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1 Introduction
A single-hop network is a distributed system ofn nodes, also calledstations, sharing a common com-
munication channel which can transmit only one message per time unit. In the special case ofcollision
detection, the channel is ternary feedback; each station sending a message to the network can simultane-
ously listen to the channel and detect: acollisionwhen at least there are two broadcast attempts, asilence
when no station sends message, or asuccesswhen exactly one station sends its message. A single-hop
network withcollisiondetection is calledmultiple access channel.

Consider amultiple access channelof n stations which has to elect aleaderto control and organize the
network. Because of links or stations failures, theleadermay be temporarily out of service. Such failure
can be detected by asilence, in which case the system stops normal operations and initiates theelection
process: the system has to identify a newleaderin a reasonable execution time. We are interested in the
costof the algorithm, i.e. the number of operations needed to finda leader.

1.1 Leader election problem

We assume that the sizen of themultiple access channelis unknown. Moreover, each station is assumed
to have a unique identifying number ID. To elect aleaderamong themselves, stations have to use the same
algorithm. The casen ∈ {0, 1} is trivial, n is assumed to be greater than2. Let us recall the basic one:

— Deterministic Initialization: At the first time unit, eachstation send a message with its ID number
to the common channel. Asn ≥ 2, all stations detect acollision.

— Randomized Selection Process: Each stationS generates independently aBernoulli random vari-
ableBS with parameterp. Only which obtainsBS = 1 is allowed to send its message again during
the next time unit.

For a stationS, there are two cases:

1. If BS = 1, stationS will be calledActive; S sends again its message to the channel and can detect

— a success; only stationS is trying transmission, then all the other stations receiveits ID’s
message andS obtains the status ofleader. The protocol is finished.

— a collision; stationS is not the only candidate to beleader, and so has to generateBS again.
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2. Otherwise, stationS becomesNon Active; it remains candidate to beleader, listens to the channel
but does not participate to the transmission. So it can detect

— a success; only one stationS′ 6= S is trying transmission. The other stations (includingS)
detect its ID. SoS′ obtains the status ofleader. The protocol is finished.

— a collision; although stationS is not participating to the selection process, there are at least2
Activestations. So, stationS is eliminated.

— a silence; all stations areNon Active, so stationS has to generateBS again to send or not its
ID’s message to the channel.

That is, at the end of the protocol, a single station remainsActiveand becomes theleaderof the system.

Thissplittingprocess using aBernoulli random variable was also used in thetree protocolof Capetanakis
and Tsybakhov. For a survey, see Mathys and Flajolet (1985).

The example below illustrates the election process appliedto a group of4 stations{A, B, C, D}. In this
case, theleaderA is elected in4 times units.

time units 1 2 3 4
Active Stations A B C D A B C A
Non Active Stations D A B C B C
Eliminated Stations D D
Channel feedback Collision Collision Silence Success

A B C D

A B C D

A B C

A B C

O

Fig. 1: Election of theleaderA; H4 = 4. Incomplete tree structure.

Definition 1 (Algorithm Cost) It is the number of rounds needed to find aleader. Denote byHn the
algorithm cost when the size of the network isn.

Such a randomized elimination algorithm has various applications in distributed systems like cellular
phones and wireless communication networks. In mobile Ad-hoc networks, failures occur when mobile
nodes move out of transmission range. The unstable topologyof the network makesleader election
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problem more complex. For more details, see Malpani et al. (2000). Electing aleader in a computer
network is fundamental to supervise communication and synchronization. See Fill et al. (1996). It is also
studied in a context of radio networks. For an interesting survey on randomized communication in this
context, see Chlebus (2001). For more elaborateleader electionalgorithms on radio network with no
collisiondetection, see Lavault et al. (2003).

1.2 Splitting process and tree structure
Formally, the algorithm starts with a group ofn items which is divided in two subgroups. The probability
that an item is sent into the left subgroup isp. This subgroup will be divided by the same process. The
other items will be ignored. If the left subgroup is empty, the algorithm restarts from the previous level.

This distributed algorithm is a randomized elimination process with a natural binary tree structure (Fig.1).
At the root of the associated tree, is the initial group of items. In the first split, it generates two nodes: the
left one will be split by the same process, the right one is a terminal node, also calledleaf, which will not
be treated by the algorithm except when the left node is empty. Only in this case, the right node will be
split into two one.

Thus, this tree structure can be represented as an incomplete tree in which only one side is developed. We
define theheightof the associated tree as the length of the path from the root to theleaderwhich is the
longestroot-to-leafpath in the tree (see Fill et al. (1996) ). Then the algorithmcostis equivalently the
heightof the associated tree. Fig.1 illustrates this equality.

1.3 Previous works
It is known that the averagecostof the leader electionalgorithm is of logarithmic order inn with an
oscillating behavior. See Prodinger (1993) for the unbiased casep = 1/2, Janson and Szpankowski
(1997) for the biased onep 6= 1/2.

Consider thePoissonmodel of theleader electionproblem, i.e. theelectionprocess applied to a network
with random size following aPoissonprocessNx (see 1.6). Leth thePoisson transformof the sequence
of averagecostof the algorithm(E(Hn))n≥0.

Definition 2 (Poisson transform) For x > 0, the Poisson transform of the sequence(E(Hn)) is the func-
tion h defined by

h(x) = E(HNx
) =

+∞
∑

n=2

E(Hn)
xn

n!
e−x.

Then, functionh is solution of a functional equation, calledbasic functional equationassociated to the
algorithm

h(x) = h(px) + h(qx) e−px + f(x), wherep + q = 1 (1)

andf is a given function. Equation (1) is the starting point of allstudies made on this algorithm.

The unbiased case
When the splitting process follows aBernoulli random variable of parameter1/2, the leader election
algorithm is calledsymmetrical. Observe that, for the unbiased case, thefunctional equation(??) is
solved by direct iteration. In fact, thePoisson transformh verifies

h(x) = h(x/2)
(

1 + e−x/2
)

+ f(x),
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which can be rewritteng(x) = g(x/2) + f(x)/(1 − e−x) whereg(x) = h(x)/ (1 − e−x).

The first analysis of theleader electionalgorithm was proposed by Prodinger (1993). He investigated
different parameters of interest such as theheight, calleddepthin his paper, thesizeof the associated
tree,i.e. the number of nodes. . . . Using combinatorial techniques, heestablished exact expressions and
asymptotic formulas for these quantities for the symmetrical case. So, it is shown that for an initial group
of sizen, the algorithm stops on average after aboutlog2 n steps. Using complex analysis techniques like
Mellin and inverse Mellin transform, Fill et al. (1996) studied the asymptotic behavior of the first two
moments of the algorithmcost. Moreover, they obtained the exact expression and asymptotic behavior
of the distribution ofHn and they have shown that a limit distribution for the centered algorithmcost
Hn − ⌊log2 n⌋ does not exist. For a survey on Mellin transform, see Flajolet et al. (1995).

The biased case
If the splitting process is biased,i.e. the probability that an item is sent into the left subgroup isp 6=
1/2, the algorithm is calledasymmetrical. Studies on biased case become more rare. An asymmetric
leader electionalgorithm was investigated by Janson and Szpankowski (1997) using complex analysis
techniques. The asymptotic behavior of the first two momentsof the algorithmcostHn is given in term
of the sequence of their exact values(E(Hj))j∈N

computed numerically from two recurrence equations.

This implicit dependence is due to the asymmetry of the functional equation (??) obtained by Poissoniza-
tion. The coefficiente−p x makes more complex the establishment of an iterative schemesuch as in the
context of a protocol for a multi-access broadcast channel (see Fayolle et al. (1986)). Applying the Mellin
transform to equation (??) without solving it yields this dependence.

1.4 Related leader election algorithms

Leader election algorithm in network of fixed size
Consider a simple algorithm forleader electionalgorithm in the context of communication network;
at each level, the probabilityp for a station to send its message depends on the numbern of stations
remaining in the elimination process;p = 1/n. Expected run time isO(1) but it is clear that is necessary
to know the number of active stations in advance, or at least to estimate it. See Willard (1984) for an
estimation procedure in order oflog log n + O(1/n). This variant of the basicleader electionalgorithm
does not exhibit an oscillating behavior any more. In fact, the average algorithm cost is asymptotically
equivalent to a some constantL. For more details, see Lavault and Louchard (2005).

LZ’77 data compression Scheme
Consider a variant of theleader electionalgorithm by introducing a moderator who determines the elim-
ination process; each of participants and the moderator throws independently a coin and only those who
obtain the same result as the moderator continue the process. See Ward and Szpankowski (2004) for the
biased case, Prodinger (1993) for the unbiased one. LetMn the number of participants remaining in the
last nontrivial round from an initial group ofn items. It is asymptotically equivalent to the multiplicityof
phrases in the LZ’77 data compression scheme.

1.5 Overview
In a previous paper onsplitting algorithms, Mohamed and Robert (2005) proposed a direct approach
based on a probabilistic reformulation of a basic functional equation associated to such algorithms. The
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purpose of this work is to apply the techniques used by Mohamed and Robert (2005) to analyze an
additive quantity in the context of an incomplete tree structure. In Section 2, a similar series formula
for the averagecost E(Hn) is given by Proposition 2. The asymptotic behavior of the algorithm is
studied in Section 3 and reformulated on the behavior of somestopping timeτ . Theorem 1 presents a
new representation of the asymptotic oscillations of the algorithm. In Section 4, the distribution of the
algorithmcostis investigated. Using the binary decomposition of the interval [0, 1], the exact expression
of the distribution ofHn is established. Proposition 3 is a slight variation of the asymptotic formula given
by Janson and Szpankowski (1997) for the distribution of thealgorithmcostHn in the biased case.

1.6 Notations
Throughout this paper,(tn)n≥1 is a non decreasing random variables sequence such that

• t1 follows an exponential distribution with parameter1,

• (tn+1 − tn) is a sequence ofi.i.d. random variables exponentially distributed with parameter 1.

Forx ≥ 0, letNx be the number oftn in the interval[0, x]. It is a r. v. withPoissondistribution .

2 Average Cost of The Algorithm
2.1 Algorithm cost
The algorithmcostis the number of steps needed to find aleader, or equivalently theheightof the associ-
ated tree. Denote byHn this quantity when the size of the initial group of items isn, then, forn ≥ 2, this
random variable verifies a recurrence relation;

Hn
dist.
= 1 + H1,Sn

1{Sn 6=0} + H2,n 1{Sn=0},

with the boundary conditionsH0 = H1 = 0, where(Bi(p))1≤i≤n aren independentBernoullivariables
of parameterp,

Sn =

n
∑

i=1

Bi(p),

for (m, n) ∈ N
2, H1,m andH2,n are independent and, fori = 1, 2, the variableHi,m has the same

distribution asHm. So, forn ≥ 0, the recurrence equation for the sequence(Hn) can be rewritten

Hn
dist.
= 1 + HSn

+ Hn 1(Sn=0) − 1{n≤1}. (2)

2.2 Poissonization
Consider thePoissonmodel, i.e. the size of the initial group of items is random following aPoisson
processNx of intensity1 on the interval[0, x]. The following proposition gives a useful representation of
thePoisson transformof the averagecostof the algorithm.

Proposition 1 For x > 0,

E(HNx
) = E

(

+∞
∑

i=0

1

πi
1{t1>xπi ; t2≤x(αi+πi)}

)

,
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where(Aj , Bj) is a sequence of i.i.d. realizations of a couple of random variable(A, B) with distribution

P(A = p, B = 0) = p, P(A = q, B = p) = q,

π0 = 1, α0 = 0 and, fori ≥ 1,

πi =

i−1
∏

j=0

Aj , αi =

i−1
∑

j=0

πj Bj .

Proof: Let h thePoisson transformof the averagecost(see Definition 2). Then, the recurrence equation
(2) for the sequence(Hn)n≥0 becomes

h(x) = h(px) + h(qx) e−px + 1 − (1 + x)e−x.

Following the approach of Mohamed and Robert (2005), directiteration becomes possible using a prob-
abilistic formulation of the last equation as below

h(x) = E

(

h(Ax)

A
e−Bx

)

+ f(x), (3)

wheref(x) = 1 − (1 + x)e−x and(A, B) is couple of random variables with distribution

P(A = p, B = 0) = p, P(A = q, B = p) = q.

Let the sequence ofi.i.d realizations(Ai, Bi)i∈N of the couple of random variables(A, B). We introduce
some notations; forx ≥ 0, X0 = x, Y0 = 0, and forn ∈ N,

Xn+1 = An Xn, Yn+1 = Bn Xn.

By iterations of equation (3), one gets at the(n + 1)th stage

h(x) = E

(

h(Xn+1)
∏n

i=0 Ai
e−

∑n+1

i=0
Yi

)

+ E

(

n
∑

i=0

e−
∑ i

j=0
Yj

f(Xi)
∏i−1

j=0 Aj

)

.

Sinceh′(0) = 0 and, almost surely,limn→+∞ Xn+1 = 0, then, one obtains

h(x) = E

(

+∞
∑

i=0

1

πi

(

1 − (1 + πi)e
−πix

)

e−αix

)

,

whereπ0 = 1, α0 = 0 and, fori ≥ 1,

πi =

i−1
∏

j=0

Aj , αi =

i−1
∑

j=0

πj Bj .

As the sequences(αi) and (αi + πi) are, almost surely, in the interval[0, 1], the functionh can be
represented as follows

h(x) = E

(

+∞
∑

i=0

1

πi
1{t1>αix ; t2<(αi+πi)x}

)

. (4)

The proposition has been proved. 2

¿From now on, throughout the paper, we conserve the notations introduced in this proof.
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2.3 de-Poissonization
The next step is the probabilistic de-Poissonization of(4) following the method of Robert (2005) to obtain
the expression of the averagecostE(Hn).

Proposition 2 (Probabilistic representation of the average cost) For n ≥ 2,

E(Hn) = E





τ(U1,n,U2,n)−1
∑

i=0

1

πi



 ,

where, for0 < x < y < 1, τ(x, y) = min (ν(x); µ(y)) with

ν(x) = inf {i ≥ 1 : αi > x} ,

µ(y) = inf {i ≥ 1 : αi + πi < y} ,

andUi,n is theith smallest variables ofn independent, uniformly distributed random variables on[0, 1]
independent of the sequence(Aj , Bj)j≥0.

Proof: For x > 0, by decomposing with respect to the number of points of the Poisson process(Nx) in
the interval[0, x], one gets, for0 < a < b < 1,

P(t1 > ax , t2 < bx) =

+∞
∑

n=2

P(t1 > ax , t2 < bx|Nx = n)P(Nx = n).

Forn ≥ 2, conditionally on the event{Nx = n}, the couple of variables(t1, t2) has the same distribution
as the couple(xU1,n, xU2,n) of the two smallest random variables ofn uniformly distributed random
variables on[0, x]. So, we get the identity

P(t1 > ax, t2 < bx) = E

(

+∞
∑

n=2

1{U1,n>a, U2,n<b}
xn

n!
e−x

)

.

Due to the independence of the sequence(Ai, Bi) and(t1, t2), and using the Fubini’s Theorem, one gets

E(HNx
) =

+∞
∑

n=2

(

E

(

+∞
∑

i=0

1

πi
1{U1,n>πi , U2,n<(αi+πi)}

))

xn

n!
e−x.

The identification of the representation of thePoisson transform(see Definition 2)E(HNx
) and the last

identity gives the following formula forn ≥ 2

E(Hn) = E

(

+∞
∑

i=0

1

πi
1{U1,n>πi , U2,n<(αi+πi)}

)

.

Since, almost surely, the sequence(αi)i≥0 is increasing to a random variableα ∈ [0, 1] and the sequence
(αi + πi)i≥0 is decreasing to the same random variable, the following equality holds

{i ≥ 0 : U1,n > πi , U2,n < αi + πi} = [0, τ(U1,n, U2,n) − 1],

where the hitting timeτ is defined as above. 2
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3 Asymptotic Analysis of The Average Cost
3.1 Two random sequences and one hitting time
It is clear that the key of the analysis of the asymptotic behavior of the algorithm is the hitting time
τ written on the two random sequences(αi)i≥0 and (αi + πi)i≥0. Let (γi) the sequence of random
variables defined by

(γi)i∈N
= {j ≥ 0 : Bj = p}.

These are the moments of jump of the sequence(αi)i≥0 and conversely the instants of stopping for the
other one,(πi + αi)i≥0. It is clear that these moments can be recursively defined as below: γ0 = G0 and
γn+1 = 1 + γn + Gn+1, where(Gn)n≥0 is a sequence ofi.i.d r. v. with a geometric distributionGeo(q)

P(Geo(q) = k) = q pk.

So, it is easy to see that

ν(x) ∈ {1 + γi : i ∈ N}, µ(y) 6∈ {1 + γi : i ∈ N}.

Using a discussion on the position of the hitting timeτ in comparison with the sequenceγ, we establish
the following lemma which will be proved in the Appendix 5.

Lemma 1

E





τ(x,y)−1
∑

i=0

1

πi



 = ⌈logp(y)⌉ +
(

⌈logp(ρ(logp(y))y)⌉ − ⌊logp(y)⌋
)

1Ω(x,y)

+ E





τ(x,y)−1
∑

i=1+⌈logp(ρ(logp(y))y)⌉

1

πi
1{γ0=⌊logp(y)⌋;γ1=⌈logp(ρ(logp(y))y)⌉}



1Ω(x,y).

whereΩ(x, y) = {(x, y) ∈ (]0, 1[)2 : ⌈logp(y)⌉ = ⌈logp(x)⌉} andρ is a periodic function with magni-
tude1 defined forz > 0 by

ρ(z) =
1 − p1−{z}

1 − p
, {z} = z − ⌊z⌋ is the fractional part ofz.

3.2 Asymptotic fluctuations phenomena
Theorem 1 (Asymptotic behavior of the average cost)The average costE(Hn) admits the following
asymptotic formula

E(Hn) = − logp(n) + E
(

⌈logp(t2)
⌉

) + F (logp(n)) + R(n),

whereF is a periodic function defined for allz > 0 by

F (z) =

∫ ∞

0

y(1 − p1−{logp y−z})

(

⌈logp(
1 − p1−{logp y−z}

1 − p
) + logp y − z⌉ − ⌊logp y − z⌋

)

e−ydy,

(5)
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Ωn = Ω(U1,n, U2,n) andR(n) is a rest discussed in Section3.3, defined by

R(n) = E



(

τ(U1,n,U2,n)−1
∑

i=1+⌈logp(ρ(logp(U2,n))U2,n)⌉

1

πi
)1{γ0=⌊logp(U2,n)⌋;γ1=⌈logp(ρ(U2,n)U2,n)⌉} 1Ωn



 . (6)

Proof: Using Lemma1, one gets

E(Hn) = E
(

⌈logp(U2,n)⌉
)

+ E
(

(⌈logp(ρ(logp(U2,n))U2,n)⌉ − ⌊logp(U2,n)⌋)1Ωn

)

+ E



(

τ(U1,n,U2,n)−1
∑

i=1+⌈logp(ρ(logp(y))y)⌉

1

πi
)1{γ0=⌊logp(U2,n)⌋;γ1=⌈logp(ρ(U2,n)U2,n)⌉} 1Ωn



 .

The only not neglect terms are

T1(n) = E
(

⌈logp(U2,n)⌉
)

and T2(n) = E
(

(⌈logp(ρ(logp(U2,n))U2,n)⌉ − ⌊logp(U2,n)⌋)1Ωn

)

.

As n goes to infinity,nU2,n converges in distribution to a random variablet2 which is a sum of twoi.i.d.
exponential random variables with parameter1.Then, the first term satisfies

T1(n) = E(⌈logp(t2) − logp(n)⌉) + O(
1

n
).

LetD, function of− logp(n), the difference

D(− logp(n)) = E(⌈logp(t2) − logp(n)⌉) −
(

E(⌈logp(t2)⌉) − logp(n)
)

It is easy to check thatD(z) = D({z})−⌊z⌋, thenlimn→+∞ n D(− logp n) = limz→+∞ p−z D(z) = 0,
and one gets

T1(n) = − logp(n) + E(⌈logp(t2)⌉) + O(
1

n
).

The last termT2(n) is asymptotically equivalent toF (logp(n)) whereF is defined by 5. In fact

|F (logp(n))−T2(n)| ≤

∫ n

0

∣

∣

∣(1 −
y

n
)n−2 − e−y

∣

∣

∣ dy+

∫ ∞

n

logp(ρ(logp(y/n))) y e−ydy+
1

n
F (logp(n))+2e−n

Observe that
∫ ∞

n

logp(ρ(logp(y/n))) y e−ydy = n2

∫ ∞

1

logp(ρ(logp y))y e−nydy.

By decomposition on the sequence of intervals
(

[pk+1, pk]
)

, the last integral is dominated by a geometric
sum and the following inequality holds forn > 2

∫ ∞

1

logp(ρ(logp(y))) y e−nydy ≤
pn−2

1 − p
.

Then,

F (logp(n)) − E
(

(⌈logp(ρ(logp(U2,n))U2,n)⌉ − ⌊logp(U2,n)⌋)1Ωn

)

= O(
1

n
).

This ends the proof. 2
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3.3 Estimation of the rest

The final step is to estimate the restR(n) defined by(6). Forx, y ∈ [0, 1], K > k > 0

E





τ(x,y)−1
∑

i=K

1

πi
1{γ0=k;γ1=K}



 ≤ (1 − δ)K

√

E

(

(
1

δ2
)τ(x,y)

)

,

whereδ = min(p, q). The following result is admitted.

Conjecture 1 The hitting timeτ satisfies

sup
x∈[0,1]

E

(

(
1

δ2
)τ(x,x)

)

< ∞.

Remark 1 Conjecture 1 is an intuitive restriction on the exponentialmoment of the hitting timeτ . It is
supported by some simulations (Fig.2,3) ofx :→ E

(

( 1
δ2 )τ(x,x)

)

using Monte-Carlo techniques. Observe
that, for the unbiased case (Fig.2), the maximum corresponds to numerical values ofx around0.5 which
is, on average, the limitα of the two random sequences(αi) and(αi + πi). This maximum is of order of
1014, which is reasonable since it implies that

E(τ) ≤ 14 log4(10) ≈ 23.25

For the biased one (Fig.3), sinceδ = 0.2, a maximum of the order of1080 is acceptable;E(τ) ≤ 57.22.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
x 10

14

Fig. 2: Unbiased case: simulations ofx :→ E

(

4τ(x,x)
)

.
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(a) p = 0.2, δ = p
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(b) p = 0.8, δ = 1 − p

Fig. 3: Biased case: simulations ofx :→ E

(

1
δ2

τ(x,x)
)

.

Since, for0 ≤ x < y ≤ 1, τ(x, y) ≤ max(τ(x, x), τ(y, y)), then, using Conjecture 1, we obtain

R(n) ≤ C E

(

(1 − δ)⌈logp(ρ(U2,n)U2,n)⌉
)

,

whereC = supx∈[0,1]

√

E
(

(1/δ2)τ(x,x)
)

. Using the same method as for the functionF , one gets

E

(

(1 − δ)⌈logp(ρ(U2,n)U2,n)⌉
)

≤ E

(

(1 − δ)⌈logp(U2,n)⌉
)

∼

(

1

n

)logp(1−δ)

.

This gives

R(n) = O(
1

nlogp(1−δ)
).

Conclusion

E(Hn) = − logp(n) + E
(

⌊logp(t2)⌋
)

+ F (logp(n)) + O(
1

nlogp(1−δ)
).

4 Algorithm Cost Distribution
It is more appropriate to use these notationsp0 = p, p1 = q, to define recursively the sequence of intervals
(In

k ) associated to the binary decomposition of the interval[0, 1] in the base(p0, p1)

{

I0
0 = [0, 1]

In+1
k =

(

In+1
k−1

)

+
+ pk−2⌊k/2⌋ In

⌊k/2⌋,
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where(I)+ denotes the right extremity of the intervalI. Let |I| the length of the intervalI, then

(In
k )+ =

k
∑

i=0

|In
i |.

Let n ∈ N and0 ≤ k ≤ 2n+1 − 1. Consider the binary decomposition ofk at the stagen

k = a0 + a12 + . . . + an2n, for 0 ≤ i ≤ n, ai ∈ {0, 1}.

Then, the length of the intervalIn+1
k is

|In+1
k | =

n
∏

i=0

pai
.

Fork ∈ N, x > 0, one gets the following identity

{HNx
> k} = {∃ 0 ≤ i < 2k : N (xIk

0 ) = . . . = N (xIk
i−1) = 0 , N (xIk

i ) ≥ 2}.

So

P(HNx
≤ k) = e−x + x

2k−1
∑

i=0

|Ik
i |e

−(Ik
i )

+ . (7)

Let us define the sequence of probability measures(µk) by

µk(t) =
2k−1
∑

i=0

|Ik
i | δ(Ik

i )
+

(t).

Then, equation(7) can be rewritten as

P(HNx
≤ k) = e−x + x

∫ 1

0

e−xt dµk(t). (8)

Using a probabilistic de-Poissonization of equation(8) as done for Proposition 2, we obtain the exact
distribution ofHn.

Proposition 3 For n ≥ 2,

P(Hn ≤ k) = n

∫ 1

0

(1 − t)n−1 dµk(t),

where the probability measureµk is described as above.

Using this identity
1 − n(1 − t)n−1 = 1 − nt (1 − t)n−1 − n(1 − t)n,

the following result is immediate.

Corollary 1 For k ∈ N,

P(Hn > k) ∼

∫ 1

0

P(U2,n < t) dµk(t) , asn goes to infinity.

whereU2,n is the second smallest random variable ofn uniformly distributed random variables on[0.1]
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5 Appendix
We present the proof of Lemma1. Recall the sequence of random variables(γi) defined by

(γi)i∈N
= {j ≥ 0 : Bj = p}.

Proof of Lemma 1: First, note that

(ν(x) ≥ 2 + γ0) ⇔ (γ0 ≥ ⌊logp(x)⌋)

(µ(y) ≤ γ0) ⇔ (γ0 ≥ ⌈logp(y)⌉).

Denote byΩ0 the following set

Ω0 = Ω(x, y) := {(x, y) ∈ (]0, 1[)2 : ⌈logp(y)⌉ = ⌈logp(x)⌉}.

By decomposing the functionΦ with respect toΩ0, one gets this formula

E





τ(x,y)−1
∑

i=0

1

πi



 = E

(

γ0
∑

i=0

1

pi
1{γ0<⌊logp(y)⌋}

)

+ P
(

γ0 = ⌊logp(y)⌋
)

⌊logp(y)⌋
∑

i=0

1

pi
+ E





µ(y)−1
∑

i=0

1

pi
1{γ0≥⌈logp(y)⌉}





+ E



(

τ(x,y)−1
∑

i=⌈logp(y)⌉

1

πi
)1{γ0=⌊logp(y)⌋}



 1Ω0
.

Since
µ(y)|(γ0 ≥ ⌈logp(y)⌉) = inf{i ≥ 1, pi < y} = ⌈logp(y)⌉,

then, by simple calculations, one gets

E





τ(x,y)−1
∑

i=0

1

πi



 = ⌈logp(y)⌉ + E



(

τ(x,y)−1
∑

i=⌈logp(y)⌉

1

πi
)1{γ0=⌊logp(y)⌋}



1Ω0
.

A second discussion onγ1 implies that, on the set(γ0 = ⌊logp(y)⌋, Ω0),

(ν(x) ≥ 2 + γ1) ⇔ (γ1 ≥ ⌈logp(ρ(logp(x))x)⌉)

(µ(y) ≤ γ1) ⇔ (γ1 ≥ 1 + ⌈logp(ρ(logp(y))y)⌉),

whereρ is a periodic function with magnitude1 defined byρ(z) = (1 − p1−{z})/(1− p). Moreover,ρ is
decreasing on[0, 1[, so on the setΩ0,

ρ(logp(x))x < ρ(logp(y))y.

Let Ω1 = Ω(ρ(logp(x))x, ρ(logp(y))y). Then

E





τ(x,y)−1
∑

i=0

1

πi



 = ⌈logp(y)⌉ +
(

⌈logp(ρ(logp(y))y)⌉ − ⌊logp(y)⌋
)

1Ω(x,y)

+ E





τ(x,y)−1
∑

i=1+⌈logp(ρ(logp(y))y)⌉

1

πi
1{γ0=⌊logp(y)⌋;γ1=⌈logp(ρ(logp(y))y)⌉}



1Ω(x,y).
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This ends the proof. 2
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