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. Along the way, we contradict a recent conjecture of Z. Shi about the lower tails of integrated stable processes.

Introduction and statement of the results

Since the seminal paper [START_REF] Ya | Statistics of shocks in solutions of inviscid Burgers equation[END_REF], statistical properties of the Burgers equation where ψ 0 is the initial potential given by u 0 = -∂ x ψ 0 . The inviscid Burgers equation is a simplified version of (1.1) where the viscosity parameter ν = 0, and its so-called Hopf-Cole solution is obtained from (1.2) in letting ν → 0. By Laplace approximation, it takes a particularly nice form:

(1.3) ψ(t, x) = sup a∈R ψ 0 (a) - (x -a) 2 2t ,
which is well-defined provided the initial potential satisfies ψ 0 (a) = o(a 2 ) when |a| → +∞.

We refer e.g. to the monograph [START_REF] Woyczynski | Burgers-KPZ turbulence[END_REF] for the above facts, and much more, concerning Burgers equation.

In this paper, we are interested in the inviscid Burgers equation whose initial data is a two-sided Lévy α-stable process. More precisely, we suppose that the initial condition X is defined followingly:

(1.4)

X x = Z x if x ≥ 0 -Z ′ -x if
x ≤ 0 where Z = {Z x , x ≥ 0} is a Lévy α-stable process and Z ′ an independent copy of Z. Referring to Chapter VIII in [START_REF] Bertoin | Lévy Processes[END_REF] for more details, let us recall that Z is a real process with stationary and independent increments, which is (1/α)-self-similar:

(1.5) {Z kx , x ≥ 0} d = {k 1/α X x , x ≥ 0}
for all k > 0. This property forces the stability index α to be in (0, 2], and Z is Brownian motion (up to a scaling parameter) in the case α = 2. Its Lévy-Khintchine exponent Ψ(λ) = log E[e iλZ 1 ] is given by

Ψ(λ) = κ|λ| α (1 -iβsgn(λ) tan(πα/2)), λ ∈ R,
where κ > 0 is the scaling parameter and β ∈ [-1, 1] is the skewness parameter. Without loss of generality, in the following we will suppose κ ≡ 1. The positivity parameter ρ = P [Z 1 > 0] takes its values in [1-1/α, 1/α] when α > 1 and in [0, 1] when α < 1. When α > 1, the value ρ = 1 -1/α corresponds to the spectrally positive situation (β = 1 and Z has no negative jumps) and the value ρ = 1/α to the spectrally negative situation (β = -1 and Z has no positive jumps). When α < 1 and ρ = 0 (resp. α < 1 and ρ = 1), Z is the negative of a subordinator and has no positive jumps (resp. a subordinator and has no negative jumps). When α = 1, then ρ ∈ (0, 1) and Z has jumps in both directions.

The law of the iterated logarithm for Z at infinity -see Theorem VIII.5 in [START_REF] Bertoin | Lévy Processes[END_REF] -entails

lim sup x→+∞ x -κ Z x = 0 or + ∞ according as κ > 1/α or κ ≤ 1/α.
Hence, since our initial potential is given up to some meaningless additive constant by

ψ 0 (x) = x 0 X t dt, x ∈ R,
the growth condition ψ 0 (a) = o(a 2 ) at infinity assigns the restriction

α ∈ (1, 2]
on the stability parameter, which will be supposed henceforth unless explicitly stated.

Derivating (1.3) with respect to x yields readily the following formula for the Hopf-Cole solution of (1.1):

u(t, x) =
xa(t, x) t where a(t, x) is the largest point attaining the maximum in (1.3), in other words:

a(t, x) = max s ∈ R, C ′ t (s) ≤ xt -1
where C ′ t stands for the right-derivative of C t , which is the convex hull of the function

x → x 0 (X u + ut -1 )du.
The so-called Lagrangian regular points of (1.1) are the points where the above function coincides with its convex hull. Notice that this time-dependent set L t can be described in terms of the function a(t, x):

L t = {a(x, t), x ∈ R and a(x-, t) = a(x, t)} .
From the physical point of view, L t is the set of particles which have not been shocked up to time t by the turbulence governed by Equation (1.1) -see [START_REF] Woyczynski | Burgers-KPZ turbulence[END_REF] -and for this reason there has been some interest over the years in describing the structure of the sets L t , especially in studying their fractal properties. In [START_REF] Janicki | Hausdorff dimension of regular points in stochastic Burgers flows with Lévy α-stable initial data[END_REF], the authors raised the following Conjecture (Janicki and Woyczynski). For every t > 0, one has

Dim H L t = 1/α a.s.
It is easy to see that the Hausdorff dimension of L t does not, indeed, depend on t in this model. Namely, from the self-similarity of Z one can show -see [START_REF] Janicki | Hausdorff dimension of regular points in stochastic Burgers flows with Lévy α-stable initial data[END_REF] p. 285 -that u(t, x)

d = t 1/(α-1) u(1, xt α/(α-1) ),
which entails that a.s. Dim H L t = Dim H L 1 for every t > 0. In the following, we will be therefore interested in the set L 1 only, which we denote by L for the sake of simplicity. Notice that the above conjecture had been previously solved (without complete proof) by Sinai [START_REF] Ya | Statistics of shocks in solutions of inviscid Burgers equation[END_REF] in the Brownian case α = 2, and that Bertoin [START_REF] Bertoin | The inviscid Burgers equation with Brownian initial velocity[END_REF] showed then rigourously the result in the general case α ∈ (1, 2] with no positive jumps, as a consequence of the remarkable fact that the process x → a(x, 1) is a subordinator close to the(1/α)-stable onesee Theorem 2 in [START_REF] Bertoin | The inviscid Burgers equation with Brownian initial velocity[END_REF]. Nevertheless, this latter property is no more true in the non spectrally negative framework -see the conclusion of [START_REF] Bertoin | The inviscid Burgers equation with Brownian initial velocity[END_REF], and the structural study of (1.1) seems to require an entirely different methodology when there are positive jumps. To this end, let us also mention an attempt made in [START_REF] Carraro | Equation de Burgers avec conditions initiales à accroissements indépendants et homogènes[END_REF] with the concept of statistical solution (which is different from the Hopf-Cole solution).

In this paper we show that Janicki and Woyczynski's conjecture is false in general when there are positive jumps:

Theorem A. Suppose that Z has positive jumps. Then there exists α 0 > 1 such that

Dim H L < 1/α a.s.
for every α ∈ (1, α 0 ).

Our main argument comes from a recent paper by Molchan and Kholkhov [START_REF] Molchan | Small values of the maximum for the integral of fractional Brownian motion[END_REF], who were interested in the sets L t of Lagrangian regular points of (1.1) when the initial data is a two-sided fractional Brownian motion W . In [START_REF] Molchan | Small values of the maximum for the integral of fractional Brownian motion[END_REF], they proved that an a.s. upper bound on Dim H L t -which is also independent of t > 0 by the self-similarity of W -follows from a lower bound on the exponent κ appearing in the estimate

P t 0 Ŵs ds < ε + t 2 , ∀ t ∈ [-1, 1] ≤ ε κ , ε → 0, where Ŵ = -W d = W
is the dual process of W . We remark that this argument transfers to the Lévy stable case without much difficulty, and is actually even simpler because of the independence and stationarity of the increments of X. This will be done in Section 3. Before this, we will have to prove a crucial estimate on the first-passage time of the integrated stable process. Let us fix first some more notation, introducing

A t = t 0 Z s ds, t ≥ 0,
the integral of a Lévy α-stable process Z -with the same notations as above, but this time for every α ∈ (0, 2] -and T = inf{t > 0, A t = 1} the first-passage time of A across 1.

Theorem B. Suppose that Z has negative jumps and is not the negative of a subordinator. With the above notations, for every α 0 > 0 there exists a constant κ > 0 depending only on ρ such that

lim inf t→∞ t κ P[T > t] = 0 for every α ∈ [α 0 , 2].
This result, which will be proved in Section 2, is interesting in its own right because it contradicts another conjecture whose solution had been announced (with a hidden error) by the author in [START_REF] Simon | The lower tail problem for the area of a symmetric stable process[END_REF], and whose statement was the following: Conjecture (Shi). Suppose that Z is symmetric and that α > 1. Then with the above notations,

(1.6) P[T > t] = t -(α-1)/2α+o(1) , t → ∞.
Indeed, since in Theorem B the exponent κ is positive independent of α, we see that the above conjecture is contradicted when α is close enough to 1, as in Theorem A. Notice that in a recent paper [START_REF] Simon | The lower tail problem for homogeneous functionals of stable processes with no negative jumps[END_REF] the author proved (1.6) in the case where Z has no negative jumps and α > 1. The idea -which had been originally given by Z. Shi -consisted in time-changing the process A through τ the inverse local time of Z and considering the fluctuations of the Lévy stable process A τ . We have been thinking for a long time that this method would be also successful when Z has negative jumps, because A τ is a Lévy symmetric (α-1)/(α+1)-stable process whatever the value of ρ should be -see Lemma 1 in [START_REF] Simon | The lower tail problem for homogeneous functionals of stable processes with no negative jumps[END_REF], which allows in particular to obtain a general upper bound

P[T > t] ≤ K t -(α-1)/2α , t → ∞ for every value of ρ ∈ [1 -1/α, 1/α]
and some finite constant K -see Theorem A in [START_REF] Simon | The lower tail problem for homogeneous functionals of stable processes with no negative jumps[END_REF].

It now appears that this subordination method is too crude when there are negative jumps, and yields only an upper bound which is not optimal, at least when α is close to 1. In this paper, we will obtain a uniform upper bound by discretization through exponential timechange combined with FKG-type inequalities, all of which we learned from Caravenna and Deuschel in the genesis of their paper [START_REF] Caravenna | Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction[END_REF]. Let us stress that these arguments are also by far non optimal. Nevertheless they are quite robust and, since they involve eventually only fixed upper tails of Z and A which can be bounded independently of α, this method makes it at least possible to contradict both Janicki-Woyczynski and Shi's conjectures when α is close to 1. Actually, we believe that these conjectures are false for all values of α except when there are no positive jumps (for the first) or no negative jumps (for the second), and in the fourth and last section of the paper we will state two other conjectures for the values of Dim H L and the critical exponent in (1.6), in a general non completely asymmetric framework.

Proof of Theorem B

We begin with the case α > 1, and we will actually obtain a slightly stronger result which is crucial for Theorem A. Fix ρ = P[Z 1 > 0] > 0 once and for all, and set γ = (α -1)/α > 0. We will show that there exists κ > 0 independent of α such that

(2.1) lim inf t→+∞ t κ P A s < 1 + s + t -γ s 2 , ∀ s ≤ t = 0,
which readily entails Theorem B by comparison. We first define an exponential subsequence of times, in considering the events

A n = A 2 m < 1 + 2 m + 4 m-nγ , m = 0 . . . 2n , n ≥ 0.
Clearly, it is enough to prove that there exists κ > 0 independent of α such that P[A n ] ≤ e -κn for n sufficiently large. We will obtain slightly more, in showing that (2.2)

P[B n ] ≤ e -κn
for some κ > 0 independent of α and n large enough, where

B n = A 2 m < 1 + 2 m + 4 m-nγ , m = 0 . . . n , n ≥ 0.
To do so, consider the events

C k = {Z 2 k > -2 k/α , A 2 k > -2 k(1+1/α)
} for every k ≥ 0, and the family of random times defined recursively by

σ 0 = 0 and σ n = inf{k > σ n-1 / C k occurs}, n ≥ 1.
If {F t , t ≥ 0} stands for the completed σ-field generated by {Z s , s ≤ t}, then 2 σn is a F t -stopping time for every n ≥ 0. Denoting henceforth by [x] the integer part of any real number x, we now state a crucial lemma which is mainly borrowed from [START_REF] Caravenna | Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction[END_REF]:

Lemma. For every α 0 > 0, there exists δ, c > 0 independent of α ∈ [α 0 , 2] such that P σ [δn] < n | B n ≥ c
for all n sufficiently large.

Taking this lemma for granted and setting K = c -1 < +∞ we see that

P [B n ] ≤ KP σ [δn] < n, B n ≤ KP A 2 m < 1 + 2 m + 4 m-nγ ∀ m = σ 1 + 1, . . . , σ [δn] + 1, σ [δn] < n .
Introducing the notations

G [δn] = F σ [δn] and D [δn] = A 2 m < 1 + 2 m + 4 m-nγ ∀ m = σ 1 + 1, . . . , σ [δn] + 1
for every n ≥ 0, the strong Markov property at time 2 σ [δn] yields

P D [δn] , σ [δn] < n ≤ P 1 D [δn]-1 ∩{σ [δn] <n} P A 2 σ [δn] +1 < 1 + 2 σ [δn] +1 + 4 σ [δn] +1-nγ | G [δn] ≤ P 1 D [δn]-1 ∩{σ [δn] <n} P A 2 σ [δn] +1 < 1 + 2 σ [δn] +1 + 2 2+2σ [δn] /α | G [δn]
where in the second line we used the event {σ [δn] < n}. On the other hand, again by the strong Markov property, conditionally on G [δn] we can decompose

A 2 σ [δn] +1 = A 2 σ [δn] + 2 σ [δn] Z 2 σ [δn] + Â2 σ [δn]
where  is a copy of A independent of G [δn] . By the definition of σ [δn] , this yields

P[A 2 σ [δn] +1 < 1 + 2 σ [δn] +1 + 2 2+2σ [δn] /α | G [δn] ] ≤ P[ Â2 σ [δn] < 2 2+σ [δn] (1+1/α) + 2 2+2σ [δn] /α | G [δn] ] ≤ P[ Â2 σ [δn] < 2 3+σ [δn] (1+1/α) | G [δn] ] ≤ P[A 1 < 8],
where we used the fact that α > 1 in the second line, and the (1 + 1/α)-self-similarity of  independent of G [δn] in the third. But from Proposition 3.4.1 in [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], we know that A 1 is a real α-stable random variable whose Lévy-Khintchine exponent Φ(λ) =log E[e iλA 1 ] is given by

Φ(λ) = (α + 1) -1 |λ| α (1 -iβsgn(λ) tan(πα/2)), λ ∈ R,
where β is the skewness parameter of Z 1 . In particular, its positivity parameter is P[A 1 > 0] = ρ > 0 and its scaling parameter belongs to [1/3, 1/2) independent of α. This clearly entails -see Section 1.6 in [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] -that there exists κ < 1 depending only on ρ such that

P[A 1 ≥ 8] ≥ (1 -κ) for every α > 1.
Let me also stress that this argument breaks down when there are no negative jumps, since then P[A 1 ≥ 8] → 0 when α → 1. We finally obtain

P D [δn] , σ [δn] < n ≤ κP D [δn]-1 , σ [δn] < n ≤ κP D [δn]-1 , σ [δn]-1 < n -1 ≤ κ [δn]
by an induction argument, and since above the event {σ [δn] < n} is only used to obtain the upper bound 4 σ [δn] +1-nγ ≤ 2 2+2σ [δn] /α . Now because δ, κ are independent of α, this yields (2.2) as desired, and completes the proof of Theorem B when α > 1. The case α ≤ 1 can be handled exactly in the same way in working on the events

{A 2 m < 1 + 2 m , m = 0 . . . n} , n ≥ 0,
and we leave the details to the reader. However, for the sake of completeness and since our arguments are partly different from [START_REF] Caravenna | Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction[END_REF], we will give the Proof of the lemma. Set P n [.] = P[ . |B n ] for concision. By the definition of σ [δn] , we have for every δ > 0

P n [σ [δn] < n] = 1 -P n n k=1 1 C c k > δ ′ n ≥ 1 - 1 δ ′ n n k=1 P[C c k ] = 1 δ ′ n n k=1 P n [C k ] - δ δ ′
where we set δ ′ = 1δ for conciseness. Hence, it suffices to prove the existence of c > 0 independent of α and k such that

P n [C k ] ≥ c
for every k ∈ [1, n] and every n sufficiently large. To do so, we will first consider the events

D k,n = Z t < 2 -(n-k)/α , ∀ t ∈ [0, 2 n+k ] ⊆ B n
and prove the intuitively obvious inequalities

(2.3) P[C k | B n ] ≥ P[C k | D k,n ]
for every n ≥ 1 and every k ∈ [1, n], with the help of a discretization of Z and a FKG argument. Fixing k and n, set 

Z N t = i<tN Li+1 N -L i N and A N t = 1 N i<tN j≤i Lj+1 N -L j N for every t ≥ 0, N ≥ 1.
P[C N k | B N n ] ≥ P[C N k | D N k,n ]
for every N ≥ 1. The key-point is that the probabilities of the events B N n , C N k , D N k,n and their intersections depend only on the joint law P N of the increments {(Z i N -Z i-1 N ), i = 1, . . . , N2 n+k }, which are stationary and independent. The measure P N has the density

(2.5) f (x) = N 2 n+k i=1 g(x i )
with respect to the Lebesgue measure on R N 2 n+k , where g is the density of the variable Z 1 N , and the density of the conditional measure P N n [.] = P N [ . | BN n ] with respect to the Lebesgue measure on R N 2 n+k is hence given by

h(x) = 1 BN n f (x) P[B N n ] where BN
n is the image of B N n under P N . Besides, it is obvious from the definition of B N n that the function 1 BN n (x) is decreasing, in the sense that if x i ≥ y i for all i = 1 . . . N2 n+k , then 1 BN n (x) ≤ 1 BN n (y). From (2.5) and this monotonicity property, we deduce that h satisfies Holley's criterion:

h(x)h(y) ≥ h(x ∨ y)h(x ∧ y), x, y ∈ R N 2 n+k
with the notations (x∨y) i = x i ∨y i and (x∧y) i = x i ∧y i for all i = 1 . . . N2 n+k . By Corollary 12 in [START_REF] Holley | Remarks on the FKG inequalities[END_REF], this entails that the measure P N n satisfies FKG inequality in the sense that n . This finally entails

P N n [C ∩ D] ≥ P N n [C]P N n [D]
P N n [ ĈN k ∩ DN n ] ≤ P N n [ ĈN k ]P N n [ DN n ]
and, after some elementary transformations using the inclusion D N k,n ⊆ B N n , the desired inequality (2.4) for every k = 1, . . . , n and n, N ≥ 1. Hence, from (2.3), we now need to show that there exists c > 0 independent of α such that

P[C k | D k,n ] ≥ c
foe every k ∈ [1, n] and n sufficiently large. A scaling argument yields first

P[C k | D k,n ] = P[Z 1 < 1, A 1 < 1 | {Z t > -2 -n , ∀t ∈ [0, 2 n ]}]
where P stands for the law of the dual process Ẑ = -Z. By Chaumont's results -see Remark 1 and Theorem 6 in [START_REF] Chaumont | Conditionings and path decomposition for Lévy processes[END_REF], the conditional law on the right-hand side converges to P↑ which is the law of Ẑ conditioned to stay positive. Hence, for n sufficiently large, one has

P[C k | D k,n ] ≥ 1 2 P↑ [Z 1 < 1, A 1 < 1] ≥ 1 2 P↑ [S 1 < 1]
with the notation S 1 = sup{Z t , t ≤ 1}. It is now intuitively obvious that the right-hand side can be bounded from below by a positive constant on every closed interval [α 0 , 2] ⊂ (0, 2].

Let us give a rigorous argument. Using Theorem 1 in [START_REF] Chaumont | Excursion normalisée, méandre et pont pour les processus de Lévy stables[END_REF], one gets

P↑ [S 1 < 1] ≥ c Ê(me) [Z 2 1 1 {S 1 <1}
] for some constant c depending only on ρ, where P(me) denotes the law of the meander associated to Z. The pathwise representation of the meander given in [START_REF] Bertoin | Lévy Processes[END_REF], Proposition VIII. [START_REF] Molchan | Small values of the maximum for the integral of fractional Brownian motion[END_REF] yields

Ê(me) [Z 2 1 1 {S 1 <1} ] ≥ c ′ Ê[(Z 1 -I 1 ) 2 1 {S 1 -I 1 <1}
] for some constant c ′ depending only on ρ, with the notation I 1 = inf{Z t , t ≤ 1}. Finally, the Lévy-Khintchine formula and Theorem 1 in [START_REF] Kadankova | On the joint distribution of the supremum, infimum, and the value of a semicontinuous process with independent increments[END_REF] entail that the probability on the righthand side is a continuous function of the parameter α. Since it is obviously positive for every α ∈ (0, 2], it is bounded from below by a positive constant on every closed interval [α 0 , 2] ⊂ (0, 2], which completes the proof.

Remark. The proof of the above lemma would be slightly simpler if we could prove that the measures P n themselves satisfy FKG inequality, instead of considering their discretizations P N n . From Example 2.3.6 and Theorem 4.6.1 in [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], and by right-continuity of the sample paths of Z, we know that the unconditioned measure P satisfies FKG, in the sense for every time-horizont T > 0 and every bounded measurable increasing functionals F, G :

D T → R + , (2.6) E[F (Z t , t ≤ T )G(Z t , t ≤ T )] ≥ E[F (Z t , t ≤ T )]E[G(Z t , t ≤ T )]
(here we set D T for the Skorokhod space of càdlàg functions from [0, T ] to R, and we say that a functional F :

D T → R + is increasing if for every x, y ∈ D T , x t ≥ y t ∀ t ≤ T =⇒ F (x t , t ≤ T ) ≥ F (y t , t ≤ T ).) Since B n is a monotonous event, our desired conditioned version of (2.6) (2.7) E n [F (Z t , t ≤ T )G(Z t , t ≤ T )] ≥ E n [F (Z t , t ≤ T )]E n [G(Z t , t ≤ T )]
would be fulfilled if P satisfied the strong FKG inequality. However, there exist some pathmeasures which are FKG but not strong FKG -we learned this from J.-D. Deuschel, and we could not prove (2.7) directly, even in the Brownian case.

Proof of Theorem A

Recall that we are interested in the Hausdorff dimension of the random set

L = {a(x), x ∈ R and a(x-) = a(x)}
where a(x) := max{s ≥ 0, C ′ (s) ≤ x} and C ′ is the right-derivative of C, the convex hull of the function

x → x 0 (X u + u) du, x ∈ R.
Recall also that X is a two-sided α-stable Lévy process (α > 1) with positive jumps as defined in (1.4), and fix its positivity parameter ρ < 1/α once and for all. Notice that by definition X does not jump negatively at time l whenever l ∈ L: X l ≥ X l- a.s. On the other hand, it is well possible that l ∈ L is a "conical point" in the sense that X l > X l-. However, if we define

L = a(x), x ∈ R, a(x-) = a(x) and X a(x) = X a(x)-,
we see from the fact that the set of points of discontinuity of X is a.s. countable that

Dim H L = Dim H L a.s.
The key-point -which was first noticed by Sinai [START_REF] Ya | Statistics of shocks in solutions of inviscid Burgers equation[END_REF] in the Brownian case -is that a.s.

L ⊆ L := a ∈ R / x 0 (X u + u) du ≥ a 0 (X u + u) du + (x -a)(X a + a), ∀ x ∈ R ,
so that we only need to get an upper bound on Dim H L. To do so, we will use (2.1) together with the same arguments as Molchan and Kholkhov [START_REF] Molchan | Small values of the maximum for the integral of fractional Brownian motion[END_REF]. First, a slight modification of Lemma 1 in [START_REF] Molchan | Small values of the maximum for the integral of fractional Brownian motion[END_REF] shows that Theorem A will be proved as soon as there exists a constant κ > 0 independent of α and a subsequence δ n → 0 such that

P L ∩ (x -δ n , x + δ n ) = ∅ ≤ δ κ n , n → ∞
uniformly in x ∈ R. Indeed, reasoning exactly as In Lemma 1 in [START_REF] Molchan | Small values of the maximum for the integral of fractional Brownian motion[END_REF] entails then

Dim H L ≤ 1 -κ a.s.
and completes the proof of the theorem with α 0 = 1/(1κ). Second, we remark that by linearity of the integral and by independence and stationarity of the increments of the process u → X u + u, the random sets

L ∩ (x -δ n , x + δ n ), x ∈ R
have all the same law. Hence, we need to show that there exists a constant κ > 0 independent of α such that (3.1) lim inf δ→0 δ -κ P Lδ = ∅ = 0, where for every δ > 0 we wrote

Lδ = |a| < δ / x 0 (X u + u) du ≥ a 0 (X u + u) du + (x -a)(X a + a), ∀ x ∈ R .
For every δ > 0, set F δ for the completed filtration generated by {X u , |u| ≤ δ}, and consider the F δ -measurable random variables

M δ = sup |x|≤δ |X x + x| and N δ = sup |x|≤δ x 0 (X u + u) du .
If X = -X and Ẑ = -Z denote the dual processes of X and Z respectively, we see that a.s.

Lδ = ∅ ⊆ x 0 ( Xu -u) du ≤ N δ + (δ + |x|)M δ ∀ x ∈ R ⊆ A δ ∩ A ′ δ
with the notations

A δ = x δ (( Ẑu -Ẑδ ) -(u -δ)) du ≤ 2N δ + 2(δ + x)M δ ∀ x ≥ δ and A ′ δ = -x -δ ((-Ẑ′ u + Ẑ′ δ ) -(u -δ)) du ≤ 2N δ + 2(δ + |x|)M δ ∀ x ≥ δ ,
where Ẑ′ is an independent copy of Ẑ. By the Markov property, the events A δ and A ′ δ are independent and identically distributed conditionally on F δ , so that (3.2)

P Lδ = ∅ = P P Lδ = ∅ | F δ ≤ E [P [A δ ∩ A ′ δ | F δ ]] = E P [A δ | F δ ] 2 .
Besides, again by the Markov property, we can write

P [A δ | F δ ] = P t 0 L u du ≤ 2n + 2tm + t 2 /2, ∀ t ≥ 0 n=N δ ,m=M δ
where L is a copy of Ẑ independent of F δ . Now since α > 1 and by the scaling property of X, it is immediate to see that a.s. N δ ≤ δ 1+1/α (1 + N) and M δ ≤ δ 1/α (1 + M) as soon as δ < 1, where M, N are F δ -measurable and such that

M d = sup |x|≤1 |X x | and N d = sup |x|≤1 x 0 X u du .
Setting ε = (2δ) (α+1)/2α and R = max{(1 + N), (1 + M) α+1 } for conciseness, we can rewrite

P [A δ | F δ ] = P t 0 L u du ≤ ε 2 r + (ε 2 r) 1/(α+1) t + t 2 /2, ∀ t ∈ [0, 1] r=R •
Returning to (3.2), we obtain

P Lδ = ∅ ≤ P R ≥ ε -1 + P t 0 L u du ≤ ε + ε 1/(α+1) t + t 2 /2, ∀ t ∈ [0, 1] 2 ≤ (cδ) 1/4 + P t 0 L u du ≤ ε + ε 1/(α+1) t + t 2 , ∀ t ∈ [0, 1] 2
for some c > 0, where in the third line we used well-known estimates on the upper tails of supremum of stable processes -see e.g. Theorem 10.5.1. in [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]. A scaling argument yields

P t 0 L u du ≤ ε + ε 1/(α+1) t + t 2 , ∀ t ∈ [0, 1] = P t 0 L u du ≤ 1 + t + n -γ t 2 , ∀ t ∈ [0, n]
where n = ε -α/(α+1) = 1/ √ 2δ. Finally, since L d = -Z has negative jumps, we see from (2.1) that there exists κ > 0 depending only on ρ such that lim inf δ→0 δ -κ P Lδ = ∅ = 0, which is (3.1) and completes the proof.

Two conjectures

Let us start by a classical result of Bingham concerning the asymptotics of the ruin probabilities related to the stable process Z: if we set S = inf{t > 0, Z t > 1}, then there exists a constant c ∈ (0, ∞) such that (4.1)

P[S > t] ∼ ct -ρ , t → +∞
as soon as |Z| is not a subordinator -see Proposition VIII. 2 in [START_REF] Bertoin | Lévy Processes[END_REF]. Notice in passing that the constant c equals α p Z 1 (0) when Z has no positive jumps -this is a consequence of Skorokhod's formula written e.g. in [START_REF] Bingham | Fluctuation theory in continuous time[END_REF] p. 749, and that in the other cases it can be given (non explicitly) in terms of the excursion measure associated to the reflected process -see Lemma 1 in [START_REF] Chaumont | Excursion normalisée, méandre et pont pour les processus de Lévy stables[END_REF]. Considering now T = inf{t > 0, A t = 1} the first-passage time of the integral of Z across 1, from (4.1) it is tantalizing to state the Conjecture C. Suppose that |Z| is not a subordinator. Then

P[T > t] = t -ρ/2+o(1) , t → +∞.
The Brownian case α = 2 and ρ = 1/2 had been obtained in [START_REF] Goldman | On the first passage of the integrated Wiener process[END_REF] after expanding a closed formula of McKean concerning the distribution of T , which yields actually a more accurate estimate like (4.1) with an explicit constant for c -see Proposition 2 therein. The case with no negative jumps α > 1 and ρ = (α -1)/α was proved recently in [START_REF] Simon | The lower tail problem for homogeneous functionals of stable processes with no negative jumps[END_REF], with a good control on o(1) allowing to show that E[T ρ/2 ] = +∞. The above conjecture is also motivated by the aforementioned fact that Z and A have the same positivity parameter ρ, a quantity which should typically play a rôle in the distribution of T . On the other hand, the process A is smoother than Z, so that the upper tails of the distribution of T should be heavier than those of S. We propose the value ρ/2 for the critical exponent, since it is in accordance with the spectrally positive case. Conjecture C will be the matter of further research [START_REF] Devulder | The lower tail problem for integrated stable processes[END_REF].

Suppose now α > 1 and consider the drifted stable process Z c t = Z t + ct, t ≥ 0, for some c = 0. From Lemma VI.21 in [START_REF] Bertoin | Lévy Processes[END_REF] and explicit estimates on the renewal function of Z c , one can show that

P[Z c t < ε, ∀ t ∈ [0, 1]] ≍ ε ρα , ε → 0
for every c ∈ R. Notice also that the latter estimate is false when α = 1 by Bingham's result, since Z c is then a strictly stable process whose positivity parameter depends on c. We think that the estimate is also untrue when α < 1, but we got stuck in proving this. Setting A c

for the integral of Z c , we believe from the above fact that when α > 1, (4.2) P[A c t < ε, ∀ t ∈ [0, 1]] = ε ρα/(α+1)+o (1) , ε → 0 for every c ∈ R. By self-similarity, notice that this estimate is the same as Conjecture C when c = 0. When c < 0, it is particularly relevant for the inviscid Burgers equation whose initial data is the two-sided dual process Ẑ. Indeed, reasoning as in the proof of Theorem A, one can show that the upper bound in (4.2) entails Dim H L ≤ ρ a.s. where ρ = 1ρ is the positivity parameter of Ẑ. Considering now (1.1) where the initial data is the two-sided dual process Z, from Conjecture C, the above considerations and Bertoin's result [START_REF] Bertoin | The inviscid Burgers equation with Brownian initial velocity[END_REF], one is tempted to state the Conjecture D. With the above notations, for every α > 1 and every ρ ∈ [1 -1/α, 1/α] one has Dim H L = ρ a.s.

From the present paper, we are convinced that optimal lower tail estimates for the integral of Ẑ should provide the key-argument to obtain the upper bound in Conjecture D. The lower bound seems more delicate because of the positive jumps of Ẑ which prevent from using Handa's criterion [START_REF] Handa | A remark on shocks in inviscid Burgers' turbulence[END_REF]. On the other hand, it is immediate to see from its definition that the set L t contains the points of global increase of the drifted process Z 1/t for every t > 0, and one may wonder if the methods developped by Marsalle [START_REF] Marsalle | Hausdorff measures and capacities for increase times of stable processes[END_REF] to determine the Hausdorff dimension of the points of local increase of the non-drifted process Z, could not be useful.

(1. 1 ) 2 R exp 1 2ν ψ 0

 120 ∂ t u + u∂ x u = ν∂ xx u, ν > 0 with initial condition u 0 (x) := u(0, x) = X x where {X x , x ∈ R} is a given random process, have given rise to intensive research. Eventhough (1.1) is a much simplified version of the Navier-Stokes equation, it is still relevant in physics as a model equation for e.g. shock waves in hydrodynamics, in order to describe turbulence phenomena not covered by the classical Korteweg-de Vries equation. From the mathematical point of view, a nice feature of (1.1) is the possibility to solve it explicitly through the change of variable u = -∂ x ψ, which is known as the Hopf-Cole substitution: one has (1.2) ψ(t, x) = 2ν log (4πνt) -1/(a) -(xa) 2 2t da

whenever 1 C

 1 and 1 D are increasing functions. On the other hand, the function 1 ĈN k (x) is increasing and the function 1 DN n (x) is decreasing, with the same notation as above for ĈN k and DN

  n+k ] for the Skorokhod topology when N → ∞. Hence setting B N n , C N k , D N k,n for the events B n , C k , D k,n with (Z, A) replaced by (Z N , A N ), by weak convergence and right continuity it suffices to show

	(2.4)

It is well-known -see e.g. Chapter 3 in [3] -that the bivariate process {(Z N t , A N t ), t ∈ [0, 2 n+k ]} converges in law towards (Z t , A t ), t ∈ [0, 2
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