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Contrôle optimal

The objective of this Note is to describe the conjugate and cut loci associated with the averaged energy minimization problem in coplanar orbit transfer.

Le rayon d'injectivité pour le transfert est alors donné, comme sur l'ellipsoïde pour la métrique plate, par le premier point conjugué sur l'équateur et vaut π/ √ 5. Le lieu conjugué est évaluable soit en utilisant l'intégrabilité au sens de Liouville du flot extrémal, soit numériquement à l'aide de l'algorithme [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control, Control, Optimisation and Calculus of Variations[END_REF]. Pour en déduire le lieu de coupure dont on sait [START_REF] Poincaré | Sur les lignes géodésiques des surfaces convexes[END_REF] qu'il est, dans le cas analytique sur la sphère, un arbre fini dont les extrémités sont des points conjugués qui constituent des singularités du lieu conjugué, nous rappelons la propriété classique de [START_REF] Myers | Connections between geometry and topology II[END_REF] qu'un domaine bordé par deux géodésiques minimisantes qui s'intersectent contient nécessairement un point conjugué, et utilisons le fait que de telles intersections sont ici localisées sur le parallèle opposé au point considéré à cause de la symétrie antipodale de la métrique. L'estimation des points conjugués dont nous disposons permet d'en déduire que le lieu de coupure en transfert orbital est une branche simple contenue dans le parallèle antipodal du point initial.

Introduction

In our previous Note [START_REF] Bonnard | A global optimality result with application to orbital transfer[END_REF] we have presented a global optimality result on Riemannian metrics in dimension three which can be applied to the averaged minimization coplanar transfer between Keplerian orbits [START_REF] Bonnard | Averaging and optimal control of elliptic Keplerian orbits with low propulsion[END_REF]. In this case, the metric is given by

g = 1 9n 1/3 dn 2 + 2n 5/3 5(1 -e 2 ) de 2 + 2n 5/3 5 -4e 2 e 2 dθ 2 (1) 
where (n, e, θ ) are orthogonal coordinates corresponding to orbit elements [START_REF] Milnor | On the geometry of the Kepler problem[END_REF] in the elliptic domain: n is the mean movement (n = a -3/2 with a the semi-major axis), e is the eccentricity, and θ the argument of the pericenter. These coordinates are singular for circular orbits (e = 0) but the metric is well defined, whereas e = 1 is a true singularity corresponding to parabolic orbits at the boundary of the elliptic domain. If we set r = 2 5 n 5/6 , ϕ = arcsin e, the metric is seen to be isometric to

g = dr 2 + r 2 c 2 (G(ϕ)dθ 2 + dϕ 2 ) with c = 2/5 and
G(ϕ) = 5 sin 2 ϕ 1 + 4 cos 2 ϕ •
Using homogeneity, we proved in [START_REF] Bonnard | A global optimality result with application to orbital transfer[END_REF] that the global optimality properties can be deduced from the twodimensional Riemannian metric g 1 = G(ϕ)dθ 2 + dϕ 2 on S 2 identified with {r = c}, where (r, θ , ϕ) are spherical coordinates of R 3 . The objective of this Note is to describe the conjugate and cut loci of this metric. It is connected to advanced results in Riemannian geometry [START_REF] Elerath | An improved Topogonov comparison theorem for non-negatively curved manifolds[END_REF][START_REF] Sinclair | The cut locus of a 2-sphere of revolution and Toponogov's comparison theorem[END_REF], and we can take advantage of geometric and numerical computations.

Preliminaries

We note (M, g) a complete real analytic connected Riemannian manifold, and z = (x, p) are coordinates on the cotangent bundle T * M. Extremals are integral curves of the Hamiltonian vector field associated with g. If t → z(t, x 0 , p 0 ) denotes the extremal starting from (x 0 , p 0 ), and if Π is the standard projection of T * M onto M, the exponential mapping at time t for a fixed x 0 is defined according to exp x 0 ,t : p 0 → Π(z(t, x 0 , p 0 )).

The time t c is then conjugated along the extremal with initial adjoint vector p 0 if exp x 0 ,t c is not an immersion at p 0 . The associated critical value x(t c ) is said to be conjugate to x 0 . The set of first conjugate points is the conjugate locus, C(x 0 ). The separating line, L(x 0 ), is the set of points where two minimizing extremal curves starting from x 0 intersect. Finally, the cut point (if any) along an extremal curve is the last point for which the extremal is minimizing, and the cut locus, Cut(x 0 ), is the set of such points. The injectivity radius, i(M), is the infimum over manifold points of distances between a point and its cut locus.

The properties hereafter are standard on complete Riemannian manifolds [START_REF] Do | Riemannian geometry[END_REF]. Proposition 2.1 A cut point belongs either to the separating line or to the conjugate locus. If x 1 is a point which realizes the distance to Cut(x 0 ), then either x 1 is conjugate to x 0 , or there are two minimizing geodesics joining x 0 to x 1 that form the two halves of the same closed geodesic.

We now state some properties of the metric g 1 = G(ϕ)dθ 2 + dϕ 2 , G(ϕ) = 5 sin 2 ϕ/(1 + 4 cos 2 ϕ). First, we observe that the metric corresponds to an analytic metric on a two-sphere of revolution as introduced in [START_REF] Elerath | An improved Topogonov comparison theorem for non-negatively curved manifolds[END_REF][START_REF] Sinclair | The cut locus of a 2-sphere of revolution and Toponogov's comparison theorem[END_REF]. Indeed, it defines a metric on S 2 with two poles at ϕ = 0 and π resulting from the singularities of spherical coordinates. The extremals through this pair of poles are meridians {θ = cst}. The curves {ϕ = cst} are parallels, and the extremal {ϕ = π/2} corresponds to the equator. In orbital transfer, the poles are e = 0 (circular orbits) and the equator is {e = 1} (parabolic orbits). Moreover, the following holds. Lemma 2.1 The Gauss curvature of g 1 is

K = 5(1 -8 cos 2 ϕ) (1 + 4 cos 2 ϕ) 2
which takes positive values near the equator, and negative values near the poles. The transformation ϕ → πϕ is an isometry of the metric.

The standard metric on S 2 induced by the flat metric takes the form g 0 = sin 2 ϕdθ 2 + dϕ 2 in spherical coordinates. The metric g 1 is then known [START_REF] Bolsinov | Integrable geodesic flows on two-dimensional surfaces[END_REF] to be isometric to f (z)g 0 where f (z) is a smooth positive function of the vertical coordinate z in the closed interval [-1, 1]. A more specific construction is available. Proposition 2. [START_REF] Bonnard | A global optimality result with application to orbital transfer[END_REF] The metric g 1 is conformal to the restriction of the flat metric to an oblate ellipsoid with semiminor axis equal to 1/ √ 5. To prove this, we write g 1 as

g 1 = 1 E µ (sin 2 ϕdθ 2 + E µ (ϕ)dϕ 2 ) with E µ (ϕ) = µ 2 + (1 -µ 2 ) cos 2 ϕ and µ = 1 √ 5 •
The metric sin 2 ϕdθ 2 + E µ (ϕ)dϕ 2 is the restriction of the flat metric to the ellipsoid of revolution with unit semimajor axis and semi-minor axis µ ≤ 1. This construction defines a geometric homotopy between the usual metric on S 2 where µ 0 = 1, and the case µ 1 = 1/ √ 5, for instance taking the path

µ 2 λ = (1 -λ )µ 2 0 + λ µ 2 1 , λ ∈ [0, 1]
. This reduction allows at each step to compare the conjugate and cut loci, the case of the ellipsoid being well-known.

The conjugate and cut loci

Before stating the results, we make the following remarks. For µ < 1 fixed, we can compare both metrics. The curvature in the flat case is and the maximum 1/µ 2 is reached along the equator, {ϕ = π/2}. There, the first conjugate point for µ = 1/ √ 5 has thus length π/ √ 5, as in the transfer case, and this gives the injectivity radius: i(S 2 ) = π/ √ 5 in both cases (see Fig. 1).

K = µ 2 [µ 2 + (1 -µ 2 ) cos 2 ϕ] 2 ,
To compute the conjugate loci, we can use Liouville integrability of the extremal flow. This computation is standard in the flat case, and the same can be done in orbital transfer where the extremal curves can be integrated using elementary functions [START_REF] Bonnard | Averaging and optimal control of elliptic Keplerian orbits with low propulsion[END_REF]. Another approach consists in using numerical simulations thanks to the method presented in [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control, Control, Optimisation and Calculus of Variations[END_REF] which allows to compute conjugate points.

To deduce the cut locus, we need several theoretical results. First, in the analytical case on S 2 , the cut locus is a finite tree whose extremities are conjugate points and singularities of the conjugate locus [START_REF] Poincaré | Sur les lignes géodésiques des surfaces convexes[END_REF][START_REF] Gallot | Riemannian geometry[END_REF][START_REF] Gluck | Scattering of geodesic fields I[END_REF][START_REF] Klingenberg | Riemannian geometry[END_REF][START_REF] Myers | Connections between geometry and topology I[END_REF][START_REF] Van Manen | Maxwell sets and caustics[END_REF]. Secondly, in some situations, this tree turns to be reduced to a single branch. It is the case on the ellipsoid, but also on a general surface of revolution [START_REF] Darboux | Lec ¸ons sur la théorie générale des surfaces[END_REF] under the following assumptions [START_REF] Sinclair | The cut locus of a 2-sphere of revolution and Toponogov's comparison theorem[END_REF]. If the metric is isometric for the transformation ϕ → πϕ, two extremals of same length starting from the same initial point x 0 = (θ 0 , ϕ 0 ) (where θ 0 can be normalized to zero by symmetry) intersect on the antipodal parallel, {ϕ = πϕ 0 }. Morevover, if the Gauss curvature is non-constant and monotone non-decreasing along half meridians from the north pole to the equator, the cut locus of a point is a subarc of this antipodal parallel. In orbit transfer however, the Gauss curvature is increasing from -5/3 to 5 between π/4 and π/2, but slightly decreasing from -7/5 to -5/3 between 0 and π/4. To prove that the cut locus shares a similar property, we use estimates of the conjugate points. Indeed, the interior of a domain bounded by two intersecting minimizing curves must contain a conjugate point [START_REF] Myers | Connections between geometry and topology II[END_REF]. The conjugate and cut loci for different initial conditions are pictured at Fig. 2. In conclusion, we are able to characterize the cut locus in orbital transfer [START_REF] Caillau | Sur la géométrie des transferts orbitaux[END_REF]. Theorem 3.1 In orbital transfer, the cut locus of a point (0, ϕ 0 ) is a subarc of the antipodal parallel {ϕ = πϕ 0 } whose extremities are cusp points of the conjugate locus. Conjugate and cut loci of metric g 1 (in red dots and black line, respectively), for ϕ 0 = π/2 (left) and ϕ 0 = π/6 (right). In both cases, the first cusp of the conjugate loci corresponding to the injectivity radius is clearly observed, while the entire loci have four such cusps forming singularities of an astroid-like set [START_REF] Caillau | Sur la géométrie des transferts orbitaux[END_REF]. The cut loci are contained in the antipodal parallels, symmetric to the initial point with respect to the equator {ϕ = π/2}.

Figure 1 .

 1 Figure 1. Geodesics and spheres of the transfer metric, g 1 = G(ϕ)dθ 2 + dϕ 2 , up to the radius of injectivity, π/ √ 5.

Figure 2 .

 2 Figure2. Conjugate and cut loci of metric g 1 (in red dots and black line, respectively), for ϕ 0 = π/2 (left) and ϕ 0 = π/6 (right). In both cases, the first cusp of the conjugate loci corresponding to the injectivity radius is clearly observed, while the entire loci have four such cusps forming singularities of an astroid-like set[START_REF] Caillau | Sur la géométrie des transferts orbitaux[END_REF]. The cut loci are contained in the antipodal parallels, symmetric to the initial point with respect to the equator {ϕ = π/2}.
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