2), i(S 2 ) = µπ.

As consequence of the computations, any geodesic is-up to a rotation in θ-a pseudo-equator, that is a geodesic generated by p ϕ = 0 on {H = 1/2}. In Kepler case, every pseudo-equator starting from a rational initial eccentricity is closed. There exist five simple closed geodesic modulo rotations with respect to θ, and the shortest closed geodesics are the meridians whose length is 2π.
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