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1 Introduction

A single-hop network is a distributed systemrohodes, also calledtations sharing a common com-
munication channel which can transmit only one messageiperunit. In the special case obllision
detection, the channel is ternary feedback; each statiwirsg a message to the network can simultane-
ously listen to the channel and detectdlisionwhen at least there are two broadcast attemieace
when no station sends message, guacessvhen exactly one station sends its message. A single-hop
network withcollision detection is callednultiple access channel

Consider anultiple access channef n stations which has to electleaderto control and organize the
network. Because of links or stations failures, s@dermay be temporarily out of service. Such failure
can be detected byslence in which case the system stops normal operations andtestieelection
process: the system has to identify a eaderin a reasonable execution time. We are interested in the
costof the algorithm, i.e. the number of operations needed todiledder

1.1 Leader election problem

We assume that the sizeof themultiple access channi unknown. Moreover, each station is assumed
to have a unique identifying number ID. To eledeaderamong themselves, stations have to use the same
algorithm. The case € {0, 1} is trivial, n is assumed to be greater tharLet us recall the basic one:

— Deterministic Initialization: At the first time unit, eactation send a message with its ID number
to the common channel. As > 2, all stations detect eollision.

— Randomized Selection Process: Each statiggenerates independentiyBzrnoullirandom vari-
able Bg with parametep. Only which obtaingd3s = 1 is allowed to send its message again during
the next time unit.

For a stationsS, there are two cases:
1. If Bg = 1, stationS will be calledActive S sends again its message to the channel and can detect

— asuccessonly stationS is trying transmission, then all the other stations recéiwvéD’s
message anfl obtains the status ¢éader The protocol is finished.

— acollision; stationS' is not the only candidate to beader, and so has to general; again.
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2. Otherwise, statiol becomedNon Active it remains candidate to Header, listens to the channel
but does not participate to the transmission. So it can tetec

— asuccessonly one stationS’ # S is trying transmission. The other stations (includisig
detect its ID. Sa5’ obtains the status ¢éader The protocol is finished.

— acollision; although statior' is not participating to the selection process, there areasi2
Activestations. So, statiofi is eliminated.

— asilence all stations arédNon Active so stationS has to generat8s again to send or not its
ID’s message to the channel.

That is, at the end of the protocol, a single station remAtisreand becomes thieaderof the system.

This splitting process using Bernoullirandom variable was also used in thee protocolof Capetanakis
and Tsybakhov. For a survey, see Mathys and Flajolet (1985).

The example below illustrates the election process appdiedgroup oft stations{ A, B, C, D}. In this
case, thdeaderA is elected it times units.

time units 1 2 3 4
Active Stations ABCD | ABC A

Non Active Stations D ABC | BC

El i mi nated Stations D D
Channel feedback Collision | Collision | Silence| Success

ABCD

Fig. 1: Election of theleaderA; Hs = 4. Incomplete tree structure.

Definition 1 (Algorithm Cost) It is the number of rounds needed to findeader Denote byH,, the
algorithm cost when the size of the network s

Such a randomized elimination algorithm has various appbios in distributed systems like cellular
phones and wireless communication networks. In mobile Ad+etworks, failures occur when mobile
nodes move out of transmission range. The unstable topabdlye network makeseader election
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problem more complex. For more details, see Malpani et 80@2 Electing deaderin a computer
network is fundamental to supervise communication andlaymization. See Fill et al. (1996). Itis also
studied in a context of radio networks. For an interestingeyion randomized communication in this
context, see Chlebus (2001). For more elaboleg€er electioralgorithms on radio network with no
collision detection, see Lavault et al. (2003).

1.2 Splitting process and tree structure

Formally, the algorithm starts with a groupmeftems which is divided in two subgroups. The probability
that an item is sent into the left subgroupisThis subgroup will be divided by the same process. The
other items will be ignored. If the left subgroup is empty #igorithm restarts from the previous level.

This distributed algorithm is a randomized eliminationgess with a natural binary tree structure (Fig.1).
At the root of the associated tree, is the initial group afiige In the first split, it generates two nodes: the
left one will be split by the same process, the right one ism@iteal node, also callelgaf, which will not

be treated by the algorithm except when the left node is en@ityy in this case, the right node will be
split into two one.

Thus, this tree structure can be represented as an incantigetin which only one side is developed. We
define theheightof the associated tree as the length of the path from the oaietieaderwhich is the
longestroot-to-leafpath in the tree (see Fill et al. (1996) ). Then the algorittostis equivalently the
heightof the associated tree. Fig.1 illustrates this equality.

1.3 Previous works

It is known that the averageostof the leader electioralgorithm is of logarithmic order im with an
oscillating behavior. See Prodinger (1993) for the unllasgsep = 1/2, Janson and Szpankowski
(1997) for the biased one+# 1/2.

Consider thdPoissormodel of theleader electiorproblem, i.e. theslectionprocess applied to a network
with random size following &oissonprocessV,, (see 1.6). Leh the Poisson transfornof the sequence
of averagecostof the algorithm(E(H.,)),, -

Definition 2 (Poisson transform) For = > 0, the Poisson transform of the sequeli€H,,)) is the func-
tion i defined by

+o0 n
ha) =E(Hxy,) =Y E(Hn)% e2.

Then, functions is solution of a functional equation, call&gsic functional equatioassociated to the
algorithm

h(z) = h(pz) + h(qz) e + f(x), wherep+q =1 @)
and f is a given function. Equation (1) is the starting point ofstiidies made on this algorithm.

The unbiased case

When the splitting process follows Bernoulli random variable of parametéy2, the leader election
algorithm is calledsymmetrical Observe that, for the unbiased case, filmectional equation??) is
solved by direct iteration. In fact, tHeépisson transfornk verifies

h(z) = h(z/2) (1 n e*mﬂ) + f(@),
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which can be rewritten(z) = g(x/2) + f(z)/(1 — e~*) whereg(z) = h(z)/ (1 —e™%).

The first analysis of théeader electioralgorithm was proposed by Prodinger (1993). He investiyjate
different parameters of interest such as tigéght calleddepthin his paper, thesizeof the associated
tree,i.e. the number of nodes. ... Using combinatorial techniquegst@blished exact expressions and
asymptotic formulas for these quantities for the symmatigase. So, it is shown that for an initial group
of sizen, the algorithm stops on average after adogt n steps. Using complex analysis techniques like
Mellin and inverse Mellin transform, Fill et al. (1996) stad the asymptotic behavior of the first two
moments of the algorithrnost Moreover, they obtained the exact expression and asymjfiehavior

of the distribution ofH,, and they have shown that a limit distribution for the cerdeafgorithmcost
H, — |log, n| does not exist. For a survey on Mellin transform, see Flagtal. (1995).

The biased case

If the splitting process is biasede. the probability that an item is sent into the left subgroup ig

1/2, the algorithm is calledsymmetrical Studies on biased case become more rare. An asymmetric
leader electioralgorithm was investigated by Janson and Szpankowski (19€iig complex analysis
techniques. The asymptotic behavior of the first two momehtse algorithmcost H,, is given in term

of the sequence of their exact vaIL(@}?{Hj))jGN computed numerically from two recurrence equations.

This implicit dependence is due to the asymmetry of the fonel equation??) obtained by Poissoniza-
tion. The coefficiene™* makes more complex the establishment of an iterative scisecteas in the
context of a protocol for a multi-access broadcast charseel Fayolle et al. (1986)). Applying the Mellin
transform to equatior?(?) without solving it yields this dependence.

1.4 Related leader election algorithms

Leader election algorithm in network of fixed size

Consider a simple algorithm fdeader electionalgorithm in the context of communication network;
at each level, the probability for a station to send its message depends on the numbérstations
remaining in the elimination procegs;= 1/n. Expected run time i€®(1) but it is clear that is necessary
to know the number of active stations in advance, or at leasstimate it. See Willard (1984) for an
estimation procedure in order bfglogn + O(1/n). This variant of the basikeader electioralgorithm
does not exhibit an oscillating behavior any more. In faog, average algorithm cost is asymptotically
equivalent to a some constaht For more details, see Lavault and Louchard (2005).

LZ'77 data compression Scheme

Consider a variant of thieader electioralgorithm by introducing a moderator who determines the-€li
ination process; each of participants and the moderatowthindependently a coin and only those who
obtain the same result as the moderator continue the pro8essWard and Szpankowski (2004) for the
biased case, Prodinger (1993) for the unbiased oneM.ethe number of participants remaining in the
last nontrivial round from an initial group of items. It is asymptotically equivalent to the multiplicity
phrases in the LZ'7 data compression scheme.

1.5 Overview

In a previous paper osplitting algorithms, Mohamed and Robert (2005) proposed a direatoaph
based on a probabilistic reformulation of a basic functi@tmation associated to such algorithms. The
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purpose of this work is to apply the techniques used by Moltbamel Robert (2005) to analyze an
additive quantity in the context of an incomplete tree dtritee In Section 2, a similar series formula
for the averageost F(H,,) is given by Proposition 2. The asymptotic behavior of theostgm is
studied in Section 3 and reformulated on the behavior of sstimgping timer. Theorem 1 presents a
new representation of the asymptotic oscillations of tlgw@dthm. In Section 4, the distribution of the
algorithmcostis investigated. Using the binary decomposition of therireE0, 1], the exact expression
of the distribution ofH,, is established. Proposition 3 is a slight variation of thengstotic formula given
by Janson and Szpankowski (1997) for the distribution oflgerithmcostH,, in the biased case.

1.6 Notations
Throughout this papeft,,),>1 is a non decreasing random variables sequence such that
¢ t; follows an exponential distribution with parameter
e (t,4+1 —t,) is a sequence afi.d. random variables exponentially distributed with paraméte

Forz > 0, let NV, be the number of,, in the intervall0, z]. Itis ar. v. withPoissondistribution .

2 Average Cost of The Algorithm
2.1 Algorithm cost

The algorithnmcostis the number of steps needed to findader, or equivalently théaeightof the associ-
ated tree. Denote bif,, this quantity when the size of the initial group of itemsiighen, forn > 2, this
random variable verifies a recurrence relation;
dist.
Hy, ="1+ His, 15,20y + Hon 1(s,=0},

with the boundary conditiond, = H;, = 0, where(B;(p))1<i<n aren independenBernoullivariables
of parametep,

Sp = Z Bi(p)7
=1

for (m,n) € N?, Hy,, and H>,, are independent and, for= 1,2, the variableH, ,, has the same
distribution asH,,,. So, forn > 0, the recurrence equation for the sequefiég) can be rewritten

dist.
H, st 14+ Hgn + H, l(Sn:O) — 1{n§1}- (2)

2.2 Poissonization

Consider thePoissonmodel,i.e. the size of the initial group of items is random followingPaisson
processV, of intensityl on the interval0, z]. The following proposition gives a useful representatibn o
thePoisson transfornof the averageostof the algorithm.

Proposition 1 For z > 0,

+oo
1
E(HNI) =E <Z 7T_ 1{t1>x7ri;t2§w(a7;+7r7;)}> )

i=0 "
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where(4;, B;) is a sequence of i.i.d. realizations of a couple of randoniaie (A, B) with distribution

P(A=p,B=0)=p, P(A=¢q,B =p) =g,
m = 1, ap = 0 and, fori > 1,

i—1 i—1
7T1:]:[Aj, oy = E 7TjB]
7=0 7=0

Proof: Let h the Poisson transfornof the averageost(see Definition 2). Then, the recurrence equation
(2) for the sequencéH,,),,>o becomes

h(z) = h(px) + h(gz) e ™ P +1 - (1 + x)e™".

Following the approach of Mohamed and Robert (2005), ditecation becomes possible using a prob-
abilistic formulation of the last equation as below

hz) = E (h(ix) eBI) + (), @)

wheref(z) =1 — (14 x)e~* and(A4, B) is couple of random variables with distribution

P(A=p,B=0)=p, P(A=¢q,B=p)=q.

Let the sequence af.d realizationg 4, B;);en Of the couple of random variabl¢d, B). We introduce
some notations; far > 0, Xg = z, Yy = 0, and forn € N,

XnJrl = An Xn; YnJrl = Bn Xn

By iterations of equation (3), one gets at te+ 1)*" stage
WXna1) 5o y) f(Xh)
h(z) =E = -Xis +E e Xi=o Y
( ) ( HiZO A Z H’L Tri—1 4 A
Sinceh/(0) = 0 and, almost surelyim,,_, ;- X, +1 = 0, then, one obtains

o0 1
h(z) =E (Z (1= m)e) ew> ,

1=0
wherery = 1, ag = 0 and, fori > 1,

i—1 i—1
Wz:HAj; a; = E 7TjB
3=0 3=0

As the sequencegy;) and («; + m;) are, almost surely, in the interv@), 1], the functioni can be
represented as follows

“+o0o
1
h(l’) =E (Z 7T_ 1{t1>06i1 ; t2<(06i+7fi)1}> : (4)
i=0 " *
The proposition has been proved. O

¢ From now on, throughout the paper, we conserve the nogdtimeduced in this proof.
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2.3 de-Poissonization

The next step is the probabilistic de-Poissonizatiofipfollowing the method of Robert (2005) to obtain
the expression of the averagestE(H,,).

Proposition 2 (Probabilistic representation of the averag cost) Forn > 2,

7(U1,n,Uz2,n)—1

E(H,) = E > 1.

=0 T
where, for0 < z < y < 1, 7(z,y) = min (v(z); u(y)) with
v(z) = inf{i>1:q; >z},
ply) = inf{i>1:0+m <y},

andU, , is theith smallest variables af independent, uniformly distributed random variables[@n]
independent of the sequence;, B;) -
Proof: Forz > 0, by decomposing with respect to the number of points of thed®o proces§N, ) in
the intervall0, z], one gets, fob < a < b < 1,

“+oo
P(t; > ax, ta < bx) = Z]P’(tl > az, ty < bz|N; = n)P(N, =n).

n=2

Forn > 2, conditionally on the ever{t\, = n}, the couple of variable@, t2) has the same distribution
as the coupldzUs ,,, zUs ;) of the two smallest random variables ofuniformly distributed random
variables or0, z]. So, we get the identity

00 n
€T —x
P(ﬁl > ax, to < bl’) =K <Z 1{U1,n>a-,U2,n<b}He ) .

n=2
Due to the independence of the sequepite B;) and(ty, t2), and using the Fubini's Theorem, one gets

n

+oo +oo
1 A
E(Hy,) = (E <Z — 1{Ul,n>m,U2,n<<ai+m>}>) e

n=2 i=0 "

The identification of the representation of theisson transfornfsee Definition 2)E(H,) and the last
identity gives the following formula fon > 2

“+o0

1

E(H'n,) =E ( E 7'('_ 1{U1,n>ﬂ'i ,Uz,n<(04i+7ri)}> :
i=0 " *

Since, almost surely, the sequeriag),>o is increasing to a random variahlec [0, 1] and the sequence
(o + m;)i>0 is decreasing to the same random variable, the followinguégjiholds

{i >0 : U17n > Ty, Ug,n < o5 +7Ti} = [O,T(Ulm,UQ,n) — 1],

where the hitting time- is defined as above. O



A probabilistic analysis of a leader election algorithm 9

3 Asymptotic Analysis of The Average Cost

3.1 Two random sequences and one hitting time

It is clear that the key of the analysis of the asymptotic bareof the algorithm is the hitting time
T written on the two random sequendes);>o and (a; + m;)i>0. Let (v;) the sequence of random
variables defined by

(Vi)ien =17 =0 : B; =p}.
These are the moments of jump of the sequeingg;>o and conversely the instants of stopping for the
other one(m; + a;);>0. Itis clear that these moments can be recursively definedlas/by, = G, and
Y1 = 1+ Y0 + Gni1, where(Gn)nZO is a sequence afi.d r. v. with a geometric distributioireo(q)
P(Geo(q) = k) = g p*.
So, it is easy to see that

viz) e {1+ :1eN}, ply) € {1+~ : i e N}

Using a discussion on the position of the hitting tima comparison with the sequengewe establish
the following lemma which will be proved in the Appendix 5.

Lemmal

()1
E( > i) = [log,(y)] + ([log, (p(log, (¥))y)] — [log,(1)]) 1a.y)

T
i=0 v

T(z,y)—1
1
+ E ( Z T 1{%—L10gp(y)J;71—(10317(9(10%(9))9”}) Lo@.y)-
i=1+Tlog, (p(log, (¥)y)] "

whereQ(z,y) = {(z,y) € (0,1[)* : [log,(y)] = [log,(x)]} andp is a periodic function with magni-
tudel defined forz > 0 by

p(z) T

, {z} = z — | z] is the fractional part of.

3.2 Asymptotic fluctuations phenomena

Theorem 1 (Asymptotic behavior of the average cost)rhe average codE(H,,) admits the following
asymptotic formula

E(H,) =- log,(n) + E (Dng(ﬁQ)-l) + F(log,(n)) + R(n),
whereF is a periodic function defined for all > 0 by

00 e . 1 7p1—{10gp y—z} B
F(z) = / y(1—pt {log, v }) <ﬂogp(T) +log,y — 2] — [log,y — 2] | e”¥dy,
0

(5)
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Q= Q(U1,n, Usz,n) andR(n) is a rest discussed in Secti8r8, defined by
7(U1,n,U2,n)—1 1
R(n) =E | ( > — )L {r0=l10g, (Uz.n) i1 =T10g, (p(U2.2)Vz.)1} 120 | - (6)
i=1+log, (p(log, (U2,n))U2,n)] "'

Proof: Using Lemmal, one gets

E(Hp) = E([log,(Uzn)]) +E (([log,(p(log, (Uz.n))Uzn)] = [log,(Uzn)|)1e,)
T(Ui,n,Uz2,n)—1 1
+ E ( Z ;)I{WOZLIng(Uln)J?Vl:“ng(p(Uz'"')UQ’"ﬂ} 10" '
i=1+log, (p(log, (1))y)]

The only not neglect terms are

Ti(n) = E ([log, (Uz,)]) and Ts(n) = E ((log, (p(10g, (Uz.))Us.n)] — [10g, (Ua.n)])10,) -

As n goes to infinitynUs ,, converges in distribution to a random variabjevhich is a sum of twa.i.d.
exponential random variables with paramdtérhen, the first term satisfies

1
Ti(n) = E([log, (t2) — log, (n)]) + O(~).
Let D, function of - log, (n), the difference

D(—log,(n)) = E([log,(t2) — log,(n)]) — (E([log,(t2)]) — log,(n))

Itis easy to check thd?(z) = D({z}) — | 2], thenlim,, . ; .o n D(—log, n) = lim._, ;o p~* D(2) = 0,
and one gets

1
Ti(n) = —log,(n) + E([log, (t2)]) + O(—).
The last ternt/z(n) is asymptotically equivalent tb'(log,,(n)) whereF is defined by 5. In fact

(1-Zyn=2 e
n

|F(log, (n)~Ta(n)] < / '

Observe that

it [ 10g, (pl1og, (/) y ey Flog, () +267"

/ " log, (p(log, (/) y € Vdy =’ /1 " log, (p(log, )y =" Vdy.

By decomposition on the sequence of interV@g ', p*]), the last integral is dominated by a geometric
sum and the following inequality holds far> 2

n—2

/ log, (p(log, (1)) y e ™dy < L—.
1 1-p

Then, .
F(log,(n)) —E (([log,(p(log, (Us,n))Uz,n)] — [log,(Uz,n)|)10,) = o).

This ends the proof. O
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3.3 Estimation of the rest
The final step is to estimate the ré&tn) defined by(6). Forz,y € [0,1], K > k >0

T(z,y)—1
1 1
E Z P Lo=km=ry | = (1- 5)K\/ E <(6_2)T(I’y)>a
i=K B

whered = min(p, ¢). The following result is admitted.
Conjecture 1 The hitting timer satisfies

1 o
sup E ((5—2)7(”“’”“)) < 0.

z€[0,1]

Remark 1 Conjecture 1 is an intuitive restriction on the exponentirmiment of the hitting time. It is
supported by some simulations (Fig.2,3yof— E ((5%)7(”“"”“')) using Monte-Carlo techniques. Observe
that, for the unbiased case (Fig.2), the maximum correspomdiumerical values aof around0.5 which

is, on average, the limit: of the two random sequencgés;) and («; + ;). This maximum is of order of
104, which is reasonable since it implies that

E(r) < 14 log,(10) =~ 23.25

For the biased one (Fig.3), sinde= 0.2, a maximum of the order aD*° is acceptableE(r) < 57.22.

x 10"

25

15

0.5F

ol 1 v Ll L L L1 L I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2: Unbiased case: simulations of — E <4T(“)>.
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@p=02,6=p b)p=08,6=1—p
52

Fig. 3: Biased case: simulations of:— E (lT(m)) )

Since, for0 <z <y <1, 7(x,y) < max(7(z,z), 7(y,y)), then, using Conjecture 1, we obtain

R(n) < CE ((1 = )l ¢0antanl),

whereC' = sup,¢(y 1) 1/ E ((1/62)7(®)). Using the same method as for the functibnone gets

1 log,, (1-9)
E ((1 ) ﬂogp(p(Uz,n)Uz,nﬂ) <E ((1 _ 5)f10gp(U2,n)1) ~ <_) :

n
This gives
1
R(?’L) = O m)
Conclusion
E(H,) = —log,(n) + E (Llogp(tQ)J) + F(log,(n)) + O(W).

4  Algorithm Cost Distribution

Itis more appropriate to use these notatipns- p, p1 = g, to define recursively the sequence of intervals
(Iy) associated to the binary decomposition of the intejyal] in the basépg, p1)

{ Iy =1[0,1]
L = () |+ pratwse) Iy
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where(I) . denotes the right extremity of the intervalLet || the length of the interval, then

k
(I, =D 1.
i=0

Letn € Nand0 < k < 2"t — 1. Consider the binary decompositionfoft the stage
k=ap+a12+...+ay2", for0<i<n, a; € {0,1}.
Then, the length of the interva] ™! is

n
1 =T pa-
i=0

Fork € N, z > 0, one gets the following identity

{Hy, >k} ={30<i<2F : NIt) = ... = N(zIF ) =0, N(zI}) > 2}.
So
2k 1 .
P(Hy, <k)=e+a S |1He ] )
=0
Let us define the sequence of probability measgug$ by
2k 1
TOESY Iff|5(pe) (t).
i=0 o
Then, equatiori7) can be rewritten as
1
P(Hy, <k)=e "+ x/ e " dug(t). (8)
0

Using a probabilistic de-Poissonization of equat{dh as done for Proposition 2, we obtain the exact
distribution of H,,.

Proposition 3 Forn > 2,
1
P(H, <k)= n/ (1 — )" dug(t),
0

where the probability measuye, is described as above.
Using this identity
l-nl-t)"'=1-nt(1—t)""t—n(1-1)",

the following result is immediate.
Corollary 1 Fork € N,

1
P(H, > k) ~ / P(Us,, < t)duk(t) , asn goes to infinity
0

whereUs, ,, is the second smallest random variablesaiiniformly distributed random variables df.1]
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5 Appendix

We present the proof of Lemmnla Recall the sequence of random variakilgs defined by
(Vi)ien =17 =0 : B; =p}.

Proof of Lemma 1: First, note that

(v(z) >2
(1(y)

IN +

7)< (0 = [log,(z)])
T) < > [ |
Denote by, the following set
Qo = Qz,y) = {(z,y) € 10,1))* : [log, (y)] = [log,()1}.
By decomposing the functioh with respect td2,, one gets this formula

7(z,y)—1 1 " [log, (y)] 1 p(y)—1 1
E|l > I E(Zgl{mqlogp(ym) +P (0 = [log,(»)]) > T E > o7 L0 log, 1)

i=0 =0 =0

_|_

)1
ELC D —)le=log,t | 1oo-

i=[log, (y)]

Since 4
1(y)l(vo = [log,(y)]) = inf{i > 1,p" <y} = [log,(y)],
then, by simple calculations, one gets

w1 Tt
Bl Y ) =Mog, 1 E(( Y et | 1o

=0 i=log, ()]
A second discussion on implies that, on the sétyy = |log,(y) ], Qo).
(v(@) 22+4m) & (n = [log,(p(log,())z)])
(u(y) <m) < (n =14 [log,(p(log,(y)y)]),

wherep is a periodic function with magnitudedefined byp(z) = (1 — p'~%#})/(1 — p). Moreoveryp is
decreasing ofD, 1], so on the sefy,

p(log,(z))x < p(log,(y))y.
LetQ; = Q(p(log,(z))x, p(log,(y))y). Then

Mog, (y)1 + ([log,(p(log,(¥))y)] — [log,(®)]) Lag.y)

=
—
o A E
M=
I
N———
I

T(x,y)—1
1
+ E ( E P 1{%—Llogp<y>Jm—rlogp@(logp(y))yﬂ}) Lo@y):-
i=1+[log, (p(log, (¥)y)] "
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This ends the proof. i
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