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Abstract.

In this chapter, we review some elements of Teichmüller’s metric and of Thurs-
ton’s asymmetric metric on Teichmüller space. One of our objectives is to draw a
parallel between these two metrics and to stress on some differences between them.
The results that we present on Teichmüller’s metric are classical, whereas some of
the results on Thurston’s asymmetric metric are new. We also discuss some open
problems.
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1 Introduction

In this chapter, g and n are two nonnegative integers and S = Sg,n is a con-
nected oriented surface obtained from a closed surface of genus g (which we
shall denote by Ŝ) by removing n points called the punctures.1 We assume
that the Euler characteristic of S is negative. T = Tg,n denotes the Teichmüller
space of S. This space carries several interesting metrics. In this chapter, we
shall consider two of them, namely, Teichmüller’s metric and Thurston’s asym-
metric metric. We shall study these metrics respectively in Sections 2 and 3
below. These two metrics are Finsler metrics, that is, the distance between
two points in Teichmüller space can be defined by minimizing the lengths of
paths joining these points, and lengths of paths are computed by using a norm
defined on the tangent bundle of T. In the case of Thurston’s asymmetric
metric, the norm on the tangent spaces is not symmetric.

Teichmüller space can be defined either as a space of equivalence classes of
conformal structures on S or as a space of equivalence classes of hyperbolic
structures on S. Each of the two metrics considered here is natural from one
of these points of view: Teichmüller’s metric from the point of view of con-

1Such a surface S is said to be of finite type, in reference to the fact that its fundamental
group is of finite type.
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formal geometry and Thurston’s asymmetric metric from the point of view of
hyperbolic geometry. Indeed, Teichmüller’s metric is natural as a measure of
distances between conformal structures, since it is defined as the logarithm of
the least quasi-conformal dilatation of a homeomorphism isotopic to the iden-
tity between the confomal structures, whereas Thurston’s asymmetric metric is
natural from the pointof view of measuring distances between hyperbolic struc-
tures, since it is defined as the logarithm of the smallest Lipschitz constant of
homeomorphisms isotopic to the identity from one hyperbolic structure to the
other one. (The order in which we take the hyperbolic surfaces is important in
the last definition because the smallest Lipschitz constant in one direction is
generally different from the smallest Lipschitz constant in the other direction.)
The difference between the conformal and the hyperbolic points of view makes
the techniques used in the study of these two metrics on Teichmüller space
of different natures: on the one hand, we use complex analysis (quasiconfor-
mal mappings, quadratic differentials, extremal length and so on), and, on the
other hand, we use two-dimensional hyperbolic geometry. But the problems
that we try to solve are formally the same: the global behaviour of geodesic
lines (that is, isometric images of R) in Teichmüller space, e.g. the question
of whether they are properly embedded or not, the convergence of geodesic
rays to a point on Thurston’s boundary, the study of visual boundaries, and
other related problems. There are also several analogies between the results
obtained so far for the two metrics. Finally, there are natural questions about
the comparison between the two metrics. These are reasons for which we
present the two metrics in parallel.

Let us start with a few words about some analogies and some differences
between the general features of the two metrics.

In what follows, we shall recall two descriptions of the Teichmüller dis-
tance between two conformal structures. Consider two conformal structures
on a surface. On the one hand, the Teichmüller distance is the logarithm
of the infimum of quasiconformal dilatations of homeomorphisms isotopic to
the identity between the two conformal structures. On the other hand, this
distance is the logarithm of the supremum of quotients of extremal lengths
of closed curves with respect to these structures. Likewise, there are two de-
scriptions of Thurston’s asymmetric distance from one hyperbolic surface to
another. On the one hand, this distance is the logarithm of the infimum of
Lipschitz constants of homeomorphisms isotopic to the identity between the
two hyperbolic surfaces, and on the other hand it is the logarithm of the supre-
mum of quotients of hyperbolic lengths of closed geodesics, with respect to the
two hyperbolic surfaces.

Teichmüller proved that given two conformal structures on S, there ex-
ists, in each isotopy class of homeomorphisms, a “best quasiconformal stretch
homeomorphism”, that is, a homeomorphism for which the infimum of the
quasiconformal dilatation in the definition of the Teichmüller distance be-
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tween the two conformal structures is attained. Likewise, Thurston proved
that given two hyperbolic structures on S, there exists, in each isotopy class of
homeomorphisms, a “best Lipschitz stretch homeomorphism”, that is, a home-
omorphism for which the infimum of the Lipschitz constant in the definition
of Thurston’s asymmetric distance is attained.

Teichmüller space, equipped with the Teichmüller metric, is a straight G-
space in the sense of Busemann (cf. Kravetz [31]). This means that any
two distinct points in that space lie on a unique geodesic line. Thurston’s
asymmetric metric has a different character: it is not symmetric (as its name
indicates). Furthermore, any two distinct points in the space lie on a geodesic
line, but this geodesic line is not necessarily unique.

Let us look more closely at the geodesic lines for the two metrics.
Geodesics for Teichmüller’s metric are usually described (since the work

of Teichmüller himself) in terms of quadratic differentials. In these notes, we
have avoided talking about quadratic differentials, but we have used instead
(the equivalent point of view of) pairs of transverse measured foliations. This
is not because we do not like quadratic differentials, but it is for the sake
of stressing a further analogy between Teichmüller’s metric and Thurston’s
asymmetric metric. To describe this analogy, let us be more precise.

To characterize a geodesic for Teichmüller’s metric, we represent each point
in Teichmüller space by a conformal structure defined by a pair (F1, F2) of
transverse measured foliations on the surface S. The pair of measured folia-
tions defines a “grid” on the surface, and there is a natural notion of distance
measured along the leaves of each of these foliations, coming from the trans-
verse measure of the other foliation. Thus, to a pair of transverse measured
foliations, it is easy to associate holomorphic local parameters z = x + iy,
the x-direction defined by the leaves of the first foliation and the y-direction
by those of the other one. A geodesic line for Teichmüller’s metric is then
described as a family of surfaces St = (e−tF1, e

tF2), t ∈ R. The measured
foliations F1 and F2 are called respectively the horizontal and vertical folia-
tions associated to the geodesic line (St)t∈R. This description makes it easy
to visualize the holomorphic coordinates of the surface St when this surface
varies along a geodesic line. In this way, each conformal structure St is rep-
resented by a Euclidean structure with isolated conical singular points on the
surface, where the transverse measure of the foliation e−tF1 (respectively etF2)
determines the Euclidean length on the leaves of the transverse foliation etF2

(respectively e−tF1).
In the case of Thurston’s asymmetric metric, a geodesic is described using

an object which is less symmetrical than a pair of measured foliations. This
object is a pair consisting of a complete (not necessarily measured) geodesic
lamination, and a measured foliation which is transverse to it. More precisely,
Thurston showed that any two points in Teichmüller space can be joined by
a geodesic (for his asymmetric metric) made up of a concatenation of pieces
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of “stretch lines”, a stretch line being a parametrized family of hyperbolic
structures St = (µ, etF ), t ∈ R, where µ is a complete geodesic lamination
on St and F a measured foliation on S = S0 which is transverse to µ. Here
also, the pair (µ, etF ) defines a privileged set of directions on the hyperbolic
surface St, viz the geodesic directions of the leaves of µ, and the perpendicular
directions which are the leaves of etF and which are made out of pieces of
horocycles, with the transverse measure of etF coinciding on the leaves of µ
with hyperbolic length. Thus, the measured foliation etF plays here the role
of a “vertical foliation”, and the complete lamination µ plays the role of a
“horizontal foliation”, associated to the stretch line. Varying the parameter t
describes the stretch line.

These descriptions of geodesic lines for the two metrics on Teichmüller
space lead naturally to similar questions concerning both metrics, as well as to
questions concerning the comparison between them. We now enumerate some
of these questions.

• The descriptions of the geodesic rays for Teichmüller’s metric and for
Thurston’s asymmetric metric lead to two distinct natural parametrizations
of Teichmüller space equipped with actions of the group R

∗
+ of positive reals

on the parameter spaces. A first question related to these parametrizations
concerns the study of the extension of the parameters by adjoining limit points
to the orbits of the R∗

+-actions. This amounts to defining boundaries to Te-
ichmüller space, and one natural question is about the dependence of such
boundaries on the chosen parametrization in each case. Other questions con-
cern the comparison of these boundaries among themselves and with other
geometrically defined boundaries. More precisely, for each of the two metrics,
there is a collection of parameter spaces, each of which being a set of equiv-
alence classes of measured foliations. In the case of Teichmüller’s metric, a
parameter space is a space of equivalence classes of measured foliations that
are transverse to a fixed measured foliation, and in the case of Thurston’s
asymmetric metric metric, a parameter space is a space of equivalence classes
of measured foliations that are transverse to a fixed complete geodesic lamina-
tion. As such, the two parameter spaces admit natural R∗

+-action (induced by
the action of R∗

+ on measures), and the orbits of these actions correspond to
geodesic lines in Teichmüller space, for each of these metrics respectively. The
questions about the extension of the parameters to the boundary involve the
study of the asymptotic behaviour of geodesic rays for each of these metrics.
In each case, the R∗

+-orbits are properly embedded in the parameter space.
In these notes, we present these facts in some detail, as well as results on the
following questions:

• Convergence of geodesic rays: Some of the convergence results are for-
mulated in terms of a boundary of T which Steve Kerckhoff called Teichmüller
boundary, others in terms of Thurston’s boundary, and others in terms of the
visual boundaries of Teichmüller space. In the early 1980s, Howard Masur
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obtained results on the convergence of some particular classes of geodesic rays
for Teichmüller’s metric to points on Thurston’s boundary, and Kerckhoff ob-
tained results on the relative behaviour of pairs of Teichmüller geodesic rays.
We present these results below. It seems that there were no other significant
results of that type until a recent work by Anna Lenzhen, in which she gives a
geodesic ray that does not converge to a point on Thurston’s boundary. The
question of the description of the behaviour of an arbitrary geodesic ray for
Teichmüller’s metric with respect to Thurston’s boundary is still open. Con-
cerning the convergence of geodesic rays for Thurston’s asymmetric metric to
a point on Thurston’s boundary, we shall present some recent results.

• The asymptotic behaviour of “anti-stretch” rays: An anti-stretch ray is
the negative part of a stretch line, oriented in the direction opposite to the
one given by the parametrization of the stretch line. Due to the fact that
Thurston’s metric is not symmetric, an anti-stretch ray is in general not a
stretch ray (even after reparametrization). We note that an anti-stretch ray
is (up to reparametrization) a geodesic ray for the asymmetric metric on Te-
ichmüller space which is “dual” to Thurston’s asymmetric metric. Here, the
dual K∗ of an asymmetric metric K is defined by the formula K∗(x, y) =
K(y, x).

• The asymptotic behaviour of the length of an arbitrary measured geodesic
lamination of compact support under a stretch or an anti-stretch ray: More
precisely, for a given family of hyperbolic surfaces (St)t∈R parametrized by a
stretch line and for any compactly supported measured geodesic lamination α,
we are interested in the existence of the limits lim

t→∞
lSt(α) and lim

t→−∞
lSt(α),

and whether these limits are finite or infinite.
We note that in the case of the Teichmüller metric, we have stated some

of the results for the restricted case of closed surfaces, because the written
sources for these results exist only in that special case (although most of these
results are certainly valid in the larger context of surfaces of finite type). For
Thurston’s asymmetric metric, we present the results in the case of surfaces
with or without punctures.

The results on the Teichmüller metric that we give are classical, but some
of those on Thurston’s asymmetric metric are new.

At the end of this chapter, we formulate some open problems which concern
especially Thurston’s asymmetric metric.

2 Teichmüller’s metric

References for Teichmüller’s metric can be found in Teichmüller’s collected
papers [57] , as well as in those of Ahlfors and of Bers [2] [12], who rewrote
part of the theory. There are several introductory books on the subject of
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Teichmüller’s theory, for instance the books by Abikoff [1] and by Imayoshi
and Taniguchi [25]. We also recommend the recent book by Hubbard [23].

2.1 Measured foliations

We start by recalling a few facts about measured foliations that are used in
the theory of deformation of conformal structures which we present below.

Figure 1. The four pictures represent s−prong singular points with s = 3, 4, 5, 6
respectively.

Definition 2.1 (Measured foliation). A measured foliation on S is a foliation
with isolated singularities, equipped with a positive measure on each transverse
arc that is equivalent to the Lebesgue measure of a closed interval of R. (An
arc in a surface is, by definition, a homeomorphic image of the interval [0, 1]).
These measures are invariant by isotopies of the transverse arcs during which
each point stays on the same leaf. The isolated singularities are of the type
suggested in Figure 1, and we call them s-prong singularities, where s can be
any integer ≥ 3. We require that at the punctures of S, the foliation extends
as a measured foliation of the unpunctured surface Ŝ in such a way that each
puncture becomes either a nonsingular point, or an s-prong singular point with
s being here any integer ≥ 1 (see Figure 2). Note that in the case s = 2, the
foliation extends as a nonsingular point at the puncture.

There is an equivalence relation between measured foliations, called White-
head-equivalence. It is generated by the following transformations:

• Homeomorphisms of the surface which are isotopic to the identity sending
one foliation to the other and preserving the transverse measures. By abuse of
language, we shall sometimes call a homeomorphism isotopic to the identity
an isotopy. We recall that two homeomorphisms of a surface are isotopic if
and only if they are homotopic. This is a result of Baer [6]; see also Mangler
[35] and Epstein [18].

• Whitehead moves: These are deformations of the surface that take place
in a neighborhood of arcs that join two singular points and whose effect is to
collapse such an arc to a point. (Remember that by our definition, an arc
is embedded, which implies that after such a collapse, the surface remains a
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surface.) An example of a Whitehead move is given in Figure 3. Again, these
moves are required to respect the transverse measures. The inverse move of a
Whitehead move is also called a Whitehead move.

Note that a singular point involved in a Whitehead move can be at a punc-
ture of S, and that it is sometimes possible to eliminate a 1-prong singularity
at a puncture by using a Whitehead move; see for instance Figure 4.

We let MF(S) = MF denote the set of equivalence classes of measured
foliations on S. An element of MF is called a measured foliation class.

If x is a positive real number and if F is a measured foliation, then xF
denotes the foliation F (as a topological object), equipped with the transverse
measure obtained by multiplying the original transverse measure of F by the
factor x. This action is compatible with the Whitehead equivalence relation,
and it induces an action of R∗

+ on the set MF. The quotient of MF by this ac-

(a) (c)(b)

Figure 2. The three pictures represent the local model for a measured foliation
at a puncture of S. The foliation extends in three possible ways: either as
a 1-prong singular point (case (a)), or as a regular point (case (b)), or as a
singular point with at least 3 prongs (case (c)), that is, like the singular points
at interior points of the surface.

Figure 3. Whitehead move: collapsing or creating an arc joining two singular
points.
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tion is denoted by PMF(S) or PMF. An element of PMF is called a projective
measured foliation class.

If F is a measured foliation, then [F ] will usually denote its equivalence
class in MF. We shall also sometimes use the same notation, [F ], for the
corresponding element in PMF.

Measured foliations already appear in Teichmüller’s work as horizontal and
vertical line fields associated to holomorphic quadratic differentials on Rie-
mann surfaces, but it was Thurston who initiated their systematic study, and
defined the space of equivalence classes of measured foliations, in his paper
On the geometry and dynamics of diffeomorphisms of surfaces ([64], published
several years after it has been written). For a complete presentation of these
results in the case of closed surfaces, we refer the reader to [19].

A closed curve in S will be called essential if it is not homotopic to a point
or to a puncture, and it is called simple if it has no self-intersection, that is, if
it is an embedded image of a circle.

Let S be the set of homotopy classes of unoriented essential simple closed
curves in S.

There is a natural embedding

S → MF (2.1)

defined as follows. For any any element γ in S, we take a foliated cylinder C
embedded in S, whose leaves are simple closed curves that are in the homotopy
class γ. This foliated cylinder C defines a partial foliation on S. Here, the
adjective partial means that the support of the foliation is a subset of the
surface S. We choose an arc c that joins the two boundary components of
C and which is transverse to the foliations, and a homeomorphism between
this arc and the interval [0, 1] ⊂ R, and we equip the arc c with the pull-back
of the Lebesgue measure of [0, 1]. We then take the only invariant transverse
measure for the foliation on C that induces the given Lebesgue measure on the

Figure 4. Eliminating a 1-prong singularity at a puncture of S by applying a
Whitehead move.
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arc c. We shall sometimes say that C, equipped with this measured foliation,
is a foliated cylinder of height one with core curve in γ. To get a measured
foliation on S, we collapse the closure of each connected component of S \ C
onto a spine. We recall that a spine of a compact surface with boundary
is a one-dimensional simplicial complex on which the surface collapses by a
homotopy equivalence (see [19] p. 90). Here, the spine is chosen so that the
singular points of the resulting foliation on S are of the allowed type. Note that
the exposition in [19] works for the case where S is compact. To deal with the
case where S is noncompact (that is, the case where S has punctures), we can
use the spine of a compact surface with boundary obtained by replacing each
puncture by a boundary closed curve and then collapsing that boundary curve
to a point. We do this in such a way that the local model of the resulting
measured foliation on the original surface S is of the allowed type, at the
interior singularities and at the punctures. The various choices of spines for
the complementary components of the cylinder C differ precisely by Whitehead
moves performed on spines. Using this fact, to any element of S, we associate
a measured foliation on S which is well-defined up to isotopy and Whitehead
moves. It is a fact of the classical theory of measured foliations that the map
defined in (2.1) is injective (see [19] p. 89).

Note that in the case where the surface S is the three-punctured sphere, the
set S is empty. As is well-known, the Teichmüller space in that case consists
of a single point, and there is not a lot more to say. Therefore, we discard this
case in what follows.

Definition 2.2 (Measured foliation with one cylinder). A measured foliation
(respectively a measured foliation class) which up to a constant factor is ob-
tained from an element of S by the map described in (2.1) will be called a
measured foliation (respectively a measured foliation class) with one cylinder.

Equivalently, a measured foliation with one cylinder is a measured foliation
such that when extended to the unpunctured surface Ŝ, the union of the leaves
starting at the singular points, with the singular points included, is a compact
graph whose complement is connected. This graph is called the critical graph
of the foliation.

The height of a measured foliation with one cylinder is defined as the total
mass of a transverse arc joining the two boundary components of that cylinder.

We need to recall another description of the equivalence relation between
measured foliations.

To each measured foliation F , we associate a map i(F, .) : S → R+ defined
for each γ in S by the formula

i(F, γ) = inf
c∈γ

I(F, c) (2.2)
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where the infimum is taken over all closed curves c that are in the homotopy
class γ and that are made up of a finite concatenation of segments which
are either contained in leaves of F or are transverse to F , and where I(F, c)
denotes the total mass (with respect to the transverse measure of F ) of all the
sub-segments of c that are transverse to F .

In this way, a measured foliation defines an element of RS
+, the set of

functions from S to R+. Two measured foliations are said to be measure-
equivalent if they have the same image in RS

+.
The next two theorems summarize some basic results of Thurston that we

shall refer to in the rest of the chapter.

Theorem 2.3 (Thurston, see [19] p. 110). Two measured foliations are White-
head-equivalent if and only if they are measure-equivalent.

Theorem 2.3 gives an embedding of the space MF in the function space
RS

+, and with this embedding we have the following:

Theorem 2.4 (Thurston, see [19]), p. 117 and 150). With the topology induced
on the space MF by its embedding in the function space RS

+ equipped with the
weak topology, MF is homeomorphic to R6g−6+2n \ {0}. The set of elements
in MF that are of the form xγ with x ∈ R∗

+ and γ ∈ S (where γ is regarded as
an element of MF by the embedding defined in (2.1) above) is a dense subset
of MF. The projectivized space PMF, equipped with the quotient topology, is
homeomorphic to a (6g − 7 + 2n)-dimensional sphere S6g−7+2n, in which the
natural image of S is dense.

2.2 Conformal structures

We start with a word about atlases.
We shall define a conformal structure and, later on, a hyperbolic structure

on S as an atlas satisfying certain properties. An atlas is a certain collection
of local charts satisfying a certain property, and it is possible to form unions
of collections of local charts. We shall say that two atlases are compatible if
their union is an atlas satisfying the required properties. A maximal atlas is
then a maximal union of compatible atlases.

Definition 2.5 (Conformal structure). A conformal structure (which we shall
also call a conformal atlas) on S is a maximal atlas {(Ui, φi)}i∈I of local charts
where for each i ∈ I, Ui is an open subset of S and φi is a homeomorphism from

Ui onto an open subset of the complex plane C satisfying
⋃

i∈I

Ui = S and such

that for all i and j in I, the map φi ◦ φ−1
j , which is called a coordinate change

map or transition map, and which is defined on φj(Ui ∩ Uj), is conformal.
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Furthermore, we suppose that each puncture of S has a neighborhood which
is conformally equivalent to a punctured disk in C. (Without this condition,
the neighborhood of a puncture could also be conformally a cylinder.) We shall
sometimes use the word holomorphic instead of conformal. Each pair (Ui, φi) is
called a holomorphic chart, and (by abuse of language) the variable z ∈ φi(Ui)
is called a holomorphic local coordinate for the structure. On each domain Ui

of a holomorphic chart, there is a natural orientation induced by the map φi

from the usual orientation of C. The transition functions of a conformal atlas,
being holomorphic, are orientation preserving. Thus, a conformal structure
on S equips S with a canonical orientation. We shall always assume that this
orientation coincides with the orientation on S that we started with.

A surface equipped with a conformal structure is also called a Riemann
surface.

Example 2.6 (Conformal structure induced by a Riemannian metric). Any
Riemannian metric on S has an underlying conformal structure. This is usu-
ally deduced from the existence of the so-called isothermal coordinates, that
is, local coordinates z in which the Riemannian metric can be written as
ds2 = λ(z)|dz|2, with λ(z) > 0, see [3] p. 124–126 and the references therein.
Isothermal coordinates have been investigated by Gauss, who proved their ex-
istence under some restrictive conditions which have been weakened later on.
Conversely, every conformal structure on S is induced by some Riemannian
metric. Furthermore, under our requirement that the Euler characteristic of S
is negative, such a metric can be chosen to be hyperbolic, that is, of constant
Gaussian curvature −1. The existence of such a metric is the “uniformiza-
tion theorem” for surfaces of negative Euler characteristic, attributed to Klein,
Poincaré and Koebe, which is also based on the existence of isothermal param-
eters, cf. [52] and the references therein. More precisely, the uniformization
theorem states that each conformal surface of finite type and of negative Euler
characteristic can be realized as a quotient of the hyperbolic plane H2 by a
discrete group Γ of isometries of H

2. The conformal surface is then induced
by a hyperbolic metric. The hyperbolic metric is unique up to isotopy, and
this makes hyperbolic metrics play a particularly important role in the theory
of deformations of conformal structures. We shall use the hyperbolic point of
view in Section 3 below.

The connection between a hyperbolic metric and the underlying conformal
structure is not easy to handle, and classical Teichmüller theory (that is, the
theory based on the techniques developed by Teichmüller) makes little use
of hyperbolic geometry. However, there is a class of metrics which is more
useful in the conformal theory, because the conformal structures that underly
them are convenient to manipulate; these are the singular flat metrics that are
defined by pairs of tranverse measured foliations on the surface, of which we
now recall the definition.
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Example 2.7 (Conformal structure defined by a pair of transverse measured
foliations). Let F1 and F2 be two transverse measured foliations on S. Recall
from Definition 2.1 that each measured foliation extends to a measured folia-
tion on the closed surface Ŝ obtained from S by filling in the punctures. We
require here that at each point of Ŝ \ S, both F1 and F2 extend in the same
manner, that is, both of them extend as s-prong singularities with the same
s ≥ 1. The local model for two transverse foliations F1 and F2 at a puncture
of S is represented in Figure 6. Such a pair of transverse measured foliations
defines a conformal structure on S, and in fact, a distinguished class of holo-
morphic parameters, in the following way. We identify the neighborhood of
each point on S which is a nonsingular point of the foliations to a subset of C

by using a parameter z = x + iy ∈ C, where x is a variable along the leaves
of F1 and y is a variable along the leaves of F2, with the distance along a
leaf of each foliation being measured using the transverse measure of the other
foliation. Furthermore, we suppose that the positive orientation of x followed
by the positive orientation of y coincides with the orientation of the surface
S. The local parameter z (called a distinguished parameter) is defined up to
the transformation z 7→ −z and up to a translation in C. In that way, the
leaves of F1 (respectively F2) are locally defined by the equation y = constant
(respectively x = constant). The fact that the local parameters z = x + iy
are well-defined at each point up to sign and up to the addition of a complex
number implies that the local parameters associated to the various nonsingular
points are compatible with each other from the holomorphic point of view, and
they define a conformal structure in the complement of the singular points.
Now we have to see that this conformal structure extends to the whole surface.
Let p be a singular point of F1 (or, equivalently, F2) and let s be the number
of prongs at that point. On each small enough disk neighborhood V (p) of p in
S, we can define a map φp : V (p) → C which sends p to 0 and which at each
point of V (p) \ {p} coincides with a branch of the map z 7→ z2/s, z being the
distinguished parameter. This map is well-defined up to composition in the
range by a rotation of C that fixes the origin. The maximal atlas generated
by the collection of distinguished local charts at the nonsingular points of S,
together with the maps (V (p), φp) associated to the various singular points,
defines a conformal structure on S. (We note that the condition we imposed
on the way the foliations extend to the punctures of S ensures that the re-
quirement in Definition 2.5 that each puncture has a neighborhood which is
conformally equivalent to a punctured disk in C is satisfied.)

Since in each small enough neighborhood of each point in S, the distin-
guished parameter in C is unique up to addition of a complex constant and to
multiplication by −1, such a parameter defines a metric on that neighborhood,
which makes the neighborhood isometric to an open subset of C equipped with
its Euclidean metric. Thus, if Z denotes the set of singular points of F1 and
F2, the surface S \ Z is equipped with a canonical Euclidean metric. The
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leaves of the foliations F1 and F2 are geodesic with respect to that metric, and
the foliations are mutually orthogonal. Such a metric is called a singular flat
metric or a Euclidean metric with cone singularities, the singular points being
the cone points.

Figure 5. Each picture represents two transverse foliations near a singular
point in S.

(a) (b) (c)

Figure 6. Each picture represents an extension of two transverse foliations at
a puncture of S: in case (a) each foliation extends as a 1-prong singular point,
in case (b) it extends as a nonsingular foliation and in case (c) it extends as a
3-prong singular point.

Let Hom(S) be the group of orientation-preserving homeomorphisms of S.
We consider the following action of Hom(S) on the set of conformal struc-
tures on S: for any maximal atlas G = {(Ui, φi)}i∈I and for any orientation-
preserving homeomorphism f : S → S, f∗G is the maximal atlas {(U ′

i , φ
′
i)}i∈I

where for each i in I, U ′
i = f−1(Ui) and φ′i = φi ◦ f|U ′

i
. The maximal atlas

f∗G is then a conformal atlas on S.
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If G and H are any two conformal structures on S, we shall sometimes
denote (by abuse of language) f : G → H a map f : S → S in which the
domain space (respectively the target space) is the surface S equipped with
the conformal structure G (respectively H).

We shall say that two conformal structures G and H are equivalent if there
exists a homeomorphism f : G→ H isotopic to the identity satisfying f ∗H =
G.

Definition 2.8 (Teichmüller space). The Teichmüller space of S, which we
shall denote by Tg,n, Tg,n(S), T or T(S), is the space of equivalence classes of
conformal structures on S.

The subgroup Hom0(S) of Hom(S) consisting of the homeomorphisms that
are isotopic to the identity is a normal subgroup, and the quotient group
MCG(S) = Hom(S)/Hom0(S) is called the mapping class group of S. It has a
natural action on the Teichmüller space Tg,n(S), which is the quotient action
of that of Hom(S) on the set of maximal conformal atlases defined above.

The set of conformal structures on S is equipped with a natural topology
in which two conformal structures G and H are close if we can find two atlases
{(Ui, φi)}i∈I and {(Vi, ψj)}j∈J, where for each i ∈ I (respectively j ∈ J),
(Ui, φi) (respectively (Vj , ψj)) is a holomorphic chart for G (respectively H),

such that
⋃

i∈I

Ui =
⋃

i∈J

Vj = S and such that any map of the form φi ◦ψ−1
j (with

the usual convention for its domain of definition) is C∞-close to the identity.
(We are using the fact that a conformal structure on S defines a canonical
C∞-structure on that surface.) Teichmüller space Tg,n(S) is equipped with
the quotient topology. There are many nice ways of describing that topology,
which show that this space is homeomorphic to R6g−6+2n. In particular, this
topology is induced by the Teichmüller metric which is one of the main subject
matters of this chapter (Definition 2.23 below), but we shall also see several
other descriptions of this topology.

2.3 Moduli and extremal lengths

We shall talk about quadrilaterals and their moduli in Riemann surfaces, but it
is natural to start with a few words about triangles, which are simpler objects.

A topological triangle T in a Riemann surface is an embedded closed disk
with three distinguished pairwise distinct points on its boundary. Such an ob-
ject is equipped with a conformal structure, inherited from that of S. Strictly
speaking, T is equipped with a conformal structure with boundary, which is
defined as in Definition 2.5 above, except that instead of requiring the range
of each homeomorphism φi to be an open subset of C, we require it to be
a relatively open subset of the closed half-plane {z ∈ C | Im(z) ≥ 0}. To
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simplify the exposition, we shall suppose that each time we consider a closed
disk equipped with a confomal structure and a set of distinguished points on
its boundary, these points are taken in a cyclic order which is compatible with
the usual orientation on the boundary of the disk that is induced from the
orientation of the disk induced from the orientation of the surface. Now any
two topological triangles equipped with conformal structures are conformally
equivalent, that is, there exists a conformal homeomorphism between the two
disks that respects the distinguished points. This follows from the Riemann
mapping theorem, which says that any simply connected open subset of the
plane bounded by a Jordan curve can be mapped conformally onto the unit
disk, that this mapping can be extended to a homeomorphism between the
closures of the domains, that the extended homeomorphism is also conformal
and that if we choose arbitrarily three distinguished pairwise distinct points
in the boundary of the two disks, then the conformal map between the two
closed disks can be taken so as to respect the distinguished points, and, finally,
that this condition completely determines the map (see [32] Chapter 1).

Thus, topological triangles cannot be used to distinguish different Riemann
surfaces, and the next objects of study along that line are topological disks
with four distinguished points on their boundary instead of three. These ob-
jects are not all conformally equivalent, and they are classified by a conformal
invariant called the modulus. In fact, it is sometimes more convenient to deal
with closed disks with two disjoint distinguished closed arcs (instead of four
distinguished points) on their boundary. The four boundary points of the two
arcs will be the distinguished points. Thus, we call a quadrilateral in a Rie-
mann surface S an embedded closed disk with two distinguished disjoint closed
arcs in its boundary. We shall call the distinguished arcs the vertical sides of
the quadrilateral. In the same way as for topological triangles, a quadrilateral
in S is equipped with a conformal structure with boundary induced from that
of S.

Definition 2.9 (Modulus of a quadrilateral). By the Riemann mapping The-
orem, for any quadrilateral Q in a Riemann surface, there exists a unique
positive real number Mod(Q) together with a conformal homeomorphism φ
from Q to the rectangle R in the Euclidean plane R2 with vertices at (0, 0),
(Mod(Q), 0), (Mod(Q), 1) and (0, 1), such that φ sends the vertical sides of Q
to the vertical sides of R (that is, the sides of length 1, see Figure 7). The
value Mod(Q) is called the modulus of Q (and of R).

Remarks 1) Explicit formulae for conformal mappings between quadrilaterals
having the same modulus are usually given by means of elliptic integrals (see
[32]).

2) Another invariant of quadrilaterals in Riemann surfaces is the cross
ratio of the four distinguished points. More precisely, one starts by mapping
conformally the quadrilateral on the closed unit disk in the complex plane
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(by using the Riemann mapping associated to the interior of the quadrilateral
which, as we recalled, extends to the boundary) and then taking the cross ratio
of the images of the four distinguished points that we obtain on the boundary
of that disk (see [5] p. 343).

3) One can define the modulus of a quadrilateral without using the Riemann
mapping theorem (see [32]).

4) After moduli of topological triangles and quadrilaterals, one can study
moduli of n-gons in Riemann surfaces. Here, an n-gon is defined as a topo-
logical disk with n distinguished points on its boundary. The dimension of
the space of moduli (real parameters) of an n-gon is n − 3. More generally,
Ahlfors and Beurling initiated the study of conformal invariants (or moduli)
of arbitrary domains in the plane which are bounded by finitely many closed
curves, with a finite number of distinguished points on their boundary and
in their interior. The dimension of the moduli space of such a domain is
3n+2p+q−6, where n is the number of boundary components, p the number
of distinguished points in the interior and q the number of distinguished points
on the boundary (see [5] p. 342).

Now back to quadrilaterals.
If G and H are Riemann surfaces and if f : G → H is a homeomorphism,

then f transforms any quadrilateral in G into a quadrilateral in H . If f is
conformal, it preserves the moduli of quadrilaterals. If f : G→ H is a general
homeomorphism, then the defect in conformality of f is measured by a quantity
which is called the quasiconformal dilatation of f , defined as follows.

Definition 2.10 (Quasiconformal homeomorphism and quasiconformal di-
latation). Let G and H be two Riemann surfaces and let f : G → H be an

Figure 7. There is a conformal map from the quadrilateral Q on the left of the
picture to the Euclidean rectangle on the right, sending the vertial sides of Q
(which are drawn in bold lines) to the vertical sides of the Euclidean rectangle.
The Euclidean rectangle is unique up to isometry, if we take the lengths of its
vertical sides to be equal to 1.
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orientation-preserving homeomorphism. Then f is said to be quasiconformal
if we have

K(f) = sup
Q

Mod(f(Q))

Mod(Q)
<∞,

where the supremum is taken over all quadrilaterals Q in G. The value K(f)
is called the quasiconformal dilatation of f . For every K ≥ K(f), f is said to
be K-quasiconformal homeomorphism.

Notice that if Q is a given quadrilateral and if Q′ is the quadrilateral
obtained from Q by keeping the same topological disk and the same set of
distinguished points, but applying to these points an order-one translation of
the indices, then we have Mod(Q) = 1/Mod(Q′). With this remark, we can
see that the value of K(f) in Definition 2.10 is always ≥ 1.

Definition 2.10 says in a geometric manner that a map is quasiconformal
if it has uniformly bounded distorsion. To see that this definition is equiv-
alent to other (more commonly used) analytic definitions of quasiconformal
homeomorphisms, we refer the reader to the paper [10] by Bers.

Remark 2.11. In the case where f is a C1-diffeomorphism and where the
conformal structures G and H are induced by Riemannian metrics, then, for
each z in G, the differential of f at z, being an R-linear map, takes a circle
centered at the origin in the tangent space TzG of G at z to an ellipse centered
at the origin in the tangent space Tf(z)H of H at f(z). The (local) quasicon-
formal dilatation of f at z, denoted by Kz(f), is defined as the ratio of the
major axis to the minor axis of that image ellipse. This ratio does not depend
on the choice of the circle in TzG centered at the origin that we started with.
The quasiconformal dilatation of f is then equal to

K(f) = sup
z∈G

Kz(f).

Finally, we note that the quasiconformal dilatation of f at z is also given by
the formula

Kz(f) =
sup{‖dfz(u)‖ such that u ∈ TzS, ‖u‖ = 1}
inf{‖dfz(u)‖ such that u ∈ Tz, ‖u‖ = 1} .

In this formula, the norm of the tangent vector u (respectively dfz(u)) is mea-
sured with respect to the Riemannian metric defining G (respectively H).

The study of quasiconformal dilatations of homeomorphisms between Eu-
clidean rectangles was initiated by H. Grötzsch around 1928, who wrote several
papers on that subject. Grötzsch showed that the (real-) affine homeomor-
phism between two arbitrary Euclidean rectangles realizes the minimum of the
quasiconformal dilatation among all homeomorphisms that respect the sides
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of these rectangles (see for instance [21]). This result was one of the starting
points of the theory of extremal quasiconformal mappings between general Rie-
mann surfaces and in fact the affine map between rectangles is a building block
for that general theory. Indeed, it follows from Teichmüller’s results (which
we shall recall in §2.5 below) that for any two conformal structures G and H
on S, one can find two decompositions {R1, . . . , Rk} and {R∗

1, . . . , R
∗
k} of that

surface and a homeomorphism f : G → H (which is called the Teichmüller
map) such that the following conditions hold:

(1) f realizes the minimum of the quasi-conformal dilatation in the isotopy
class of the identity, and it is the unique map that has this property;

(2) for each i = 1, . . . , k, Ri and R∗
i are quadrilaterals satisfying

k⋃

i=1

Ri =

k⋃

i=1

R∗
i = S;

(3) for each i 6= j, the interiors of Ri and Rj and of R∗
i and R∗

j are disjoint;

(4) for all i = 1, . . . , k, the map f sends the quadrilateral Ri to the quadri-
lateral R∗

i , and if fi : Ri → R′
i (respectively f∗

i : R∗
i → R

′∗
i ) is the

G- (respectively the H-) conformal homeomorphism sending Ri (respec-
tively R∗

i ) onto a Euclidean rectangle as in Definition 2.9, then, the map
f∗

i ◦ f|Ri
◦ f−1

i is an affine map;

(5) the quasiconformal dilatations of the affine maps f ∗
i ◦f|Ri

◦f−1
i are equal

for all i = 1, . . . , k.

It is in this sense that the affine map between two rectangles is a basic
model for the Teichmüller map between arbitrary Riemann surfaces.

Notice that the local quasiconformal dilatation Kz(f) of an affine home-
omorphism f between Euclidean rectangles is constant (independent of z),
and that the local quasiconformal dilatation on each of the quadrilaterals of
the decomposition {R1, . . . , Rk} is the same (independently of the choice of
the quadrilateral). This is a basic property of the Teichmüller maps between
Riemann surfaces.

Examples 1) Consider the surface obtained by doubling a Euclidean rectan-
gle along its open edges (that is, without the vertices). This surface is the
four-punctured sphere S = S0,4, and it is equipped with two transverse mea-
sured foliations obtained by gluing the linear vertical (respectively horizontal)
foliations of the two rectangles we started with, equipped with the transverse
measures that induce Lebesgue measure on the edges of the rectangles. Each
of these foliations extends as a one-prong singular point at each of the four
punctures. We choose a common x and y-coordinate on the sides of the two
rectangles. For each λ > 0 the real-affine map defined by (x, y) 7→ ((1/λ)x, λy)
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is an extremal quasi-conformal map on each rectangle, and the two maps fit
together well and define a map on S = S0,4 which is a Teichmüller map.

2) More generally, we can take an arbitrary (simply connected or not)
closed subset of the Euclidean plane forming a subsurface with boundary with
each boundary curve being made of a finite number of vertical and horizontal
segments (see Figure 8 for an example). Doubling this surface, as in Example 1
above, produces a Riemann surface equipped with a canonical product foliation
structure (see Definition 2.16), the one induced by the vertical and horizontal
measured foliations of the plane. As in the particular case considered above,
for each λ > 0, one can easily visualize a Teichmüller map on that surface,
as a map induced by an affine transformation of the Euclidean plane. Notice
that in all these examples, a singular point of each of the horizontal and
vertical measured foliation is either a 1-prong or 3-prong singularity. At a
3-prong singularity, we can close the puncture, that is, we can include in the
gluing of the two planar surfaces that we started with the endpoints of the
edges that abut on that singular point. However, there are necessarily 1-
prong singularities left, and we cannot obtain closed surfaces with this kind
of construction. But it is easy to construct closed surfaces equipped with
measured foliation pairs (see for instance te examples in the chapter by Herrlich
and Schmithüsen in this Handbook [22]).

Figure 8. Doubling two such shaded regions along the open edges gives exam-
ples of surfaces with punctures equipped with measured foliation pairs

Definition 2.12 (Modulus of a topological cylinder). Let S be a Riemann
surface and let C be a topological cylinder in S, that is, a surface homeomor-
phic to S1 × I immerged in S, with its interior embedded. Such a cylinder is
equipped with an induced conformal structure with boundary, and it is con-
formally equivalent to a Euclidean cylinder C∗ which is unique up to scaling
(see [4]). The modulus of C is the height of the Euclidean cylinder C∗ divided
by its circumference. It is denoted by ModS(C) or Mod(C).

Definition 2.13 (Modulus and extremal length of a homotopy class of curves).
Let S be a Riemann surface and let γ be a homotopy class of essential simple
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closed curves in S. The modulus of γ, denoted by ModS(γ) or Mod(γ), is the
supremum of the moduli of topological cylinders in S with core curve in the
class γ. The extremal length of γ, denoted by ExtS(γ) or Ext(γ), is defined as
1/Mod(γ).

The notion of extremal length of a family of curves in a Riemann surface
was first defined by Beurling and it was developed later on by Beurling and
Ahlfors, see [5]. The following result provides examples of Riemann surfaces
in which one can see explicitely the maximal modulus cylinder in a given
homotopy class.

Theorem 2.14. Let S be a closed surface equipped with a conformal structure
defined by two transverse measured foliations F1 and F2 as in Example 2.7.
Suppose that F1 is a foliation with one cylinder, and let γ be the homotopy class
of the core curve of that cylinder. Then, the cylinder C in S whose interior is
the complement of the critical graph of F1 has the largest modulus among all
topological cylinders in S with core curve in the homotopy class γ. Thus, in this
situation, we have Mod(γ) = Mod(C) or, equivalently, Ext(γ) = 1/Mod(C).

Theorem 2.14 is stated (in an equivalent form) by Kerckhoff in [27] (The-
orem 3.1) and it is attributed there to J. A. Jenkins and K. Strebel.

There is an extension of this result to the extremal length of an arbitrary
measured foliation class instead of a homotopy class of a simple closed curve.
This is Theorem 2.21 below and, before stating it, we need to recall Kerckhoff’s
extension of the notion of extremal length from the set S of homotopy classes
of simple closed curves to the space MF of equivalence classes of measured
foliations. (We are using here the inclusion S ⊂ MF defined in (2.1).)

Theorem 2.15 (Kerckhoff [27]). Let S be a closed surface. The extremal
length function defined on the set S of homotopy classes of essential simple
closed curves in S extends in a unique way to a continuous function extS =
ext : MF → R

∗
+ satisfying ext(xF ) = x2ext(F ) for every x in R

∗
+ and for

every F in MF.

Definition 2.16 (Product foliation structure). Let Q = Q(S) be the subset of
MF×MF consisting of pairs of measured foliation classes ([F1], [F2]) such that
[F1] and [F2] are representable by two foliations F1 and F2 that are transverse.
We shall call an element of Q a product foliation structure. The space Q is
equipped with the topology induced from the weak topology on MF × MF.

The following lemma will be useful in considerations about product foliation
structures.
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Lemma 2.17 (Masur [37]). Let S be a closed surface and let [F1] and [F2] be
two measured foliation classes on S that can be represented by two transverse
foliations F1 and F2. Then, the pair (F1, F2) is unique up to isotopy.

In particular, we cannot perform Whitehead moves on F1 or on F2 while
keeping the transversality.

Remark 2.18 (Product foliation structures and quadratic differentials). We
must mention that a product foliation structure can be regarded as a Rie-
mann surface equipped with a holomorphic quadratic differential, although we
do not make use of this fact in this chapter. We recall that a holomorphic
quadratic differential q on a Riemann surface S is an invariant object that
has an expression qi(z)dz

2 in each holomorphic chart (Ui, φi), where qi(z)
is a holomorphic function of z, the holomorphic local coordinate in φi(Ui).
Invariance of q means that if (Uj , φj) is another holomorphic chart, if w is
the holomorphic local coordinate in φj(Uj), and if a local expression of q in
that chart is qj(w)dw2, then at the overlap between the two charts we have
qi(z)dz

2 = qj(w)dw2 or, equivalently, qi(z)(dz/dw)2 = qj(w). This invariance
property implies in particular that the zeroes of q and their orders are well-
defined. (In other words, the zeroes of the functions qi(z) and their orders
are independent of the choice of the local chart, see [54] p. 18). Now to each
pair (F1, F2) of transverse measured foliations on S is associated a conformal
structure on that surface, as in Example 2.7, with local coordinates z = x+ iy
which are well-defined up to sign and up to composition by a translation in
C. From that we deduce that the local holomorphic differential form dz2 is
the local expression of a well-defined quadratic differential form on S (that
is, the invariance property is satisfied). The norm of a quadratic differential
is defined as ‖q‖ =

∫∫
|q(z)|dxdy (this uses the fact that the area element

dxdy is independent of the choice of the coordinate chart), and the condition
that we imposed on the foliations F1 and F2 at the punctures of S (see Def-
inition 2.1) insures that the associated quadratic differential has finite norm.
Conversely, to each conformal structure on S equipped with a holomorphic
quadratic differential of finite norm, one can naturally associate a Euclidean
metric with cone singularities, and a horizontal and a vertical foliation defin-
ing an element of the space Q(S), these two foliations being orthogonal and
their leaves being local geodesics with respect to that Euclidean metric. Let us
briefly recall the definitions of these foliations and of the Euclidean structure.
Let q be a nonzero holomorphic quadratic differential on S, let (Ui, φi) be a
holomorphic chart in S, and let qi(z)dz

2 be an expression of q in that chart. If
z0 = φi(x) is the image by φi of a point x which is a nonzero point of q, then,
since qi(z0) 6= 0, taking if necessary a smaller neighborhood Ui of z0, we may

define a branch q
1
2

i of the square root of qi on that neighborhood. The integral
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Qi(z) =

∫ z

z0

qi(v)
1
2 dv is then a holomorphic function in z and it determines

a new holomorphic chart for S at the point x. The parameter w = Qi(z) is
called a distinguished parameter for q at the nonzero point x. In terms of that
parameter, the expression of q is dw2. (Remember that the differential dw
is only defined up to sign, but that dw2 is well-defined.) The distinguished
parameter w is unique up to addition of a complex constant and multiplica-
tion by −1. Therefore, it establishes an isometry between its domain in S and
an open subset of C equipped with its Euclidean metric. Thus, if Z(q) ⊂ S
denotes the set of zeroes of the quadratic differential q, the surface S \Z(q) is
equipped with a canonical Euclidean structure induced by q. At a zero of q of
order p, the Euclidean structure has a cone singularity of cone angle (p+ 2)π.
On S \ Z(q), the vertical (respectively horizontal) foliation is defined locally
by taking a distinguished parameter w = u + iv and transporting on the do-
main of this local chart the foliation by vertical (respectively horizontal) lines
u = constant (respectively v = constant) in C. Since the distinguished param-
eters are unique up to sign and up to translation in C, these foliations on the
various chart domains match up and give a well-defined vertical (respectively
horizontal) foliation on S \Z(q). It also follows from this construction that the
leaves of these foliations are local geodesics and are orthogonal with respect
to the canonical Euclidean structure on S \ Z(q) induced by q. Of course,
this Euclidean structure is the same as the Euclidean structure associated to
the pair of transverse measured foliations defined in Example 2.7. For more
details on quadratic differentials, we refer the reader to Strebel’s book [54].

Now we can define a map

p : Q(S) → T(S) (2.3)

by associating to each product foliation structure ([F1], [F2]) ∈ Q(S) the equiv-
alence class of conformal structures associated as in Example 2.7 to a pair
(F1, F2) representing ([F1], [F2]). By Lemma 2.17, the pair (F1, F2) is uniquely
defined up to isotopy. Therefore, the corresponding element of Teichmüller
space is well-defined. The foliation F1 (respectively F2) is called the horizontal
(respectively vertical) foliation of q. We shall say indifferently that the confor-
mal structure is represented by the pair (F1, F2) or by the pair ([F1], [F2]).

Jenkins and Strebel studied conformal structures defined by pairs of mea-
sured foliations, where the vertical foliation has a special property that we
state in the following definition:

Definition 2.19 (Jenkins-Strebel structure). A Jenkins-Strebel structure is a
product foliation structure ([F1], [F2]) such that [F2] is the equivalence class
of a measured foliation whose leaves are all compact.2

2Note that the fact that in this definition we talk about the vertical (rather than the
horizontal) foliation is just a matter of convention. In comparing the statements here with
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Notice that a measured foliation has all of its leaves compact if and only
if the subset of the surface consisting of the union of the leaves that start
at singular points is a compact subset of the surface. This subset is then a
graph, called the critical graph of the foliation. The complement of this graph
is a finite union of cylinders foliated by parallel leaves. The core curves of
these cylinders are essential and pairwise non-homotopic closed curves. The
property for a measured foliation to have all its leaves compact, if it holds for a
given measured foliation, holds for any equivalent foliation. A particular class
of Jenkins-Strebel structures is the class of product foliation structures whose
vertical measured foliations are foliations with one cylinder, that we already
considered above (Definition 2.2).

Jenkins studied in [26] (what we now call) Jenkins-Strebel structures as
solutions of certain extremal problems concerning maps between Riemann sur-
faces. It follows from his work and from the work of Strebel in [53] that for
any Riemann surface S and for any measured foliation F on S whose leaves
are all compact, there exists a unique Jenkins-Strebel structure whose vertical
foliation is equivalent to F and whose underlying conformal structure is the
given one on S. The following more general result was obtained later on by
Hubbard and Masur:

Theorem 2.20 (Hubbard & Masur [24]). For any Riemann surface S and
for any measured foliation F on S, there exists a unique product foliation
structure whose underlying conformal structure is the one of S and whose
vertical foliation is equivalent to F . Moreover, the map ψ : MF(S) × T(S) →
Q(S) that associates to any Riemann surface S and to any measured foliation
class [F ] this uniquely defined element of Q(S) is a homeomorphism.

This implies in particular that the map p : Q(S) → T(S) defined in (2.3) is
surjective.

Theorem 2.20 was proved by Hubbard and Masur in the case where S is a
closed surface, and another proof was given by Kerckhoff [27]. An adaptation
for the case of non-closed surfaces is contained in [20].

Theorem 2.20 gives the following parametrization of Teichmüller space:
Given a measured foliation F on S, let MF(F ) be the space of measured

foliation classes that are representable by measured foliations transverse to a
measured foliation equivalent to F . For each [F ] in MF, we have a map

ψ[F ] : T → MF(F ) (2.4)

obtained by restricting the map ψ of Theorem 2.20 to the subset {[F ]}× T of
MF × T. By Theorem 2.20, the map ψ[F ] is a homeomorphism. We regard
this map as a parametrization of Teichmüller space by the subset MF(F ) of

statements in the papers of some of the papers that we refer to, one has to be careful about
the conventions used in those papers.
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measured foliation space. The flowlines of the natural action of R∗
+ on MF

correspond by this parametrization to images of geodesic lines in Teichmüller
space, for the Teichmüller metric that we recall below.

Using Theorem 2.20, it is possible to compute explicitely the extremal
length of some particular measured foliation classes, for Kerckhoff’s extension
of the extremal length function ext : MF → R+ (Theorem 2.15).

Theorem 2.21 (Kerckhoff [27] p. 34). Let S be a closed Riemann surface
defined by two transverse measured foliations F1 and F2 as in Example 2.7.
Then, ext([F1]) and ext([F2]) are equal to the total area of the singular flat
metric associated to the pair (F1, F2).

Remember that a homotopy class of essential simple closed curves consid-
ered as an element of MF is represented by a measured foliation with one
cylinder whose height is equal to 1 (see (2.1) above). Therefore, if the foliation
F1 in the statement of Theorem 2.21 is a foliation with one cylinder whose
height is h, then we have ext([F1]) = h2ExtS(γ), which gives by Theorem 2.14

ext([F1]) = h2 `

h
= `h, where ` is the length of a closed leaf of the foliation of

the cylinder, the length being computed in the singular flat metric defined by
the two transverse foliations F1 and F2. This value `h is the total area of that
singular flat metric. Thus, the proof of Theorem 2.21 for ext([F1]) follows from
Theorem 2.14 which contains that result in the particular case where F1 is a
foliation with one cylinder, and from the continuity of the map ψ of Theorem
2.20. By symmetry, the same result holds for ext([F2]).

Note that in view of Theorem 2.21 and of the quadratic behaviour in The-
orem 2.15, extremal length should be considered as an area rather than as a
length.

Remark 2.22 (Area and intersection number). The geometric intersection
function i : S × S → R+ is defined by

i(γ1, γ2) = min Card{C1 ∩ C2},

where the minimum is taken over all simple closed curves C1 and C2 in the
homotopy classes γ1 and γ2 respectively. Thurston showed that this function
i extends as a continuous function i : MF × MF → R+, called the geometric
intersection function for measured foliations, which extends the map i(F, γ)
defined in (2.2) above. If F1 and F2 are two transverse measured foliations,
then the intersection i([F1], [F2]) is equal to the area of the singular flat metric
that this pair defines.
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2.4 The Teichmüller metric

Definition 2.23 (The Teichmüller metric). Let G and H be two conformal
structures on S. The Teichmüller distance between G and H is given by

dT (G,H) =
1

2
inf
f

logK(f)

where the infimum is taken over all quasiconformal homeomorphisms f : G →
H that are isotopic to the identity. Since the value dT (G,H) remains un-
changed if we replace G or H by an isotopic conformal structure, the map
dT induces a map on Tg,n × Tg,n. This map is a metric, and it is called the
Teichmüller metric. We shall denote it by dT .

The symmetry of the map dT follows from the fact that the inverse of
a quasiconformal homeomorphism is a quasiconformal homeomorphism with
the same quasiconformal dilatation. The triangle inequality follows from the
fact that the composition of a K1-quasiconformal homeomorphism with a K2-
quasiconformal homeomorphism is a K1K2-quasiconformal homeomorphism.

From the way we introduced the quasiconformal dilatation of a homeomor-
phism, Definition 2.23 gives the Teichmüller distance between two Riemann
surfaces as a comparison between moduli of quadrilaterals in these surfaces.
The following theorem gives a characterization of the Teichmüller distance as
a comparison between extremal lengths.

Theorem 2.24 (Kerckhoff [27] p. 36). Let S be a closed surface and let G and
H be two conformal structures on S. The Teichmüller distance between G and
H is equal to

dT (G,H) =
1

2
log sup

γ∈S

ExtH(γ)

ExtG(γ)
.

Remarks 2.25. 1) By Kerckhoff’s extension of the extremal length function
to MF (Theorem 2.15) and the fact that the set {xγ | x ∈ R∗

+, γ ∈ S} is dense
in MF (Theorem 2.4), the Teichmüller distance is also given by

dT (G,H) =
1

2
log sup

[F ]∈MF

extH([F ])

extG([F ])
, (2.5)

and by

dT (G,H) =
1

2
log sup

[F ]∈PMF

extH([F ])

extG([F ])
. (2.6)

Note that to simplify notation, we are using in 2.6 the same notation, [F ],
to denote the equivalence class of F in MF and that in PMF.
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In order to see that the last expression is meaningful (even though the value

extH([F ]) is not defined for [F ] in PMF), notice that the ratio
extH([F ])

extG([F ])
in in

(2.6) is defined by choosing a representative in MF of the element [F ] in PMF

and that the value of this ratio is independent of the choice that we make.
Formula (2.6) is more useful than Formula (2.5) because the space PMF is

compact, and therefore the supremum is attained.

2) In particular, we have sup
[F ]∈MF

extH([F ])

extG([F ])
= sup

[F ]∈MF

extG([F ])

extH([F ])
, and we

note right away that the corresponding quotients that define Thurston’s asym-
metric metric (see Section 3 below) are not equal.

3) Teichmüller’s metric is a Finsler metric.

2.5 Teichmüller maps and Teichmüller geodesics

Definition 2.26 (Teichmüller map). A Teichmüller map is the identity map
f : (S,G) → (S,H), where G and H are two conformal structures on S that
are defined as follows: there exist two transverse measured foliations F1 and
F2 and a positive real λ, such that G is the conformal structure associated to
the pair (F1, F2) as in Example 2.7 and H is the structure associated to the
pair ((1/λ)F1, λF2).

Remark 2.27. In terms of the distinguished local coordinate z = x + iy
associated to the conformal structure determined by the pair (F1, F2), the
homeomorphism f of Theorem 2.26 is defined by

(x, y) 7→ ((1/λ)x, λy). (2.7)

The local quasiconformal dilatation Kz(f) of f is constant on S, and it is equal
to max(λ2, 1/λ2).

If we start with a topological surface S equipped with a pair (F1, F2)
of transverse measured foliations, and a positive real number λ, then we
can define an associated Teichmüller map. This map is the identity map
on S equipped with the conformal structure (F1, F2) on the domain and
((1/λ)F1, λF2) on the target. In other words, we can consider a Teichmüller
map as defining a new conformal atlas on the surface S, obtained by compos-
ing each local chart of the conformal structure defined by (F1, F2) with the
real-affine map defined, using the distinguished local coordinates, by Formula
(2.7) (see Figure 9).

Theorem 2.28 (Teichmüller [55], [56]). For any two conformal structures G
and H on S, we can find two transverse measured foliations F1 and F2 and a
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positive real λ such that (F1, F2) represents the structure G and ((1/λ)F1, λF2)
represents the structure H. Furthermore, the Teichmüller map associated to
these conformal structures G and H is the unique homeomorphism that has
the least quasiconformal dilatation among the homeomorphisms between G and
H that are isotopic to the identity.

Remark 2.29. By Theorem 2.28, the least quasiconformal dilatation depends
only on the equivalence classes g and h of G and H respectively.

Definition 2.30 (Teichmüller line and Teichmüller ray). A Teichmüller line
(respectively Teichmüller ray) is a map ` : R → T(S) (respectively ` : [0,∞[→
T(S)) defined by t 7→ `(t) = (e−tF1, e

tF2) where F1 and F2 are transverse
measured foliations on S. (Here, as usual, we are identifying each pair of
transverse measured foliations with the equivalence class of conformal struc-
tures that it determines, as in Example 2.7.) We say that the ray ` starts
at the (equivalence class of the) conformal structure determined by the pair
(F1, F2). By abuse of language, we shall say that F1 (respectively the measured
foliation class, the projective class of F1) is the horizontal measured foliation
(respectively measured foliation class, the projective class) of the geodesic line
(or ray), and that F2 is its vertical measured foliation (respectively measured
foliation class, projective class). (In fact, the pair, and therefore, the foliations
are defined up to a constant factor.)

Recall that if X is a metric space, then a geodesic (respectively a geodesic
line, geodesic ray) in X is a distance-preserving map from a compact interval
of R (respectively from R, from an interval of the form [a,∞) with a ∈ R) into
X . If γ : [a, b] → X (respectively γ : [a,∞) → X) is a geodesic (respectively
a geodesic ray) in X , then we say that γ starts at the point γ(a) ∈ X , and
that γ connects the points γ(a) and γ(b) in X . A local geodesic in X is a map

Figure 9. The effect of a Teichmüller map in local coordinates, with λ > 1 (λ
is the parameter in Definition 2.26).
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from an interval I of R into X such that each point in the interior of I has a
neighborhood such that the restriction of the map to that neighborhood is a
geodesic.

We also recall that a metric space X is said to be geodesic if any two points
in X can be connected by a geodesic, and that a metric space is said to be
proper if its closed balls are compact.

The following is a basic result on the metric structure of Teichmüller space
(cf. Kravetz [31]).

Theorem 2.31 (Teichmüller geodesics). Teichmüller space Tg,n, equipped with
the Teichmüller metric, is complete, proper and geodesic. Furthermore, each
pair of distinct points in Tg,n is contained in the image of a geodesic line which
is unique up to reparametrization. Teichmüller lines are geodesic lines for the
Teichmüller metric, that is, for each Teichmüller line ` : R → Tg,n, we have,
for each t1 and t2 in R, dT (`(t1), `(t2)) = |t2 − t1|. Furthermore, all the
bi-infinite geodesic lines for that metric are of this form.

The following theorem is also well-known. We provide a proof because it
follows directly from previously mentioned results.

Theorem 2.32. Let S be a closed surface, let t ∈ R, let F1 and F2 be two
transverse measured foliations on S and let G and H be the conformal struc-
tures associated respectively to the pair (F1, F2) and (e−tF1, e

tF2). Then, the
Teichmüller distance between G and H is equal to |t|. Furthermore, for t > 0
(respectively t < 0), the measured foliation F1 (respectively F2) realizes the
supremum in Formula (2.5) for the Teichmüller distance between the two con-
formal structures defined by G and by H.

Proof. By Remark 2.27, the quasiconformal dilatation of the Teichmüller map
between the conformal structures defined by (F1, F2) and (e−tF1, e

tF2) in the
domain and target respectively is equal to max(e−2t, e2t) = e2|t|. This gives

dT (G,H) =
1

2
log e2|t| = |t|.

Suppose now that t > 0. By Theorem 2.21 and Remark 2.22, we have

extG(F1) = i(F1, F2)

and

extH(e−tF1) = i(e−tF1, e
tF2) = i(F1, F2).

Therefore, we have, by Theorem 2.15

extH(F1)

extG(F1)
=
e2textH(e−tF1)

extG(F1)
=
e2ti(F1, F2)

i(F1, F2)
= e2t.
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Thus,

dT (G,H) =
1

2
log

extH(F1)

extG(F1)
= t.

For t < 0, we can obtain the required result by the same reasoning applied to
the Teichmüller map from the structure to the structure (e−tF1, e

tF2) to the
structure (F1, F2).

2.6 On the asymptotic behaviour of Teichmüller rays.

Definition 2.33 (Jenkins-Strebel geodesic). A Jenkins-Strebel geodesic line
(respectively a Jenkins-Strebel geodesic ray) is a Teichmüller geodesic line (re-
spectively geodesic ray) defined by t 7→ (e−tF1, e

tF2) where the vertical mea-
sured foliation F2 has all of its leaves compact.

In other words, a Jenkins-Strebel geodesic ray is a geodesic ray that starts
at a Jenkins-Strabel structure (see Definition 2.19).

Recall that if a measured foliation has all its leaves compact, then it con-
sists of a finite union of maximal foliated cylinders with disjoint interiors, each
cylinder foliated by homotopic leaves. The homotopy classes of leaves associ-
ated to different maximal cylinders are distinct. Thus, to each Jenkins-Strebel
geodesic line or ray we can associate a system of homotopy classes of dis-
joint and pairwise nonhomotopic essential simple closed curves on the surface,
which we shall henceforth call the vertical system of homotopy classes. In other
words, these are the homotopy classes of the nonsingular closed leaves of the
associated vertical measured foliation. We shall use the following definition:

Definition 2.34 (Similar Jenkins-Strebel rays, cf. Masur [36] p. 211). Two
Jenkins-Strebel geodesic rays are said to be similar if the associated vertical
system of homotopy classes of closed curves are equal.

Theorem 2.35 (Masur [36]). Let S be a closed surface and let r1 : [0,∞) → T

and r2 : [0,∞) → T be two similar Jenkins-Strebel rays starting at the same
point. Then there exists N > 0 such that dT (r1(t), r2(t)) ≤ N for all t ∈ [0,∞).

In his paper [27], Kerckhoff studied the relative asymptotic behaviour of
pairs of Jenkins-Strebel rays that do not necessarily start at the same point.
To state a result, we need the following

Definition 2.36 (Modularly equivalent Jenkins-Strebel rays, cf. Kerckhoff
[27] p. 29). Consider two similar Jenkins-Strebel geodesic rays r1 : [0,∞) → T

and r2 : [0,∞) → T and let γ1, . . . , γn be their associated vertical system of ho-
motopy classes of simple closed curves. For every t ∈ [0,∞), we consider the
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sequences of moduli m1, . . . ,mn (respectively m′
1, . . . ,m

′
n) of the homotopy

classes γ1, . . . , γn, defined with respect to the Riemann surface r1(t) (respec-
tively r2(t)). We say that the two rays r1 and r2 are modularly equivalent if
these two sequences of moduli are the same up to a multiplicative constant.
(Note that if this condition holds for some t > 0, then it holds for any t > 0.)

Unlike the property of similarity between pairs of Jenkins-Strebel rays (Def-
inition 2.34), modular equivalence is a property that involves both the vertical
and horizontal foliations of the rays.

Theorem 2.37 (Kerckhoff, [27] p. 29). Let S be a closed surface and let
r1 : [0,∞) → T and r2 : [0,∞) → T be two similar Jenkins-Strebel rays (that
do not necessarily start at the same point) whose vertical system of homotopy
classes of simple closed curves have 3g− 3 elements (which is the largest pos-
sible number of elements such a system can have). Then, the following are
equivalent:

(1) r1 and r2 are modularly equivalent;

(2) lim
t→∞

inf
M=Im(r2(t))

d
(
M, Im(r1)

)
= 0.

(Here, Im denotes the image set of a map.)

2.7 The Teichmüller boundary and convergent rays

The following definition is contained in Kerckhoff’s paper [27].

Definition 2.38 (The Teichmüller boundary). Let M be a point of T. The
Teichmüller boundary of T relative to the basepoint M , denoted by ∂MT, is
the set of geodesic rays (for the Teichmüller metric) starting at M , equipped
with the topology of uniform convergence on compact sets.

Kerckhoff studied a compactification of Teichmüller space obtained by tak-
ing a basepoint M and putting an endpoint at each Teichmüller ray starting
at that point. The result is a topological space TM = T ∪∂MT which is home-
omorphic to a closed (6g − 6 + 2n)-dimensional ball, equipped with a natural
center (the point M) and a ray structure (i.e. an action of R∗

+), in which the
closure of the image of each ray starting at M is the union of that image with a
single point in ∂MT (see [27] p. 31). Kerckhoff calls such a compactification of
T a Teichmüller compactification (the name referring to Teichmüller’s metric
and not only to Teichmüller space), and one of the main objects of the paper
[27] is the study of the dependence of such a compactification on the base-
point. For instance, a natural question which Kerckhoff addresses is whether
a Teichmüller ray, starting at some point other than the basepoint, has also a
unique limit point in ∂MT. He makes the following definition:
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Definition 2.39 (Convergent rays, cf. Kerckhoff [27] p. 28). Let M be a
basepoint in Teichmüller space T and consider the corresponding Teichmüller
boundary ∂MT. Let r′ : [0,∞) → T be a geodesic ray starting at some other
point M ′ in T, and let Im(r′) be its closure in TM . Then, r′ is said to be
convergent in TM if Im(r′) \ Im(r′) consists of a single point. In that case,
Im(r′) \ Im(r′) is the endpoint of some geodesic ray r starting at M , and the
ray r′ is said to be convergent to the ray r.

For any element γ in S and for any M in T, we know, by Theorem 2.20,
that there exists a unique Jenkins-Strebel ray rM,γ that starts at M and whose
vertical foliation has one cylinder, with core curve in the homotopy class γ.

Theorem 2.40 (Kerckhoff [27] p. 29). Let S be a closed surface. Then, for
any homotopy class γ of essential simple closed curves and for any M and
M ′ in T, the Jenkins-Strebel ray rM,γ is convergent to the Jenkins-Strebel ray
rM ′,γ.

Theorem 2.41 (Kerckhoff, [27] p. 29). Let S be a closed surface and let r1 :
[0,∞) → T and r2 : [0,∞) → T be two similar Jenkins-Strebel rays with
vertical system of homotopy classes of curves having the largest possible number
of elements (that is, 3g − 3 elements). Then, r1 and r2 are convergent if and
only if they are modularly equivalent.

2.8 Convergence to Thurston’s boundary

A natural question to consider is whether a Teichmüller ray converges to a
point on Thurston’s boundary PMF of Teichmüller space. We have postponed
the definition of Thurston’s boundary to Section 3 below (§3.12) since its
natural setting is hyperbolic geometry, but we nonetheless state here a result
of Masur about convergence of Teichmüller rays to points on that boundary:

Theorem 2.42 (Limits of Jenkins-Strebel rays, Masur [39]). Let S be a closed
surface, let r : [0,∞) → T be a Jenkins-Strebel ray and let α1, . . . , αn be the
associated vertical system of homotopy classes. Let F = F (α1, . . . , αn) be
a measured foliation whose nonsingular leaves are all compact, such that the
complement of the critical graph of F consists of n cylinders whose core curves
are in the classes α1, . . . , αn and such that the height of each of these cylinders
is equal to one. Then, the ray r converges to the projective class [F ], considered
as a point in Thurston’s boundary of Teichmüller space.

It follows from Theorem 2.42 that there are pairs of points on Thurston’s
boundary that are limits of a large family of Teichmüller geodesics. Indeed,
let F1 and F2 be two transverse measured foliations whose nonsingular leaves
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are all compact and such that for each of these foliations, the height of each
foliated cylinder in the complement of the critical graph is equal to 1. One
can see that such pairs exist from the fact that for each element [F ] in MF,
the subset MF(F ) of equivalence classes representable by measured foliations
transverse to a representative of [F ] is open, theorefore, by the minimality of
the action of the mapping class group on PMF ([19] p. 117), this open set con-
tains a conjugate of the equivalence class of any given measured foliation. By
the same argument, for any 1 ≤ m ≤ 3g− 3 and 1 ≤ n ≤ 3g− 3, we can also
choose F1 (respectively F2) to have its nonsingular closed leaves in m (respec-
tively n) distinct homotopy classes. Let c1, . . . , cm (respectively c′1, . . . , c

′
n) be

these homotopy classes. Let F1 (respectively F2) be now an arbitrary mea-
sured foliation having all of its nonsingular leaves compact and with associated
homotopy classes c1, . . . , cm (respectively c′1, . . . , c

′
n). By Theorem 2.42, the

Teichmüller geodesic line t 7→ (e−tF1, e
tF2) has [F1] and [F2] as its limit points.

Note that if the projective equivalence classes of two such pairs (F1, F2) and
(F ′

1, F
′
2) are distinct, then, by Teichmüller’s uniqueness theorem, the images

of the two geodesics t 7→ (e−tF1, e
tF2) and t 7→ (e−tF ′

1, e
tF ′

2) have at most one
common point. Thus, we have a large family of Teichmüller geodesics whose
limit points are [F1] and [F2].

We recall that a measured foliation F is said to be uniquely ergodic if F , as a
topological foliation, carries a unique transverse measure up to a multiplicative
factor. The property of being uniquely ergodic is invariant by Whitehead-
equivalence and by homothety. Therefore one can talk about uniquely ergodic
projective classes of measured foliations.

We shall also use the following terminology from [19]: a measured foliation
F is said to be arational if it does not contain any closed curve made up of seg-
ments connecting singular points. Equivalently, up to performing Whitehead
moves on F , every leaf of F is dense in the surface.

Theorem 2.43 (Limits of Teichmüller rays with uniquely ergodic vertical fo-
liations, Masur [39]). Let S be a closed surface. Then, any Teichmüller ray
whose associated vertical foliation is arational and uniquely ergodic converges
in the positive direction to the projective equivalence class of that vertical foli-
ation, considered as an element of Thurston’s boundary of Teichmüller space.

There is a natural Lebesgue measure on the space MF, which is provided,
for instance, by train track coordinates (see [60] and [49]). By a result which
was proved independently by Masur and by Veech (see [38] and [66]), the
subspace of MF consisting of equivalence classes of uniquely ergodic measured
foliations is of full measure with respect to that measure. This measure on MF

defines a measure class on the set of geodesic rays starting at any given point
M of Teichmüller space. This can be seen by referring to the result of Hubbard
and Masur stated in Theorem 2.20 which says that for any element M ∈ T and
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for any measured foliation class [F1] ∈ MF, there exists a unique measured
foliation class [F2] ∈ MF such that the conformal structure defined by the
pair (F1, F2) is M . Thus, the pair (F1, F2) can be regarded as a direction in
Teichmüller space, at the point M , that is, the direction of the ray defined by
t 7→ (e−tF1, e

tF2) starting M . In this sense, Theorem 2.43 says that for any
point M in Teichmüller space, almost any geodesic starting at M converges to
a point in Thurston’s boundary, which is the equivalence class of the vertical
foliation of that ray.

In a recent preprint, A. Lenzhen gave an explicit example of a Teichmüller
ray that does not have a limit in PMF. We state this as

Theorem 2.44 (Teichmüller rays with no limit in PMF, Lenzhen [33]). On
the closed surface of genus 2, there exists a Teichmüller ray that does not
converge to any point in Thurston’s boundary PMF.

The construction of that ray is based on an arithmetic property of the
measured foliations associated to the geodesic ray considered.

The asymptotic behaviour of an arbitrary Teichmüller geodesic ray in terms
of the dynamical/topological properties of its vertical foliation is still an open
question.

2.9 On the visual boundary of the Teichmüller metric

We start by recalling a general definition.

Definition 2.45 (Asymptotic geodesic rays). Let (X, d) be a metric space.
Two geodesic rays r1 : [a1,∞) → X and r2 : [a2,∞) → X are said to be
asymptotic if the function defined on [0,∞) by t 7→ d

(
r1(t+ a1), r2(t+ a2)

)
is

bounded.

It is clear that the relation of being asymptotic is an equivalence relation
on the set of geodesic rays in a metric space. We shall write r1 ∼ r2 to say
that the two geodesic rays r1 and r2 are asymptotic.

Definition 2.46 (The visual boundary). Let X be a proper geodesic metric
space and let x be a point in X . The visual boundary of X at x, denoted by
∂vis,xX , is the set of equivalence classes (for the relation ∼) of geodesic rays
starting at x, equipped with the quotient of the topology of convergence on
compact sets.

Note that the visual boundary at a point in Teichmüller space equipped
with the Teichmüller metric is a quotient of the Teichmüller boundary relative
to that point.
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In the paper [42], based on Masur’s result stated as Theorem 2.35 above,
the following is proved

Theorem 2.47 (McCarthy-Papadopoulos [42]). Let S be a closed surface.
For any point x in the Teichmüller space T(S) equipped with the Teichmüller
metric, the visual boundary ∂vis,xT(S) is not Hausdorff.

This result was used to give a new proof of the fact due to Masur and Wolf
that Teichmüller space equipped with the Teichmüller metric is not Gromov
hyperbolic cf. [40].

3 Thurston’s asymmetric metric

3.1 Hyperbolic structures

Definition 3.1 (Hyperbolic structure). A hyperbolic structure on S is a max-
imal atlas {(Ui, φi)}i∈I where for each i ∈ I, Ui is an open subset of S and φi

is a homemorphism from Ui onto an open subset of the hyperbolic plane H2,

satisfying
⋃

i∈I

Ui = S and such that any map of the form φi◦φ−1
j is, on each con-

nected component of φj(Ui ∩ Uj), the restriction of an orientation-preserving
isometry of H2.

A surface equipped with a hyperbolic structure is called a hyperbolic sur-
face. It carries a length metric defined as follows. On each chart domain Ui,
we pull-back by the map φi the metric on φi(Ui) induced from its inclusion
in H2. These metrics on the various sets Ui give a consistent way of measur-
ing lengths of paths in S, and the metric we consider on S is the associated
length metric. It is a Riemannian metric of constant curvature −1. The metric
universal covering of S is a subset of hyperbolic plane H

2.
If we regard the various φi’s as diffeomorphisms (instead of homeomor-

phisms), then we can pull-back the Riemannian metrics on φi(Ui) to the var-
ious sets Ui. This is another way of defining the Riemannian metric on S.
In any case, a hyperbolic structure is also regarded as a metric on S, called a
hyperbolic metric. We shall only consider hyperbolic metrics that are complete
and of finite area. Equivalently, these are the metrics that have the property
that each puncture of S has a neighborhood which is isometric to a cusp, that
is, the quotient of a subset {x + iy | y > a} (a > 0) of the upper half-plane
model of H2 by the map z 7→ z + 1. Equivalently, these are the metrics for
which the metric universal cover is H2 (see [65]).

The group Hom(S) of orientation preserving homeomorphisms of S acts on
the set of hyperbolic structures in the same way as it acts on the set of con-
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formal structures (cf. Definition 2.8), and, again, we say that two hyperbolic
structures are equivalent if they are related by a homeomorphism of S which
is isotopic to the identity.

There is a natural one-to-one correspondence between the set of equivalence
classes of hyperbolic structures and the set of equivalence classes of conformal
structures on S. This correspondence is given by the quotient of the map
which assigns to each hyperbolic structure its underlying conformal structure
(Example 2.6 above). The fact that the hyperbolic structure is complete and
of finite area implies that the neighborhood of each puncture is conformally a
punctured disk (with respect to conformal structure associated to that hyper-
bolic metric). Using this natural correspondence, one can make the following
definition, which is an equivalent form of Definition 2.8 above:

Definition 3.2 (Teichmüller space). The Teichmüller space of S, denoted
by Tg,n(S) or T(S), is the space of equivalence classes of complete finite area
hyperbolic structures on S.

By abuse of language, we shall often call an element of Teichmüller space
a “hyperbolic structure” instead of an equivalence class of hyperbolic struc-
tures. We shall also use interchangeably the terms “hyperbolic structure” and
“hyperbolic metric”.

The topology of T(S) can be defined using several metrics. For instance, it
is induced by the “quasi-isometry” metric dqi given by

dqi(g, h) =
1

2
log inf{K} (3.1)

where the infimum is taken over the set of real numbers K ≥ 1 such that there
exists a K-quasi-isometry between g and h, that is, a map f : S → S satisfying

1

K
dg(x, y) ≤ dh

(
f(x), f(y)

)
≤ Kdg(x, y)

(see Thurston [65] p. 266).
We can also describe the topology of T(S) by means of the length functional

l : T(S) → RS
+ defined by

g 7→ lg(.) : α 7→ lg(α), ∀α ∈ S, (3.2)

with lg(α) being the length of the unique g-geodesic in the homotopy class
α. This map l is an embedding, and the topology of T(S) induced by the
metric defined in (3.1) coincides with the one induced on the image of l by the
weak topology on the space R

S
+. Thus, a sequence (gn)n≥0 in T(S) converges

as n → ∞ to an element g ∈ T(S) if and only if for every α in S, we have
lgn(α) → lg(α) as n → ∞. In fact, more is true: there exists a finite set
{α1, . . . , αk} of homotopy classes of simple closed curves in S such that an
arbitrary sequence (gn)n≥0 in T(S) converges to an element g in that space
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if and only if for every i = 1, . . . , k we have lgn(αi) → lg(αi) as n → ∞.
(For a proof in the case of closed surfaces, see [19].) Finally, let us note that
this topology on T(S) is the one induced by Teichmüller’s metric, and also by
Thurston’s asymmetric metric, which will be the main object of study in this
section (see §3.7 below).

3.2 Decompositions by generalized pairs of pants and by
ideal triangles

By studying the representation of conformal structures on a surface Sg,n by
hyperbolic structures one can easily get an intuition of the fact that its Te-
ichmüller space is homeomorphic to an open ball of dimension 6g − 6 + 2n, a
fact that is harder to conceive when one starts with the purely conformal point
of view (that is, Definition 2.8). The statement that the space of deformations
of equivalence classes of conformal structures on a closed orientable surface of
genus g ≥ 2 is of complex dimension 3g − 3 was made by G. F. B. Riemann
(without giving a formal proof) in his paper Theorie der Abel’schen Func-
tionen, Crelle J., B. 54 (1857). A homeomorphism Tg,n ' R6g−6+2n, if one
does not use hyperbolic geometry, can be obtained using Teichmüller’s results.
But when the surface Sg,n is equipped with a hyperbolic structure, it is easy
to produce such a homeomorphism using a decomposition of the surface into
objects we call “generalized hyperbolic pairs of pants” with geodesic bound-
ary. Another way to realize that homeomorphism, in the case where the set
of punctures of S is not empty, can be achieved by using ideal triangulations.
Our aim in this section is to discuss these two sorts of decompositions.

We recall that a hyperbolic pair of pants is a sphere with three open disks
removed, equipped with a hyperbolic metric for which the three boundary
components are geodesic.3 A degenerate hyperbolic pair of pants is a complete
finite area hyperbolic surface which is either a sphere with three cusps, or a
sphere with two cusps and one open disk removed, or a sphere with one cusp
and two open disks removed, and where the boundary components, whenever
they exist, are closed geodesics (see Figure 10). There is a precise sense in
which any degenerate hyperbolic pair of pants is a limit of a family of hyper-
bolic pairs of pants. This can be seen from the construction of hyperbolic pairs
of pants using right-angled hexagons, which we now briefly recall.

The classification of hyperbolic structures on a pair of pants with geodesic
boundary is usually done by decomposing the pair of pants into two isomet-
ric right-angled hexagons. The isometry class of a right-angled hexagon is
completely determined by the lengths of any three alternating edges. For an

3In talking here about curves in the surface S, it should be noted that the term geodesic

is used in the sense of Riemannian geometry, that is, in the sense of (the image of) a locally
isometric map, as opposed to the other possible use of that word, denoting an isometric
map.
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exposition of this fact, we refer the reader to Thurston’s book [65] (Exercise
2.4.11, Example 4.6.7 and Figure 4.15).

Consider a right-angled hexagon in hyperbolic space H2. If we make the
length of one of its edges tend to zero while keeping fixed the other two which
form with the degenerating edge an alternating triple of edges, and keeping all
the angles to be right angles, the vertices of the degenerating edge converge
to a single point in the boundary of hyperbolic space, and the right-angled
hexagon becomes, at the limit, an object we call a degenerate right-angled
hexagon (see Figure 11 for a picture of such a hexagon). Likewise, we can
make (successively) the lengths of two or of three alternating edges tend to
zero. We obtain in this manner degenerate right-angled hexagons with one,
two or three edges at infinity, called spikes. Note that a degenerate right-
angled hexagon with three edges at infinity is a hyperbolic ideal triangle (that
is, the convex hull, in the hyperbolic plane H2, of three distinct points in
the boundary of that plane). A degenerate right-angled hexagon with one,
two or three edges at infinity is completely determined up to isometry by the
lengths of the edges that make with the one (or the ones) at infinity a triple
of alternating edges. Since a hyperbolic pair of pants is obtained by gluing
two isometric right-angled hexagons along three alternating edges, it is easy
to see that the isometry type of the pair of pants is completely determined by
the lengths of its three boundary geodesics. Likewise, a hyperbolic structure
on a degenerate pair of pants is completely determined by the lengths of its
boundary geodesic curves, a cusp being considered as a boundary curve of
length zero. In this sense, the hyperbolic structure is rigid at the cusps. For
instance, a degenerate right-angled hexagon with three alternating edges at
infinity is a hyperbolic ideal triangle, and, as is well-known, there is a unique
hyperbolic ideal triangle up to isometry. In the same way, any two degenerate
hyperbolic pairs of pants that are spheres with three cusps are isometric. We
shall call a generalized hyperbolic pair of pants either a hyperbolic pair of pants
in the usual sense, or a degenerate hyperbolic pair of pants with one, two or
three cusps.

Figure 10. Degenerate hyperbolic pairs of pants.
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A closed surface of genus g ≥ 2 is decomposable into 2g− 2 pairs of pants,
by using 3g − 3 simple closed curves (see [19]). Using this fact, we can count
the number of curves in a generalized pair of pants decomposition of a surface
of genus g with n cusps by first replacing each cusp (if such a cusp exists) by
a boundary closed curve, obtaining a surface with boundary that is homeo-
morphic to a closed surface of genus g with n open disks deleted. Doubling
that surface along its boundary curves, we obtain a closed surface of genus
2g + n − 1, which we can decompose into pairs of pants by using 6g − 6 + 3n

closed geodesics. By symmetry, we conclude that the number of closed curves
needed to decompose the surface Sg,n into generalized pairs of pants is 3g−3+n.

Now we can count the parameters for the Teichmüller space of a surface of
genus g with n punctures. Consider a set of closed geodesics decomposing that
surface into generalized hyperbolic pairs of pants. There are 3g − 3 + n such
geodesics. There are two parameters associated to each geodesic, one parame-
ter (in R∗

+) being the length of the geodesic itself, and the other parameter (in
R) describing the twist along that curve, when we glue together its two sides.
(The twist parameter is defined up to the choice of an origin corresponding to
the zero twist, and up to an orientation of the boundary component.) This
gives two sets of 3g − 3 + n real parameters each. Thus, we have 6g − 6 + 2n

parameters, which is an indication of the fact that Teichmüller space is home-
omorphic to R6g−6+2n. For a geometric and concise proof in the case where
n = 0, we refer the reader to Thurston [65] p. 271. There are also proofs of
that fact in [1, 8, 19, 25]. These length-twist parameters associated to a (gen-
eralized) pair of pants decomposition are called (generalized) Fenchel-Nielsen
parameters.

Another way of obtaining a homeomorphism Tg,n ' R
6g−6+2n uses a de-

composition of Sg,n into ideal triangles, and we now describe it in the case
where n ≥ 1. Recall that any hyperbolic ideal triangle has a well-defined cen-
ter (its center of gravity), and one distinguished point on each of its edges,
which is the orthogonal projection on that edge of the center of gravity, or,
equivalently, the orthogonal projection on, that edge of the ideal vertex that
is opposite to that edge. An ideal triangulation λ of S = Sg,n is a decomposi-

tion of the associated closed surface Ŝ into triangular cells whose vertices are
all at the punctures. If S is equipped with a hyperbolic structure, then one
can make the edges of λ to be embedded bi-infinite local geodesics with limit
points at the punctures. (The bi-infinite local geodesics are, by definition,
embedded images of the bi-infinite geodesic lines in H2 realized as the metric
universal covering of the surface.) In this way, each face of λ is isometric to
the interior of a hyperbolic ideal triangle, and the hyperbolic structure on S
is determined by the gluing maps between the edges of these ideal triangles.
In this gluing, there is one parameter associated to each edge of λ, which we
can take to be the algebraic distance, called the shift parameter, between the
two distinguished points on that edge, each distinguished point being asso-
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ciated to one of the triangles adjacent to that edge. (Recall that using the
orientation on the surface S, one can define a notion of a left and of a right
shift along the edges of µ. The sign of the distance between the distinguished
points is then defined accordingly.) Thus, the Teichmüller space Tg,n of Sg,n

is seen from that point of view as the set of shift parameters on the edges of
an ideal triangulation λ of that surface, and a rough computation of the di-
mension of Tg,n can be done in the following way. Let E denote the number of
edges of λ and let T be the number of its faces (triangles). Since each triangle
has 3 boundary edges and since each edge is adjacent to 2 triangles, we have
E = 3T/2. The Euler characteristic of Sg,n is χ = 2 − 2g − n. We construct

an auxiliary foliation F on the surface Ŝ obtained from Sg,n by filling in the
punctures, such that F is transverse to the edges of the triangulation λ, with
a 3-prong singularity in the interior of each triangle, and with a center-type
singularity at each puncture. There is an index formula relating the sum of
the indices at the singular points of such a foliation to the Euler characteristic
χ of the surface (see for instance [19] p. 75). The formula says that 2χ is equal
to the sum of the indices of the singular points of the foliation. The index
of a 3-prong singularity is −1 and the index of a center-type singularity is 0.
Therefore, −2χ is equal to the number of 3-prong singularities, which is the
number of triangles. In other words, we have T = −2χ. Thus, we obtain

Figure 11. These four generalized polygons represent respectively a right-
angled hexagon and three degenerate right-angled hexagons in the upper half-
plane model of the hyperbolic plane.
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E = 3
2 (−2)(2 − 2g − n) = 6g − 6 + 3n. Now for the dimension of Teichmüller

space, there is one shift parameter associated to each edge and one equation
associated to each puncture; this is the equation which ensures that the hyper-
bolic structure near that puncture is complete, which is equivalent to the fact
that around each puncture of Sg,n, there is a foliation by closed leaves made
up of pieces of horocycles that are perpendicular to the edges that abut on
that puncture, see Definition 3.6 below. Therefore, the number of parameters
is E − n = 6g − 6 + 3n − n = 6g − 6 + 2n, as expected.

3.3 Geodesic laminations

Definition 3.3 (Geodesic lamination). Let S be a hyperbolic surface and let
p : H2 ' S̃ → S be its metric universal covering. A geodesic lamination on
S is a closed subset of S which is the union of disjoint images of bi-infinite
geodesics of H

2 by the covering map p such that if ` ⊂ S̃ is such a bi-infinite
geodesic, then, either

(1) the restriction of p to ` is injective, or

(2) p(`) is a simple closed geodesic on S.

The decomposition of a geodesic lamination as a union of such images of
bi-infinite geodesics of H2 is unique, and each such image is called a leaf of λ.
There are several good references on geodesic laminations. We refer the reader
to Thurston’s original notes [60], to the book by Penner and Harer [49] or to
the book by Casson and Bleiler [15].

By abuse of language, we shall sometimes call the leaves of λ geodesics
(rather than local geodesics). We shall talk about bi-infinite leaves of λ to
denote leaves of kind (1) above, and about closed leaves to denote leaves of
kind (2).

It is well-known that there is a natural one-to-one correspondence between
geodesic laminations associated to any two hyperbolic structures on a given
surface (see [34]). This makes it possible to talk about a geodesic lamination
on a surface without reference to any particular hyperbolic structure. In fact,
we shall sometimes call a geodesic lamination on a surface S an object which
is a geodesic lamination for some hyperbolic structure on S. Equivalently,
a geodesic lamination on S will be an object which is isotopic to a geodesic
lamination for any hyperbolic structure on S.

A geodesic lamination is said to be complete if there is no geodesic lamina-
tion that strictly contains it. Equivalently, a geodesic lamination λ is complete
if each connected component of S \λ, equipped with its intrinsic metric, is iso-
metric to the interior of a hyperbolic ideal triangle.

An ideal triangulation of a surface S = Sg,n with n ≥ 1 is an example of a
complete geodesic lamination on S.
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If λ is a geodesic lamination and if µ is any complete geodesic lamination
containing it, then we shall call µ a completion of λ.

Any non-complete geodesic lamination can be completed in several ways,
and it is interesting to understand these different ways because they will cor-
respond to various ways of constructing geodesics for Thurston’s asymmetric
metric which we shall study below. It is possible to complete any geodesic
lamination λ by inserting a finite number of bi-infinite geodesics in its com-
plement. The surface S \ λ has a finite number of connected components,
and the metric completion of each such connected component is a hyperbolic
surface with geodesic boundary (see [15]). In particular, if λ contains closed
leaves, then, in order to obtain a completion of λ, we can add geodesics that
spiral around the closed leaves. For instance, in any hyperbolic pair of pants
(with geodesic boundary), we can draw three bi-infinite geodesics that spiral
around the boundary components so that the complement of these bi-infinite
geodesics in the pair of pants is a union of the interiors of two hyperbolic ideal
triangles (see Figure 12). In fact, there are 32 distinct ways of completing a
hyperbolic pair of pants. If the lamination λ that we started with does not
have closed leaves, then we can still complete it by adding a finite number of
bi-infinite geodesics that “spiral along bi-infinite leaves of λ”. Spiraling (along
closed geodesics or along bi-infinite leaves) can be defined as an operation in
the universal covering of S, that consists in adding in an equivariant manner
to the lift of the lamination λ a certain number of geodesic lines that converge
in each direction to the limit point of the lift of some (finite or infinite) leaf of
λ. To be more precise, let us first suppose that all the leaves of λ are closed.
Let α and β be two closed leaves in λ and let us consider a segment c having
one endpoint on α and one endpoint on β, and whose interior is disjoint from
λ. Starting from the segment c, we define a continuous family of segments
(ct)t≥0 in S, with c0 = c, and such that for any t ≥ 0, the endpoints of ct are
on α and on β, and spin around these curves as t increases to ∞ with constant
speed. For each t ≥ 0, we can take the segment ct to be a local geodesic, its
interior being disjoint from the lamination λ. Let p : S̃ → S be again the
metric universal covering of S, with S̃ identified with the upper half-plane H2.
Consider a continuous family of segments (c̃t)t≥0 in H2, which lifts the family
(ct)t≥0 in S. For each t ≥ 0, the endpoints of the segment c̃t are on lifts α̃ and

β̃ of α and β. The family of geodesic segments (c̃t)t≥0 converges in an obvious
sense to the image of a bi-infinite geodesic line c̃ : R → H2 whose endpoints
are endpoints of α̃ and β̃. The distance from the point c̃(t) to the geodesic
lines α̃ and β̃ tends to 0 as t → ∞ or t → −∞ (and the convergence is of the
order of e−t). The covering map p : S̃ → S restricted to c̃ is injective, and the
image of c̃ by this map is a bi-infinite geodesic line in S which spirals at one
end around α and at the other end around β. We take this geodesic as a new
leaf in the completion of λ.
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To continue completing the geodesic lamination λ by filling-in the connected
components of S \ λ with bi-infinite geodesics, we must consider the general
case (that is, in the case where leaves of λ are not all closed). Each completed
connected component of the surface S cut along λ is a surface with boundary,
with each boundary being either a closed geodesic or a union of bi-infinite
geodesics, as in Figure 13. We can decompose each connected component of
S \λ into ideal triangles by successively inserting a finite number of bi-infinite
geodesics which at each end either spiral along a closed leaf or converge to one
of the ends of a bi-infinite leaf or converge to a cusp. The number of leaves
that we can add is bounded in terms of the topology of the surface since we
eventually decompose the surface into ideal triangles, each of them having a
fixed area (equal to π), and the area of the hyperbolic surface S is a topological
invariant.

Figure 12. One way of obtaining complete geodesic laminations on a closed
surface is to divide that surface into hyperbolic pairs of pants, and then decom-
pose each pair of pants by bi-infinite leaves that spiral around the boundary
components, as in the example drawn here. The stump of the complete lami-
nation that we obtain is the union of the closed geodesics defining the pair of
pants decomposition.

Figure 13. A possible component of the surface S cut along the lamination µ.
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Definition 3.4 (Measured geodesic lamination). A measured geodesic lami-
nation λ on a hyperbolic surface is a geodesic lamination which is equipped
with a nonnegative Radon measure on each transverse arc. Furthermore, the
measure is invariant under homotopies of the arc respecting the lamination λ
and the support of the measure is equal to the intersection of the arc with the
support of λ.

To each measured geodesic lamination λ is associated an element of the
function space RS

+, by a rule analogous to the one that associates to each
measured foliation an element of RS

+ (see (2.2) above). On a given hyperbolic
surface, two distinct measured geodesic laminations define distinct elements of
RS

+, unlike pairs of measured foliations which are more flexible objects. (There
is no need to talk about isotopy or Whitehead-equivalence relation between
geodesic laminations on the same hyperbolic surface.) The two subsets of
RS

+ consisting respectively of images of equivalence classes of measured foli-
ations and images of measured geodesic laminations coincide, and this fact
can be used to define a one-to-one correspondence between spaces of equiv-
alence classes of measured foliations on a surface S and spaces of measured
geodesic laminations on the surface S equipped with a hyperbolic structure.
Note that there is an alternative and more geometric procedure to associate
to each measured foliation class a measured geodesic lamination, which gives
the same correspondence between the two sets (see for instance [34]).

We already mentioned that there is a natural one-to-one correspondence
between sets of geodesic laminations on the surface S equipped with two dis-
tinct hyperbolic structures. This correspondence leads to a metric-independent
definition of a geodesic lamination. In fact, Thurston shows in his Notes [60]
that two geodesic laminations which correspond by that natural correspon-
dence are isotopic as topological objects, by a global isotopy of S that fixes
the cusps. Therefore, on a topological surface S, a geodesic lamination can
also be thought of as an object defined up to isotopy.

The support of a lamination is the union of its leaves. By abuse of notation,
we shall sometimes denote the support of a measured geodesic lamination λ
by the same letter λ.

We denote by ML(S) the set of measured geodesic laminations on S, and
by ML0(S) ⊂ ML(S) the subset consisting of measured geodesic lamina-
tions whose support is compact. Note that a compactly supported measured
geodesic lamination cannot be complete if the surface has punctures, since by
the definition of the transverse measure for a geodesic lamination, the support
of the measure is equal to the support of the lamination, and therefore the lam-
ination cannot have leaves which converge to punctures (the closure of such
a leaf cannot be compact, and a complete geodesic lamination has necessarily
such a leaf).
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There is a natural action of the group R∗
+ of positive reals on the space

ML(S), and the quotient of ML(S) by this action is the set PML(S) of pro-
jective classes of measured geodesic laminations, whose elements are called
projective measured geodesic laminations. The subset of PML(S) consisting
of the projective classes of compactly supported measured geodesic lamina-
tions is denoted by PML0(S). One can define topologies on the spaces ML(S)
and ML0(S) by using the inclusion maps of these spaces in the space RS

+ and
taking the restriction of the weak topology. In this way, the correspondences
between spaces of measured geodesic laminations and spaces of equivalence
classes of measured foliations become homeomorphisms.

Definition 3.5 (The stump of a geodesic lamination, [59]). The stump of a
geodesic lamination µ is the support of any maximal (with respect to inclusion)
compactly supported measured geodesic sublamination λ of µ.

The stump of a geodesic lamination is itself a geodesic lamination, and it
is empty if and only if each leaf of µ converge at each end towards a cusp of
the surface. For instance, if µ is complete, then the stump of µ is empty if and
only if µ is an ideal triangulation.

Completing a measured geodesic lamination λ by adding spiraling leaves
gives a complete geodesic lamination whose stump is λ.

We shall sometimes consider the stump of a lamination µ as being equipped
with some transverse measure, and we shall also call this measured lamination
the stump of µ, although the transverse measure it carries is not unique.

We shall use the notion of length of a (compactly supported) measured
geodesic lamination and we now recall the definition.

There is a function defined on T(S) × ML0(S) which to every hyperbolic
structure g and every compactly supported measured geodesic lamination λ
on S associates a quantity denoted by lg(λ) and called the length of λ with
respect to g. This function is a continuous extension of the notion of length
of a simple closed geodesic, the set of simple closed geodesics being considered
as a subset of the space of measured geodesic laminations, each simple closed
geodesic being equipped with the Dirac measure of mass one. The definition of
lg(λ) can be made by covering the geodesic lamination λ by a finite collection
of quadrilaterals R1, . . . , Rn with disjoint interiors, such that the intersection
of the leaves of λ with each quadrilateral is a union of segments that crosses it
from one side to the opposite side. We shall call these two sides the “vertical”
sides of Ri. We choose, for each quadrilateral Ri, one vertical side, and we
call it ∂vRi. The length lg(λ) is then the sum of the integrals, over all the
quadrilaterals Ri, of the lengths of the geodesic segments of λ that cross them,
with respect to the transverse measure dλ of λ induced on the vertical sides
∂vRi. In formulae, if we denote by αx, x ∈ λ∩∂vRi, the collection of geodesic
sub-segments of λ that traverse the quadrilateral Ri, we have
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lg(λ) =

n∑

i=1

∫

∂vRi∩λ

lg(αx)dλ(x).

3.4 Horocyclic foliations

We need to consider measured foliations on S which are slightly different from
those we defined in Section 2.1. These foliations naturally appear in the study
of hyperbolic surfaces with cusps.

Definition 3.6 (Measured foliation trivial around the punctures). A measured
foliation F on S is said to be trivial around the punctures if F is a measured
foliation in the sense of Definition 2.1 except for the condition at the punctures,
which is replaced by the following: each puncture has a neighborhood on which
the induced foliation is a cylinder foliated by homotopic closed leaves, and any
segment transverse to F and converging to a puncture has infinite total mass
with respect to the trnsverse measure of F .

In what follows, we shall sometimes omit the adjective “trivial around the
punctures” when the context is clear. We can pass from a measured foliation
trivial around the punctures to a measured foliation in the sense of Definition
2.1 by deleting, for each puncture of S, the maximal annulus foliated by closed
leaves parallel to that puncture, obtaining thus a partial measured foliation on
the surface, and then collapsing the complementary components of the support
of that partial foliation in order to get a foliation whose support is the entire
surface S. The resulting measured foliation is well-defined up to equivalence,
except that it may be empty (or, if one prefers, reduced to a graph). Thus, to
each measured foliation which is trivial around the punctures we can naturally
associate an object which is either a well-defined element in MF or the empty
foliation.

For any fixed hyperbolic structure on S, we next define an object which
is “dual” to a complete geodesic lamination and which we call the associ-
ated “horocyclic foliation”. We start with a construction in an ideal triangle.
Any hyperbolic ideal triangle is equipped with a canonical partial measured
foliation which is called the horocyclic foliation of the triangle. This partial
foliation is characterized by the following three properties:

(1) the leaves are pieces of horocycles that are perpendicular to the edges;

(2) the non-foliated region is a triangle bordered by three of these pieces of
horocycles (see Figure 14);

(3) the transverse measure assigned to any arc which is contained in an edge
of the ideal triangle coincides with the Lebesgue measure induced from
the hyperbolic metric.
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Note that the non-foliated triangular region intersects each edge of the ideal
triangle at its distinguished point.

PSfrag replacements
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Figure 14. The horocyclic foliation of an ideal triangle.

Definition 3.7 (Horocyclic measured foliation). Let S be a hyperbolic surface
and let µ be a complete geodesic lamination on S. The completion of each
connected component of S \µ being an ideal triangle, we can equip it with its
horocyclic measured foliation. The union of the horocyclic measured foliations
associated to the various ideal triangles fit together smoothly, since they are
perpendicular to the edges of the ideal triangles and therefore they form a
Lipschitz-line field on the surface. They define a partial measured foliation
of S, which we call the horocyclic measured foliation associated to µ and S,
and which we denote by Fµ(S). Collapsing each nonfoliated triangular piece
onto a tripod, we obtain a genuine (i.e. not partial) measured foliation on
the surface, which is well-defined up to isotopy, and which we also call the
horocyclic measured foliation associated to µ.

The fact that the hyperbolic structures that we consider are complete and
have finite area is equivalent to the fact that for any complete geodesic lamina-
tion µ, the associated horocyclic foliation Fµ(S) is trivial around the punctures.

The isotopy class of Fµ(S) depends only on the isotopy class of the hyper-
bolic structure and on the complete geodesic lamination µ that we started with.
Therefore, the equivalence class of Fµ(S) is associated to the hyperbolic struc-
ture S viewed as an element of Teichmüller space. As usual, [Fµ(S)] ∈ MF

denotes the equivalence class of the horocyclic foliation Fµ(S) after removal
of the closed leaves that are parallel to punctures (provided Fµ(S) is not the
empty foliation).

Definition 3.8 (Horocyclic measured geodesic lamination). Let S be a hyper-
bolic surface and let µ be a complete geodesic lamination on S. The measured
geodesic lamination that represents the (partial) measured foliation Fµ(S) (af-
ter removal of the leaves that are parallel to the punctures, and provided the
remaining measured foliation is not the empty foliation) will be called the horo-
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cyclic measured geodesic lamination associated to µ, and it will be denoted by
λµ(S).
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Figure 15. An example of a hyperbolic structure on the punctured torus
equipped with a complete geodesic lamination µ which is an ideal triangu-
lation. In this case, the associated horocyclic measured geodesic lamination
is empty. The gluing of the various ideal triangles in the universal covering is
performed in such a way that for each edge of the ideal triangulation µ, the two
distinguished points corresponding to the two triangles adjacent to it coincide.

The horocyclic measured geodesic lamination λµ(S) is the empty lamina-
tion if and only if the horocyclic foliation Fµ(S) is a union of cylinders foliated
by leaves that are all parallel to punctures. It is easy to construct examples of
hyperbolic structures whose associated horocyclic foliation has this property.
For instance, we can start, as in Figure 15, with an ideal quadrilateral in H

2

which is the union of two ideal triangles glued along two edges in such a way
that the distinguished points on the common edges agree. We then glue the
remaining four edges by pairs, respecting the labels a and b in Figure 15, again
in such a way that the distinguished points on these edges coincide after the
gluing. The resulting hyperbolic surface is a once-punctured torus, and the
resulting lamination µ on that surface is the union of the images of the edges
of the two ideal triangles that we started with.

3.5 Thurston’s cataclysm coordinates

In this section, we review coordinates for Teichmüller space that were intro-
duced by Thurston, who called them “cataclysm coordinates” and which are
essential in the study of Thurston’s asymmetric metric. The parameter space
is a space of measured foliations that are transverse to a complete geodesic
lamination. We start with the following:
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Definition 3.9 (Measured foliation totally transverse to a lamination). Let
µ be a geodesic lamination on S. A measured foliation F on S is said to be
totally transverse to µ if it satisfies the following:

(1) F is transverse to µ;

(2) F is trivial around the punctures.

In this definition, we have tacitly chosen an auxiliary hyperbolic structure
on S in order to talk about geodesic laminations, but recall that we can make
a definition which is independent of that choice. In other words, we say that
µ is a geodesic lamination if µ is a geodesic lamination for some hyperbolic
structure on S.

A measured foliation class is said to be totally transverse to µ if it can be
represented by a measured foliation that is totally transverse to µ.

For any geodesic lamination µ on S, we denote by MF(µ) ⊂ MF the set of
measured foliation classes that are totally transverse to µ. This subset MF(µ)
is open in MF.

If µ is complete, then, for any choice of a hyperbolic metric g on S, the
associated horocyclic measured foliation Fµ(g) is totally transverse to µ. If
h is a hyperbolic metric which is isotopic to g, then the horocyclic foliation
Fµ(h) is isotopic to Fµ(g). This enables us to associate to each element g in
T(S) a well-defined element in MF(µ). We denote by φµ : T(S) → MF(µ) the
resulting map.

Theorem 3.10 (Thurston, [61] §9). For any complete geodesic lamination µ
on S, the map φµ : T(S) → MF(µ) is a homeomorphism.

The global coordinates for Teichmüller space that are provided by this map
φµ are called by Thurston cataclysm coordinates.

The proof of Theorem 3.10 is given by Thurston in §4 and §9 of the paper
[61]. This proof involves a lot of interesting details which we shall review
below. In particular, we shall discuss in length the proof of the surjectivity of
the map ϕµ, that is, the fact that for any element [F ] of MF(µ), there exists
a hyperbolic structure g ∈ T(S) such that [F ] = [Fµ(g)]. This surjectivity is
contained in Proposition 9.2 of [61].

Let us first make a few remarks about the proof of the surjectivity of φµ.
Given an element [F ] ∈ MF(µ), the transverse measure of a representative F
of [F ] determines a measure on each leaf of µ, which we think of as the one-
dimensional Lebesgue measure induced on the leaves of µ by the hyperbolic
metric that we seek. Of course this is not enough to determine the hyperbolic
metric; to do this, one needs to define an isometry between each connected
component of S \µ and a hyperbolic ideal triangle, and then define in a consis-
tent way a gluing of the various ideal triangles among themselves. In the case
where µ is an ideal triangulation, that is, if every leaf of µ is isolated, then the
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metric g can easily be defined by gluing edge-to-edge the ideal triangles (which
are finite in number). This gluing is determined by the measured foliation by
saying that the algebraic distances between the distinguished points on each
edge of µ that are associated to the hyperbolic metric and to the measured
foliation F coincide. Here, the distinguished points on an edge of µ that are as-
sociated to a measured foliation F are the hitting points of the singular leaves
starting at the singular points of F that are contained in the ideal triangles
that are on each side of that edge. But in the case where µ has non-isolated
leaves, the gluing has to be defined by an infinite process, and the main point
of the proof is the convergence of that process.

Let us fix a geodesic lamination µ on S. We start by proving some useful
facts about measured foliations totally transverse to µ.

Lemma 3.11. Let β be an infinite half-leaf of µ. Then, exactly one of the
following occurs:

(1) β converges to a cusp;

(2) β has a recurrence point contained in the stump of µ (that is, there exists
a point x in the stump of µ such that β returns infinitely often in any
neighborhood of x).

Proof. Suppose that β does not converge to a cusp. Then there is a nonempty
compactly supported geodesic sub-lamination in its closure. Since each com-
pactly supported geodesic lamination admits a nonzero transverse measure
(which may be of smaller support), we obtain a compactly supported mea-
sured geodesic sublamination µ0 of µ in the closure of β. The sub-lamination
µ0 is contained in the stump of µ. The lemma follows then from the fact
that each point in a measured geodesic lamination of compact support is a
recurrence point.

Lemma 3.12 (infinite measure for infinite half-leaves of µ). Let F be a mea-
sured foliation totally transverse to µ. Then, the F -transverse measure of any
infinite half-leaf of µ is infinite.

Proof. We use Lemma 3.11. If β converges to a cusp, then it has infinite
transverse measure, by assumption on F (Definitions 3.9 and 3.6). Suppose
now that β does not converge to a cusp and let x be a recurrence point of
β in the stump γ of µ. We choose a homeomorphism ϕ : U → [0, 1]2 such
that U ⊂ S contains x in its interior, such that the image of F|U by ϕ is
made of vertical segments (which we call plaques) defined by the equations
u = constant, where u is the coordinate of the first factor of [0, 1]2, and such
that the connected components of the intersection of µ with U are segments
joining the “vertical” sides {u = 0} and {u = 1} of [0, 1]2. In particular,
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there is a segment of γ ∩U containing x and crossing the plaques transversely
from one vertical side to the other vertical side. Since x is a recurrence point
of β, there are infinitely many segments in β ∩ U whose images by ϕ cross
the square [0, 1]2 from one vertical side to the other one. All these segments
have the same transverse measure. Therefore, the transverse measure of β is
infinite.

In the rest of this section, the geodesic lamination µ is complete.
Let [F ] be an element of MF(µ) and let us choose a representative F of [F ]

that is totally transverse to µ.
From the transversality of F to µ and by an Euler characteristic argument,

we can see that F has exactly one singular point in each connected component
of S \µ or on the boundary of that component, and that this singular point is
a 3-prong singularity. Up to a small homotopy of F , we can suppose that all
the singular points of F lie in the interior of the components of S \ µ.

We first show that F is homotopic (in a sense that will be made precise)
in each ideal triangle to the horocyclic foliation of some hyperbolic structure
on S.

We fix an ideal triangle T ∗ in H2, equipped with its horocyclic foliation,
modified by collapsing the non-foliated region onto a spine (that is, a tripod).
We call FT∗ this measured foliation. We perform the collapse in such a way
that it induces the identity map on the boundary of T ∗.

Let T be a connected component (including its boundary) of S\µ equipped
with the measured foliation induced by F . Notice that T has the structure
of a topological ideal triangle. (In fact, it becomes a genuine ideal triangle as
soon as we equip the surface S with a hyperbolic metric, but we do not need
to introduce arbitrarily such a metric right now.) We have the following:

Lemma 3.13 (Equivalence to horocyclic foliation). There exists a homeomor-
phism ϕT : T → T ∗ respecting the foliations of these triangles (that is, sending
leaves to leaves and preserving the transverse measures) which is unique up to
the choice of a one-to-one correspondence between the ideal vertices of T and
those of T ∗, and up to post-composition of φT with a homeomorphism of T ∗

that preserves its horocyclic foliation and that induces the identity map on the
boundary of that triangle.

Proof. Let FT denote the measured foliation induced by F on T . Choose a
one-to-one correspondence between the ideal vertices of the triangles T and T ∗.
There is a homeomorphism ϕT : T → T ∗ preserving the singular points and
mapping each leaf of FT to a leaf of FT∗ , preserving the transverse measures.
To define ϕT , it suffices to start by mapping the three singular leaves of FT

to the three singular leaves of FT∗ (respecting the correspondence between
these leaves induced by the correspondence between the ideal vertices) and
then continue mapping homeomorphically each leaf of FT onto a leaf of FT∗
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preserving the transverse measure. This is possible because the transverse
measure induced by FT on each half-edge of T is infinite (Lemma 3.12). We
thereby get a map ϕT : T → T ∗ which is well-defined up to the deformations
mentioned in the statement of the lemma.

A spike of a hyperbolic ideal triangle of H2 is a connected component of the
complement of the closure of the unfoliated region of its horocyclic measured
foliation (or a connected component of the complement of the singular graph,
if the unfoliated region has been collapsed onto a spine). Likewise, given a
complete geodesic lamination µ on S together with a totally transverse foliation
F , a spike of S \µ is a connected component of the complement of the singular
leaves of the restriction of F to a connected component of S \ µ.

Using Lemma 3.13, we now define a function on each spike of S \ µ. Let q
be such a spike and let T be the triangle of S \µ that contains it. We choose a
homeomorphism ϕT between the triangle T and a fixed hyperbolic triangle T ∗

in H2 that preserves the measured foliations of these triangles, as in Lemma
3.13. The sharpness function fq : q → [0,∞) is defined by

fq(x) = − log length
(
α(ϕT (x))

)

where, for each x ∈ q, α(ϕT (x)) denotes the leaf of the horocyclic foliation
corresponding to the leaf of FT∗ passing through the point ϕT (x) ∈ T ∗. In
other words, α(ϕT (x)) is the horocyclic arc that passes through the point of
T ∗ that is mapped to the point ϕT (x) by the map T ∗ → T ∗ that we used to
collapse the unfoliated region of that ideal triangle onto a tripod. It is easy
to check that the function fq does not depend on the choices involved in the
definition of ϕT . Since the length of any arc of the horocyclic foliation of an
ideal triangle is bounded from above by 1 (which is the length of the horocyclic
arc that is on the boundary of the unfoliated region), fq(x) is nonnegative for
all x in q. Furthermore, this function converges to ∞ as the point x converges
to the cusp of q. (In fact, fq is a linear function with respect to the “distance”
from x to the unfoliated region, where this distance is defined by the transverse
measure of any transverse arc joining x to a point in the ufoliated region.)

Thus, associated to the measured foliation F , we have a family {fq} of
functions, one for each spike q of S\µ. We shall use these fonctions to construct
the hyperbolic structure g satisfying [F ] = [Fµ(g)]. Following Thurston, to
construct g, we contruct a map from the universal covering of S to H2. This
map will turn out to be the developing map of that structure.

Let us choose a basepoint s on S and let π : S̃ → S be the topological
universal covering of S. We regard S̃ as the set of homotopy classes of paths
with fixed endpoints α : [0 , 1] → S with α(0) = s; the projection map

π : S̃ → S is given by [α] 7→ α(1).
Given such a path α, we can replace it by a path α∗ which is homotopic to

α by a homotopy with fixed endpoints, which is made of a finite concatenation
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of segments, each such segment being contained either in a leaf of F or in a
leaf of µ. We call such a path α∗ a horogeodesic path. (Of course, we are using
this terminology because we imagine S as being equipped with a hyperbolic
structure g for which µ is geodesic, with F being the corresponding horocyclic
measured foliation; in fact, g will be the structure that we are seeking.) The
construction of α∗ may be done as follows. We start by taking a train track
approximation τ of µ, and for this we can use an auxiliary hyperbolic metric
for which µ is geodesic, and take the leaves of τ so that they are nearly parallel
to the geodesic leaves of µ, in the metric sense, as in [60] §9.5.

We can cover µ by a finite collection of rectangles obtained by thickening the
edges of the train track τ . The horizontal sides of these rectangles are parallel
to the edges of τ , and the leaves of µ cross each such rectangle from a vertical
side to a vertical side. We also take τ to be close enough to µ in such a way
that F is transverse to τ . Moreover, up to taking smaller rectangles, we can
assume that the foliation induced by F on each rectangle consists in segments
joining its horizontal sides. Performing a homotopy with fixed endpoints on
the path α, we can replace it by a path whose intersection with each rectangle
is a finite number of segments joining its horizontal sides. Finally, replacing
each such segment (by using again a homotopy with fixed endpoints) by a
concatenation of (at most three) segments in leaves of µ and in leaves of F ,
we obtain the desired horogeodesic path α∗. From this construction, we can
assume without loss of generality that α∗ satisfies the following two properties:

(1) each subsegment of α∗ contained in a leaf of F or in a leaf of µ does not
backtrack on that leaf;

(2) there does not exist any closed immersed disk in S whose interior is em-
bedded in that surface and whose boundary is the union of a subsegment
of α∗ with a segment which is either in a leaf of F or in a leaf of µ.

A horogeodesic path satisfying these two properties will be called a minimal
horogeodesic path.

From now on, we regard S̃ as the set of homotopy classes with fixed end-
points of minimal horogeodesic paths α∗ : [0 , 1] → S satisfying α∗(0) = s.

We note that in the construction that follows, a change in the auxiliary hy-
perbolic metric will only affect the developing map of the hyperbolic structure
that we are seeking by conjugating it by an orientation-preserving isometry of
H2. Precisely, this hyperbolic structure can be seen as the plane H2 mod out
by a subgroup of the group of isometries of H2 acting properly discontinuously
on that space and defined up to conjugation, and therefore the choice of the
auxiliary hyperbolic metric will not affect the final result.

We now fix a minimal horogeodesic path α∗. We shall say that a subpath of
α∗ is maximal if its image is either contained in a leaf of F or in a leaf of µ, and
if this subpath is maximal (with respect to inclusion) for that property. We
shall call a maximal subpath of α∗, if it is contained in a leaf of F (respectively
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of µ), a maximal vertical (respectively horizontal) subpath. We shall consider
the image of α∗ as being equipped with the natural orientation induced from
that of the interval [0, 1].

Let c be a maximal vertical subpath of α∗. The connected components of
the complement of c with respect to µ form a linearly ordered set of open inter-
vals (aj , bj), j ∈ J , each interval (aj , bj) joining opposite edges of a topological
ideal triangle Tj of S \ µ. To each such interval (aj , bj), we now associate a
parabolic isometry of H2. Recall that to the triangle Tj containing (aj , bj),
there is an associated homeomorphism ϕTj which is defined up to an isotopy
that induces the identity map on the boundary of that triangle and up to
a permutation of the ideal vertices, such that ϕTj maps Tj onto some fixed
ideal triangle T ∗ of H2 equipped with its horocyclic foliation, respecting the
foliations and the transverse measures. We also have an associated family of
sharpness functions {fq}, one function for each spike q of S \ µ. Let us fix an
oriented geodesic line γ in H2 which we shall henceforth refer to as the base
geodesic, and let us choose a basepoint x0 on (the image of) that geodesic. For
each j in J and for each choice of a hyperbolic ideal triangle T ∗ having the
base geodesic γ as one of its edges and situated to the right of γ (we are using
an orientation of the hyperbolic plane), we consider the associated orientation-
preserving map ϕTj between Tj and T ∗ that sends the edge of Tj containing
aj to the base geodesic γ. (The fact that ϕTj preserves orientations implies
that the images of the vertices of Tj are well-defined.) As the ideal vertex
of T ∗ that is not an endpoint of γ varies on the circle at infinity, the image
ϕTj (aj) varies on the base geodesic γ, and we can manage so that ϕTj (aj)
is the point x0. Now let Pj be the parabolic isometry of H2 that fixes the
endpoint of the spike of T ∗ that contains the segment ϕTj ((aj , bj)) and that
sends ϕTj (aj) to ϕTj (bj). Note that the length of the horocyclic arc joining

the points ϕTj (aj) and ϕTj (bj) equals e−fq(aj). After associating a parabolic
isometry Pj to each open interval (aj , bj), we associate to the base subpath
c of α∗ the (possibly infinite) product of isometries

∏
j∈J Pj (see Figure 16).

Note that the association of the product of isometries is in the reverse order of
the one used for composition of maps. Thus, for instance, if α crosses the ideal
triangles T1, T2, T3 in that order with associated parabolic isometries P1, P2, P3

respectively, then the product will be P1P2P3.
Let Isom+(H2) be the group of orientation-preserving isometries of H2.

Given a basepoint x0 in H2, we endow this group with the following complete
left-invariant metric

∀A,B ∈ Isom+(H2), dx0(A,B) = sup
x∈H2

|A(x) −B(x)|e−|x0−x|,

where for every x and y in H2, |x− y| denotes their hyperbolic distance. It is
easy to see that if x1 ∈ H

2 is another basepoint, then we have

dx1(A,B) ≤ dx0(A,B)e|x0−x1|. (3.3)
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The distance between A ∈ Isom+(H2) and the identity I is denoted by ‖A‖x0 =
‖A‖. Using the left-invariance of the metric dx0 , it is easy to see that we have
dx0(A,B) = ‖B−1A‖ for all A and B in Isom+(H2). We need to estimate the
norm of a parabolic element.

Lemma 3.14. Let P be a parabolic element fixing a point p in S1
∞, the bound-

ary at infinity of H2, and let l(0) denote the length of the horocyclic arc joining
x0 and P (x0) and contained in the horocycle centered at p. Then, ||P || ≤ l(0).

Proof. Let γ : R → H2 be the geodesic line in H2 satisfying γ(0) = x0, having
p as one of its endpoints and oriented so that limt→−∞ γ(t) = p. Consider the
foliation of H2 by the family {Ht : t ∈ R} of horocycles centered at p, where
for each t in R, Ht denotes the horocycle through γ(t), and let l(t) denote the
length of the arc in Ht joining γ(t) to P (γ(t)).

PSfrag replacements
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P1x0

P1P2x0

P1P2P3x0

Figure 16.
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Figure 17. Notation used in Lemma 3.14.
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Let x ∈ H2. This point is on a unique horocycle Ht, t ∈ R. We have
|P (x)−x| = |P (γ(t))− γ(t)|. Moreover, a geometric argument shows that the
projection along horocycles is distance-decreasing, that is, |x0 − x| ≥ |x0 −
γ(t)| = |t|. Therefore, ||P || = supt∈R |P (γ(t)) − γ(t)|e−|t|.

A computation (for instance, using Figure 36 below) gives |P (γ(t))−γ(t)| =
2 sinh−1(l(t)/2), where l(t) denotes the length of the horocyclic arc joining
γ(t) and P (γ(t)). Using the fact that l(t) = e−tl(0) and using the inequality
sinh−1(x) ≤ x for every x ≥ 0, we obtain

||P || = sup
t∈R

|P (γ(t)) − γ(t)| e−|t|

= sup
t∈R

2 sinh−1
( l(t)

2

)
e−|t|

≤ l(0)e−t−|t| ≤ l(0).

This proves Lemma 3.14.

Proposition 3.15. The product of isometries
∏

j∈J

Pj that is associated to the

maximal horizontal subpath c of α∗ converges in Isom+(H2).

Proof. In order to show that the product
∏

j∈J

Pj converges, we shall use the

fact that Isom+(H2) is complete. Let J0 ⊂ J1 ⊂ · · · ⊂ Jn ⊂ · · · be a sequence
of finite subsets of J converging to J , that is, such that ∪n∈NJn = J . Without
loss of generality, we can assume that Card(Jn) = n. For each n ∈ N, the finite
product

∏
j∈Jn+1

Pj is obtained from the previous finite product
∏

j∈Jn
Pj by

inserting one element en. More precisely, we can find elements An, Bn, en ∈
Isom+(H2) such that

∏
j∈Jn

Pj = AnBn and
∏

j∈Jn+1
Pj = AnenBn. We have

dx0(AnenBn, AnBn) = ||B−1
n enBn||

= sup
x∈H2

|B−1
n enBn(x) − x|e−|x0−x|

= sup
y∈H2

|B−1
n en(y) −B−1

n (y)|e−|x0−B−1
n (y)|

= sup
y∈H2

|en(y) − y|e−|Bn(x0)−y|

= dBn(x0)(en, I)

≤ dx0(en, I)e
|Bn(x0)−x0| (using 3.3)

≤ ||en||e||Bn||.
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Let Πn denote
∏

j∈Jn
Pj . We have

dx0(Πn+p,Πn) ≤
p∑

k=1

dx0(Πn+k ,Πn+k−1)

≤
p∑

k=1

||en+k−1||e||Bn+k−1||.

Let q be a spike of S \µ. The intersection of q with α is a countable family
of horocyclic arcs which, once reordered, have decreasing lengths ln, n ∈ N.
There is a positive lower bound M(F, c), depending on the compact segment

c, to the set of numbers {ln − ln+1}. We have ln ≤ l0e
−nM(F,)̧. Moreover,

l(0) ≤ 1. Therefore, for every spike q, we have ln ≤ e−nM(F,)̧. Since there
are finitely many spikes in S \ µ, then, using Lemma using 3.14, we can see
that there exists an integer m = m(n) such that ‖en‖ ≤ lm where lm is the
length of the m-th horocyclic arc of q ∩ c, for every spike q. Therefore, for
all ε > 0, there exists N = N(F, )̧ ≥ 0 such that for all n ≥ N , we have
‖en‖ ≤ ε. Thus, the infinite product

∏
j∈J Pj is bounded from above by

a convergent geometric series, whence the norm of any finite subproduct is
uniformly bounded from above. This shows that the sequence {Πn : n ∈ N}
is Cauchy, hence converges.

Let c be now a maximal horizontal subsegment of α∗. We wish to associate
to c a hyperbolic isometry of H2. We do this by induction, and for this, we
first consider the isometries that were already associated to the sequence of
maximal subsegments of α∗ that precede c. (In the case where c is the initial
maximal subsegment of α∗, the preceding isometry is taken to be the identity.)
We let C be the product of all these isometries, this time product being taken
in the usual order of composition of maps. In other words, if c1, . . . , cn is the
ordered set of maximal subsegments of α∗ that precede c (that is, c1 starts at
the point s and the endpoint of cn is the starting point of c), and if C1, . . . , Cn

is the ordered set of isometries that we already associated to c1, . . . , cn, then we
let C = Cn . . . C1 (and if c is the first maximal subsegment of α∗, we take C to
be the identity). Now if we denote by γ ′ the image of the base geodesic γ by the
isometry C, then, we associate to c the hyperbolic isometry H ∈ Isom+(H2)
that fixes γ′, whose translation length is equal to the transverse measure of
c with respect to F and such that the orientation of the action of H on γ ′

coincides with the natural orientation associated with the parametrization of
α∗.

Finally, we associate to α∗ the product of the finite sequence of isometries
associated to the finite sequence of maximal subsegments of α∗. (Remember
that the product is taken here in the order of composition of maps, as already
mentioned.)
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Lemma 3.16. The isometry associated to the minimal horogeodesic path α∗

does not depend on the choice of α∗ in its homotopy class with fixed endpoints.

Proof. Any two horogeodesic paths belonging to the same class [α] are related
to each other by a finite number of moves of the type described in Figure 18.

Figure 18. The dotted lines represent leaves of the foliation F , the horizontal
lines are leaves of µ and the bold lines represent the maximal subsegments of
the path α∗. (There may be other leaves of µ that are inside the rectangles
shown and that are not drawn.)

Therefore, it suffices to examine the invariance of the isometry associated
to α∗ by such a move. The product of isometries associated to the left-hand
rectangle of α∗ in Figure 18 is of the form PH , where H is the hyperbolic
isometry associated to the maximal horizontal subsegment of α∗ that is draw
in that figure and P is the product of parabolic isometries that are associated
to the maximal vertical segment. Likewise, in the right-hand rectangle, the
product is the form H ′P ′, where H ′ and P ′ are defined in an analogous way.
From the definition of the products associated to the subsegments of α∗ that
are in F , it easily follows that P = P ′, since these are products of a possibly
infinite family of parabolic isometries indexed by the same set and which are
all equal. From the invariance of the transverse measure of F , the translation
distances of the two hyperbolic isometries H and H ′ are equal. From this fact
and from the way these isometries are defined, it follows that H = P−1H ′P ′,
that is, PH = H ′P ′, which implies the invariance by the move considered.
This completes the proof of the lemma.

Thus, we have a map Is,F from S̃ to Isom+(H2), which associates to each
homotopy class of curves with fixed endpoints the isometry associated to a
minimal horogeodesic path representative, and which gives a map

Ds,F : S̃ −→ H
2

[α] 7→ Is,F ([α])x0.

This map is a local isometry. Changes in the choice involved in any of the
parameters s and F have the effect of conjugating the mapDs,F by an isometry
(see [65]).

This map induces a representation of the fundamental group in Isom+(H2),
which is free and discrete, since the quotient of H2 by the image group Γ[F ]

is the surface S. We obtain in this way a hyperbolic structure g on S whose
developing map is precisely the map Ds,F . The hyperbolic structure g is com-
plete because each cusp of S equipped with that structure has a neighborhood
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equipped with a foliation by closed leaves that are quotients by Γ[F ] of horo-
cycles in H

2, which follows from the fact that the measured foliation F that
we started with is trivial around the punctures. This measured foliation is
isotopic to the horocyclic measured foliation Fµ(g). This completes the proof
of the surjectivity of the map φµ. This map is also injective, since it admits an
inverse, which is precisely the map which we produced in the proof of the sur-
jectivity. It is clear from the construction of the horocyclic foliation that the
map φµ is continuous. By invariance of domain, this map is a homeomorphism.
This completes the proof of Theorem 3.10.

3.6 Stretch lines, stretch rays, anti-stretch rays and
stretch maps

In the next definition, we use Thurston’s cataclysm coordinates φµ introduced
in §3.5.

Definition 3.17 (Stretch lines, stretch rays, etc.). Let µ be a complete
geodesic lamination on S. For any element F in MF(µ), the map from R

to T (respectively from [0,∞) to T) defined by t 7→ φ−1
µ (etF ) is called a stretch

line directed by µ and starting at g = φ−1
µ (F ). A stretch line travelled up

backwards is called an anti-stretch line. More precisely, given a stretch line
t 7→ φ−1

µ (etF ), the map from R to T defined by t 7→ φ−1
µ (e−tF ) is called an

anti-stretch line directed by µ and starting at g = φ−1
µ (F ). A stretch ray (re-

spectively anti-stretch ray) directed by µ and starting at g = φ−1
µ (F ) is the

restriction of a stretch line (respectively an anti-stretch line) to the half-line
R+. Given a stretch (respectively anti-stretch) ray t 7→ φ−1

µ (etF ) that starts
at a point g in T, we shall denote by gt the hyperbolic surface φ−1

µ (etF ) (re-
spectively φ−1

µ (e−tF )). The hyperbolic structure g0 is the structure g that we
started with. Given a stretch ray starting at g, then, for each t ≥ 0, the iden-
tity map, considered as a map from the surface S equipped with the hyperbolic
structure g0 to the same surface equipped with the hyperbolic structure gt, is
called the stretch map directed by µ.

We already mentioned that there exist punctured hyperbolic surfaces g
equipped with complete geodesic laminations for which the associated horo-
cyclic foliation is a union of cylinders that are all parallel to punctures. A
stretch ray (or an anti-stretch ray) starting at a hyperbolic structure g with a
horocyclic foliation satisfying this property is a constant ray, that is, we have
gt = g for all t ≥ 0. For instance, in the example of Figure 15, stretching along
µ does not change the hyperbolic structure. One way of seeing this is the fact
that the relative distances between the distinguished points remain constant
(equal to zero). On the other hand, any complete lamination µ which is not
an ideal triangulation (that is, which is not a finite union of bi-infinite leaves
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converging at both ends to punctures) has a nonempty stump. Therefore, in
this case, for all t 6= 0, the hyperbolic structure gt is distinct from g (and for
the same reason, for all 0 ≤ t1 < t2, g

t1 is distinct from gt2). To see this, it
suffices to consider the effect of the stretch map on any nonempty sublamina-
tion of µ that can be equipped with an invariant measure (for instance, the
stump of µ). In the surface gt, the length of that measured sub-lamination is
multiplied by the factor et, which implies that the structure gt is distinct from
g.

3.7 Thurston’s asymmetric metric

An asymmetric metric on a setX is a map L : X×X → R+ that satisfies all the
axioms of a metric except the symmetry axiom, and such that the symmetry
axiom is not satisfied, i.e. there exist x and y in X such that L(x, y) 6= L(y, x).
Teichmüller space is equipped with an asymmetric metric that was defined by
Thurston. The stretch lines that we considered in Section 3.6 are geodesics for
that metric, provided the stump of the complete lamination µ is not empty.
We now recall the definition of this metric.

Let g and h be two hyperbolic structures on S and let ϕ : S → S be a
diffeomorphism of S which is isotopic to the identity. The Lipschitz constant
Lip(ϕ) of ϕ is defined as

Lip(ϕ) = sup
x6=y∈S

dh

(
ϕ(x), ϕ(y)

)

dg

(
x, y
) .

The logarithm of the infimum of these Lipschitz constants over all diffeomor-
phisms ϕ in the isotopy class of the identity is denoted by

L(g, h) = log inf
ϕ∼IdS

Lip(ϕ). (3.4)

It is obvious that L satisfies the triangle inequality. It is less obvious that
L(g, h) ≥ 0 for all g and h (this uses the fact that any two hyperbolic structures
on S have the same area, see [61] Proposition 2.1).

Making g and h vary in their respective homotopy classes does not change
L(g, h) and thus we obtain a function which is well-defined on T(S) × T(S),
which is Thurston’s asymmetric metric. We shall denote it by the same letter:

L : T(S) × T(S) → R+.

Thurston showed that the quantity L(g, h) can also be computed by com-
paring lengths of homotopic closed geodesics for the metrics g and h. More
precisely, for any homotopy class α of essential simple closed curves on S, we
consider the quantity
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rg,h(α) =
lh(α)

lg(α)

and we set

K(g, h) = log sup
α∈S

rg,h(α). (3.5)

Again, it is easy to see that the function K satisfies the triangle inequality.
The fact that we have K(g, h) > 0 for all g 6= h is not trivial, and it is proved
by Thurston in [61] Theorem 3.1.

Since each homeomorphism ϕ considered in Formula (3.4) is isotopic to the
identity, it preserves each homotopy class of simple closed curves in S. From
that observation, it is easy to see that K ≤ L. In his paper [61], Thurston
proves the following result:

Theorem 3.18 (Thurston [61] Theorem 8.5). K = L.

Note that in the same way as in the definition of the Teichmüller metric
(see Remark 2.25 above), by using the extension of the hyperbolic length
function to the space of compactly supported measured geodesic laminations,
we can replace the supremum in 3.5 by the supremum over the set of compactly
supported measured geodesic laminations, that is, we have

K(g, h) = log sup
α∈ML0

lh(α)

lg(α)
= log sup

α∈PL0

rg,h(α). (3.6)

By compactness of the space PL0(S), the supremum in (3.6) is attained at
some measured geodesic lamination.

Along a stretch line directed by a complete geodesic lamination µ whose
stump γ is not empty, the stretch map between g and gt is et-Lipschitz and
rg,gt(γ) = et. This gives L(g, gt) = K(g, gt) = t for all t ≥ 0 (and justifies
the dilatation factor et). A measured lamination α attaining the supremum
in (3.6) is generally not unique, even up to a scalar factor. For instance, any
nonempty sub-lamination of such a lamination has the same property. There
exists a geodesic lamination that is canonically associated to an ordered pair
of hyperbolic structures (g, h), but this lamination is not necessarily equipped
with a transverse measure. Thurston introduced it in the course of proving
Theorem 3.18. He first defined the notion of a maximally stretched geodesic
lamination from a hyperbolic structure g to a hyperbolic structure h. This
is a (chain-recurrent) geodesic lamination λ for which there exists an eK(g,h)-
Lipschitz map from a neighborhood of λ in the surface S equipped with the
metric g to a neighborhood of λ in the surface S equipped with the metric h.
Thurston proved that the union of all maximally stretched geodesic lamina-
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tions from g to h is a geodesic lamination. This geodesic lamination is denoted
by µ(g, h).

Remarks 1) For any η in ML0(S), we can find two hyperbolic structures g
and h such that the supremum in rg,h(α) in (3.6) is attained for α = η. This
follows from Thurston’s construction in [61] §4, taking in that construction a
complete geodesic lamination µ that contains η and taking g and h (in the
right order) on a stretch line directed by µ.

2) If an element η in ML0(S) realizes the maximum of rg,h(α) as above, then
any other element of ML0(S) which is topologically equal to η (that is, with a
possibly different transverse measure) also realizes the maximum. This follows
from Thurston’s definition of µ(g, h) in [61] §8, which is independent of the
transverse measure of the lamination (see Theorem 8.1 of [61]).

One can see that the function L is generally not symmetric by looking at
the following example.

Example 3.19 (The metric L is not symmetric). In Figure 19, the surface
S2,0 is equipped with two hyperbolic structures g and h for which the left
and right handles are almost isometric for the metrics g and h. One can do
explicit computations of lengths of closed geodesics, by decomposing the two
hyperbolic surfaces into hyperbolic pairs of pants, with the central curve being
an element of the decomposition, and with the two other closed curves being
the core curves of the two handles represented in Figure 19. Consider the
central cylinder that joins the handles. The height of this cylinder, measured
in the structures g and h respectively, is approximately equal to c and d, with
d > c. Applying the formulae that give the distance between two boundary
components of a hyperbolic pair of pants in terms of the length of the boundary
components (see e.g. [19] p. 151), we obtain lg(α) ' Ae−c and lh(α) ' Ae−d,
where A is a constant that depends on the size of the handles. Thus, the
smallest Lipschitz constant of a map from g to h is approximately equal to
d/c, whereas the smallest Lipschitz constant of a map from h to g is bounded
below by e−c/e−d = ed/ec. The latter is very large compared to d/c when d
is large compared to c. Thus, we obtain examples of hyperbolic structures g
and h satisfying L(g, h) 6= L(h, g).

On the other hand, there are instances of distinct hyperbolic structures g
and h satisfying K(g, h) = K(h, g) (hence L(g, h) = L(h, g)). An example of
such a pair is given in Figure 20.

The notion of a geodesic (respectively of a geodesic line, or a geodesic ray)
for an asymmetric metric space can be defined as in the case of a genuine
metric, except that one has to be careful about the order of the variables
in the case of an asymmetric metric. More precisely, we shall say that a
map γ : I → T(S), (where I is a closed interval of R and where T(S) is
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equipped with the asymmetric metric L) is geodesic if for all t ≤ t′ in I we
have t′ − t = L

(
γ(t), γ(t′)

)
. Thurston proved the following

Theorem 3.20 (Stretch lines are geodesics, Thurston [61] Theorem 8.5 and
Corollary 4.2). Let µ be a complete geodesic lamination on S. If the stump of
µ is not the empty lamination, then any stretch line in T(S) directed by µ is a
geodesic line for Thurston’s asymmetric metric. In other words, we have, for
every 0 ≤ t ≤ t′,

L(φ−1
µ (etF ), φ−1

µ (et′F )) = t′ − t.

Theorem 3.21 (Concatenations of stretches, Thurston [61] Theorem 8.5).
Let g and h be two hyperbolic structures. Then, we can pass from g to h by a
geodesic which is a finite concatenation of pieces of stretch lines along complete
geodesic laminations µ1, · · · , µk, all of them containing µ(g, h). Furthermore,
the number of such pieces needed to go from g to h is bounded by a constant
which depends only on the topological type of the surface (that is, on the genus
and the number of punctures). Such a geodesic path is obtained in the following
way. We first choose an arbitrary completion µ1 of µ(g, h) and we stretch the
structure g along µ1 until we reach a first point g′ satisfying µ(g′, h) 6= µ(g, h).
We necessarily have µ(g′, h) ⊃ µ(g, h). Starting now with g′ instead of g and
continuing in the same manner, we reach h after a finite number of steps.
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Figure 19. An example (due to Thurston) of hyperbolic sutructures g and h
satisfying L(g, h) 6= L(h, g).

Figure 20. An example of distinct hyperbolic structures g and h satisfying
K(g, h) = K(h, g): h is the image of g by an order-two isometry which is not
isotopic to the identity.
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Remarks 1) That the number of pieces in this statement is bounded from
above follows from the fact that there is a bound (that depends only on the
topological type of the surface) for the length of a strictly increasing (with
respect to inclusion) sequence of geodesic laminations.

2) The geodesic path leading from g to h is in general not unique, since it
depends on the choice of the completion at each step.

3) The bound in 1) does not imply that the number of distinct geodesics from
g to h is finite, since at each step there are in general infinitely many ways of
completing the given geodesic lamination.

4) An anti-stretch ray is (up to reparametrization) a geodesic ray for the asym-
metric metric on Teichmüller space which is dual to Thurston’s asymmetric
metric, that is, the asymmetric metric defined by

K∗(g, h) = log sup
α∈S

lg(α)

lh(α)
(3.7)

for any hyperbolic metrics g and h.
Here are some questions related to the example described in Figure 20.

• What does a typical geodesic from g to h look like? Is it a segment of a stretch
line? is it a concatenation of at least two such segments? is it something else?

• Describe a geodesic from g to h that (up to reparametrization) is also a
geodesic from h to g when traversed in the opposite direction.

We now discuss a few properties of Thurston’s asymmetric metric L with
respect to sequences in T(S) that tend to infinity. Then, we shall discuss the
topologies that this asymmetric metric induces on T(S). Here, as usual, we
say that a sequence (gn) in T(S) tends to infinity (and write gn → ∞) if for
any compact subset K of T(S), we have gn ∈ T(S) \ K for all n large enough.

It is known that Teichmüller’s metric dT is proper (that is, closed balls are
compact), which implies that a sequence of points (gn) in T tends to infinity
if and only if for every g in T (or, equivalently, for some g in T), we have
dT (g, gn) → ∞ as n→ ∞. In [48], we prove the following analogous result for
the asymmetric metric L.

Proposition 3.22. For any sequence (gn) in T and for any h ∈ T, we have
the following equivalences:

gn → ∞ ⇐⇒ L(h, gn) → ∞ ⇐⇒ L(gn, h) → ∞.

We deduce the following

Corollary 3.23. Let t 7→ gt be a stretch ray starting at a hyperbolic structure
g and directed by a complete geodesic lamination µ, such that either the stump
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of µ is not empty (or, equivalently, µ is not an ideal triangulation) or the
horocyclic measured lamination λµ(g) is not empty. Then, the map t 7→ gt is
proper. (In other words, as t tends to infinity, the point gt tends to infinity in
Teichmüller space.)

Proof. If the stump of µ is not empty, then we have, by Theorem 3.20,
L(g, gt) = t, which, by Proposition 3.22, implies that gt tends to infinity.
If the horocyclic measured lamination λµ(g) is not empty, then, as t→ ∞, we
have lgt(λµ(g)) → 0. Indeed, by Proposition 3.3 and Lemma 3.9 of [47], there
exists a constant C > 0 that depends only on the topological type of the sur-
face S such that lgt(λµ(gt)) ≤ C. (In fact, by Lemma 3.9 of [47], we can take
C = −χ where χ is the Euler characteristic of S.) Note that the setting in [47]
is that of closed surfaces, but the arguments work for general surfaces of finite
type. We have λµ(gt) = et(λµ(g)), therefore lgt(λµ(g)) ≤ Ce−t, which tends
to zero as t tends to infinity. This proves the claim. Now if lgt(λµ(g)) → 0,

then rgt,g(λµ(g)) =
lg(λµ(g))

lgt(λµ(g))
→ ∞, which gives L(gt, g) → ∞, which, again

by Proposition 3.22, implies that gt tends to infinity.

In the same paper [48], we prove the following

Proposition 3.24. For any sequence (gn) in T(S) and for any element g in
T(S), we have the following equivalences:

gn → g ⇐⇒ L(g, gn) → 0 ⇐⇒ L(gn, g) → 0.

Associated to the asymmetric metric L, for each g in T and for each R > 0,
there are two different notions of closed balls, which we call left closed ball

centered at g ∈ T(S) of radius R and the right closed ball centered at g ∈ T(S)
of radius R, and which we denote respectively by gB(R) and Bg(R). These
are defined respectively by

gB(R) = {h ∈ T(S) |L(g, h) ≤ R} (3.8)

and

Bg(R) = {h ∈ T(S) |L(h, g) ≤ R}. (3.9)

In [48], we prove the following

Proposition 3.25. For any g in T(S) and for any R > 0, the closed balls

gB(R) and Bg(R), centered at g ∈ T(S) and of radius R, are compact for the
usual topology.
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One can similarly define left (respectively right) open balls in T, by taking
the same definitions in (3.8) (respectively (3.9)) above, except that the large
inequality is replaced by a strict inequality.

Since the metric on Teichmüller space that we are studying here is asym-
metric, it is natural to consider two topologies on that space, the one generated
by the collection of right open balls, and the one generated by left open balls.
We shall call the first of these topologies the topology associated to Thurston’s
asymmetric metric K and the second one the topology associated to its dual
asymmetric K∗. It is easy to see that a sequence (gn) of points in Teichmüller
space converges to a point g in that space for the topology generated by the left
(respectively right) open balls if and only if we have K(g, gn) → 0 as n → ∞
(respectively K∗(g, gn) → 0) (that is, we have the same convergence criteria
than for genuine metrics). Proposition 3.24 is equivalent to the following

Corollary 3.26. The topologies on Teichmüller space generated by Thurston’s
asymmetric metric and by its dual asymmetric metric concide with the usual
topology of that space.

From Propositions 3.24 and 3.25 and from Corollary 3.26, we obtain the
following

Proposition 3.27. Teichmüller space equipped with Thurston’s asymmetric
metric is proper. More precisely, left and right closed balls are compact for the
topology generated by the asymmetric metric.

Equivalently, we have the following

Proposition 3.28. For every point g in Teichmüller space, the functions
h 7→ L(g, h) and h 7→ L(h, g) are proper.

Herbert Busemann developed a theory of spaces (X, δ) satisfying all the ax-
ioms of a metric space except the symmetry axiom, and satisfying the following
additional axiom:

δ(x, xn) → 0 ⇐⇒ δ(xn, x) → 0 for any x and for any sequence (xn) in X .
For such spaces, there is a well-defined topology on X , the one associated

to the bona fide metric max{δ(x, y), δ(y, x)}. Proposition 3.24 insures that
Thurston’s asymmetric metric fits into that theory, and that this topology is
the same as the one generated by the collection of left (or right) open balls.
Given such a space (X, δ), Busemann introduced the following notion for such
spaces (see [14] Chapter 1): (X, δ) is complete if and only if for every sequence
(xn)n≥0 in X satisfying δ(xn, xn+m) → 0 as n and m → ∞, the sequence
converges to a point in X .

In that setting, the following generalization of a classical theorem of Hopf
and Rinow holds (see [14] Theorem 8, p. 4). If a locally compact space (X, δ)
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satisfies Busemann’s axioms stated above, and if this “generalized metric” δ
is intrinsic in the sense that for any x and y in X , the value δ(x, y) is equal
to the infimum of the lengths of all curves joining x and y, then the following
two properties are equivalent:

(1) left closed balls in X are compact;

(2) X is complete.

Here, the length of a curve is defined in a similar way as in the case of
a genuine metric space. We do not need to enter here into the details of
this definition because, by a result of Thurston (see [61] §6) that we already
mentioned, Thurston’ s asymmetric metric is geodesic (that is, any two points
can be joined by a geodesic), and a generalized geodesic metric in this sense
is intrinsic (see [14] p. 3).

Thus, we obtain the following

Corollary 3.29. Thurston’s asymmetric metric is complete.

In the next three sections, we study explicit examples of stretch lines that
are simple enough to make computations.

3.8 Example I of a stretch line: the four-punctured
sphere

In this section, S = S0,4 is the four-punctured sphere. We consider the sim-
ple case of a hyperbolic structure on S that is obtained by gluing two ideal
quadrilaterals that can be exchanged by an order-two isometry of S that fixes
pointwise each of the four edges of the quadrilaterals. Let us call such a hyper-
bolic structure a symmetric hyperbolic structure on the four-punctured sphere.
Figure 21 represents the surface S as a union of two isometric quadrilaterals,
with vertices A,B,C,D. Each quadrilateral is equipped with a diagonal in
such a way that the two diagonals join the same cusps of the surface S, say D
and B, as represented in Figure 21.

The union of the edges of the quadrilaterals (that are glued by pairs in
the surface), together with the two diagonals that join D and B, constitute
an ideal triangulation of S which we denote by µ. In the case considered of
a symmetric structure, the fact that the hyperbolic structure is complete is
equivalent to the fact that for each of the edges AB, BC, CD and DA, the
two distinguished points (in the sense defined in §3.2) corresponding to the
two ideal triangles that are adjacent to that edge coincide. Furthermore, since
the two quadrilaterals we started with are isometric, the algebraic distance
d between the distinguished points on each of the two diagonals joining the
verticesD and B coincide. As a matter of fact, the set of symmetric hyperbolic
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structures on the four-punctured sphere is parametrized by R, since such a
hyperbolic structure is completely determined by the algebraic distance d.

The horocyclic foliation associated to a symmetric hyperbolic structure g
together with the ideal triangulation µ is a foliation which has one cylinder
whose height is equal to |d| (which could be equal to 0) and four other cylinders
forming neighborhoods of cusps. In other words, the associated horocyclic
measured geodesic lamination λµ(g) is a simple closed geodesic α equipped
with a Dirac transverse measure of mass |d| (and it is the empty foliation
if d = 0). Stretching the hyperbolic structure g in the direction µ always
produces a symmetric hyperbolic structure. If t 7→ gt, t ∈ R, is the stretch line
starting at g and directed by µ, then, provided d 6= 0, we have the following:

(1) lgt(α) → 0 as t→ ∞;

(2) The distance between the distinguished points on the diagonal BD for
the hyperbolic structure gt equals et times that distance for the hyper-
bolic structure g = g0;

(3) If ν is any compactly supported measured geodesic lamination on S with
ν 6= α, then, we have i(ν, α) 6= 0 and lgt(ν) → ∞ as t→ ∞;

(4) lim
t→∞

gt = [α] as a point on Thurston’s boundary PMF0;

(5) As t → −∞, gt does not go to infinity but converges to the hyperbolic
structure that is obtained by the completely symmetric gluing of the
four ideal triangles that we started with, that is, the gluing where the
distances between the pairs of distinguished points on the six edges of µ
are all equal to zero.

3.9 Example II of a stretch line: the punctured torus

In this section, we consider the surface S = S1,1, that is, the punctured torus,
equipped with a hyperbolic metric g satisfying some properties which we now
state. Let µ be a complete geodesic lamination on S whose leaves consist in a

A B

CD

Figure 21. The four-punctured sphere with its ideal triangulation µ.
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simple closed geodesic γ, together with a bi-infinite geodesic δ converging at
both ends to the cusp, and in two other bi-infinite geodesics, each having one
end converging to the cusp and the other end spiraling around γ, in such a way
that the spiraling of the two geodesics takes place in the same direction, as in
Figure 22. The surface S \ µ has two connected components, each of them,
with its intrinsic metric, being the interior of a hyperbolic ideal triangle. We
choose the metric g so that its associated horocyclic lamination λµ(g) is a
closed geodesic α satisfying i(α, γ) = 1, as represented in Figure 23.
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γ
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Figure 22. The complete geodesic lamination µ is the union of the closed
geodesic γ, the bi-infinite leaf δ and two other bi-infinite geodesics that spiral
around γ at one end and that converge to the cusp of S at their other end.
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Figure 23. α is the horocyclic measured geodesic lamination associated to g
and µ. We are interested in the behaviour of the lengths of the three curves α,
β and γ along the stretch and the anti-stretch ray directed by µ and starting
at g.

In Figure 23 are represented the stump γ of µ, the closed geodesic α and
the simple closed geodesic β obtained from α by a left Dehn twist along γ.

We shall study the behaviour of the lengths of these particular closed geo-
desics under the stretch and anti-stretch rays directed by µ and starting at
g = g0. The behaviour of the lengths of these geodesics will permit us to
understand the change in geometry of the surface g under the stretch map.
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The closed geodesics α and β satisfy Card(γ ∩ β) = Card(α ∩ γ) = 1. The
reason why we consider these geodesics is that eventually we want to get an
idea of the behaviour of the lengths of an arbitrary simple closed geodesic
(and more generally of an arbitrary compactly supported measured geodesic
lamination) on S under the stretch (respectively the anti-stretch) ray gt as
t → ∞, and we expect this behaviour to depend on the intersection pattern
of that lamination with the stump of µ and with the horocyclic measured
geodesic lamination λµ(g). The general results are given in Theorems 3.31
and 3.32 below, and the results that we present in the example considered
here are illustrations of those general results. What makes things work easily
in this example is that we can determine the exact positions of these geodesics
for the structure gt as t varies.
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Figure 24. The critical graph of the foliation Fµ(g)

The horocyclic foliation Fµ(g) is the union of a cylinder C with core curve
α and of another cylinder foliated by leaves that are parallel to the puncture
of S, the two cylinders being glued along the critical graph of Fµ(g). This
critical graph is represented in Figure 24. Figure 25 represents the cylinder C
to which are attached the nonfoliated parts of Fµ(g). In that figure, the pairs
of regions with the same name are identified in the surface S. In the same
figure, we have drawn in bold lines the segments induced by γ and δ on the
cylinder C. This cylinder has a symmetry which is probably more apparent if
we cut the cylinder along the arc induced on it by δ. After this cutting, we
obtain Figure 26, that is, a large quadrilateral R which is the union of two
smaller isometric quadrilaterals R1 and R2. (The internal face of the cylinder
C of Figure 25 is the quadrilateral R of Figure 26.) The quadrilateral R has
an order-two symmetry of center w, where w is the midpoint of the segment
induced by γ on the cylinder C. Let s denote the midpoint of the arc induced
by δ on that cylinder.

By the uniqueness of the closed geodesic in each homotopy class of closed
curves on S, the closed geodesic α is preserved by this order-two symmetry of
R. Therefore this geodesic passes by the points s and w. The same holds for
the closed geodesic β, which passes by w (see Figure 26).
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Figure 25. The cylinder C and on its boundary the nonfoliated regions of Fµ(g).
These nonfoliated regions are labeled a and b, these letters corresponding to
the points A and B respectively on the critical graph of Figure 24. The two
arrows indicate that the corresponding spikes converge to the cusp.
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Figure 26. The quadrilateral obtained by cutting the cylinder C along δ.
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All these results on the relative positions of α and β remain true when the
metric g is replaced by the stretched (respectively anti-stretched) metric gt.PSfrag replacements
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Figure 27. The quadrilateral R1 in the upper half-plane model of H
2 is the

non-shaded region.

To do computations, we can use Figure 27 in which the quadrilateral R1 is
represented in the upper half-plane model of hyperbolic space. In that figure,
lt denotes the length of γ for the structure gt. However, it is possible to
determine the asymptotic behaviour of the lengths of the closed curves α, β
and γ along the stretch (respectively anti-stretch) ray without computations.
It suffices for that to determine the behaviour of the lengths of the sides of R1

along these rays. We refer to Figure 26, in which the common length of the
horizontal sides of R is equal to the length of γ, and the height of R is defined
to be the length of the leaf of Fgt (µ) that is equidistant from the boundaries of
C. This last quantity is an upper bound for the length of α. Now we observe
the following facts:

(1) The distances between the non-foliated regions grow linearly with et

along the stretch ray, and they decrease to zero along the anti-stretch
ray;

(2) In each spike, the lengths of the horocyclic arcs that are not on the
boundary of a non-foliated region and that are leaves of the horocyclic
foliation decrease to zero along the stretch ray and grow to 1 along the
anti-stretch ray.

Using these facts, it is easy to see that along a stretch ray, the height of R
tends to zero, whereas the common length of the horizontal sides of R tends to
infinity. Along an anti-stretch line, the height of R tends to infinity whereas
the length of a horizontal side tends to zero. Now since we know the exact



73

positions of the various curves, we obtain the following, along the stretch ray
gt:

(1) lim
t→∞

lgt(γ) = ∞;

(2) lim
t→∞

lgt(α) = 0;

(3) lim
t→∞

lgt(β) = ∞.

Likewise, along the anti-stretch ray gt, we have

(1) lim
t→∞

lgt(γ) = 0;

(2) lim
t→∞

lgt(α) = ∞;

(3) lim
t→∞

lgt(β) = ∞.

This example is rather limited in scope because the surface considered is not
large enough so as to contain closed curves that are disjoint from the stump, or
from the horocyclic measured lamination, or from both. This will be possible
in the example which we consider next.

3.10 Example III of a stretch line: the closed surface of
genus 2

In this example, S = S2,0 is a closed surface of genus 2 equipped with a
complete geodesic lamination µ whose stump consists of two nonseparating
closed geodesics γ1 and γ2, represented in Figure 28, with the other leaves of µ
spiraling around γ1∪γ2 in the same direction, as represented in Figure 29. We
choose a hyperbolic structure g on S whose associated horocyclic measured
geodesic lamination λµ(g) consists of a simple closed geodesic α, satisfying
Card{γ1 ∩ α} = Card{γ2 ∩ α} = 1. The topological pattern made by the
curves γ1, γ2 and α is represented in Figure 28.

As in the preceding examples, we study the behaviour of the lengths of
some particular simple closed geodesics under a stretch or an anti-stretch ray
directed by µ and starting at g. The closed geodesics considered here are γ1

and γ2 (chosen because they are contained in the stump of µ), the geodesic α,
and the two geodesics β1 and β2 that are represented in Figure 30, satisfying
(γ1 ∪ γ2) ∩ β1 6= ∅, (γ1 ∪ γ2) ∩ β2 = ∅ and α ∩ β1 = α ∩ β2 = ∅. Again, the
explicit computations that we do in this example are illustrations of Theorems
3.31 and 3.32 below.

The horocyclic foliation Fµ(g) is a foliation with one cylinder with core
curve in the class of α. In Figure 31 we have represented the critical graph
of Fµ(g) (after collapsing the non-foliated regions). Let C denote the cylinder
obtained by cutting the surface along the critical graph of Fµ(g). This cylin-
der is represented in Figure 33 (together with the non-foliated regions on its
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Figure 28. The union γ1 ∪ γ2 represents the stump of the complete geodesic
lamination µ, and α represents the horocyclic measured geodesic lamination
λµ(g) of the surface S = S2,0.
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Figure 29. The geodesic lamination µ, with stump γ1∪γ2. There are six leaves
of µ which are not contained in the stump. Each of these leaves is a bi-infinite
geodesic that spirals around γ1 or γ2. The spiraling around each curve γ1 and
γ2 is in the same direction.
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boundary, as in the preceding example). Each connected component of the
intersection of the leaves of µ with C is a segment that joins the two boundary
components of that cylinder, as shown in Figure 33. From the definition of the
transverse measure of Fµ(g), it follows that all these connected components
have the same length. In particular, we have lg(γ1) = lg(γ2).

We consider the cylinder C as the union of four quadrilaterals R1, . . . , R4.
This decomposition into quadrilaterals is induced by γ1 and γ2 and by two
other geodesic segments that join distinguished points on the leaves of µ, whose
trace on the cylinder C cut up along γ1 is shown in Figure 34. It is easy
to see that the quadrilaterals R1, . . . , R4 are congruent. For each of these
quadrilaterals, two of the opposite sides are geodesics contained in leaves of
µ, and the remaining two sides are made out of horocycles contained in leaves
of Fµ(g). (Note that each such side is a segment of a horocycle and not just
a union of segments of horocycles. This can be seen by examining Figure
35 which represents one of the quadrilaterals drawn in the upper half-plane.)
The cylinder C has an order-two symmetry with respect to the midpoint of
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Figure 30. We are interested in the behaviour of the lengths of the five closed
geodesics represented here under the stretch line directed by µ (of stump γ1∪γ2)
and passing by the hyperbolic structure whose horocyclic measured geodesic
lamination is α.
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Figure 31. The critical graph of the foliation obtained from Fµ(g) by collapsing
the non-foliated regions on the points A, B, C, D.
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Figure 32. Line 1 represents the passage from the singular graph to the cylinder
C obtained by cutting the surface along the singular graph (see Figure 33). On
lines 2, 3 and 4 we have repeated the cutting, showing at each line the two
closed curves γ1 and γ2 in bold lines, together with two other leaves of µ that
spiral along these two closed curves.



77

each geodesic side of any of the quadrilaterals Ri. To see this, let us consider
the quadrilateral R obtained by cutting the cylinder C along the segment γ1.
This quadrilateral is represented in Figure 34, with its induced decomposition
into the four quadrilaterals R1, . . . , R4. The four points s, w, u, v are the
intersection points of the leaf of Fµ(g) that is equidistant from the boundary
of C (distances being measured with respect to the transverse measure of that
foliation) with the geodesic sides of the quadrilaterals R1, . . . , R4. The point
u is the intersection point of that leaf with γ2. We claim that u is a center of
symmetry for the segments induced on R by each of the curves α, β1 and β2.
To see this, first of all, note that these segments are situated as shown in Figure
34 because of the combinatorics of the gluing of the boundary components of
R. Now, if we call α′, β′

1, β
′
2 the images of the curves α, β1, β2 by the symmetry

of center u, then α′, β′
1, β

′
2 are also simple and closed since the interior of R

is symmetric with respect to u. Since these curves are closed geodesics that
are homotopic to the closed geodesics α, β1 and β2 respectively, they coincide
with them. In particular, α passes through the four points s, w, u, v.

For later use, we compute the value x, shown in Figure 35, which represents
the quadrilateral R1 in the upper half-plane. This value x is a Euclidean
distance, measured on the boundary of the upper half-plane. It is also equal to
the hyperbolic length of the horocyclic edge of the rectangle R1 lying at height
1, in that same figure. The Euclidean distance y represented in the same figure
is equal to 3, because it is equal to the length of three horocyclic segments that
are boundaries of non-foliated triangles in the standard horocyclic foliation of
an ideal triangle, and that are at height 1 in the upper half-plane. Therefore,
we have the following (see also the caption of Figure 35):
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Figure 33. The cylinder C, together with the non-foliated regions of ideal trian-
gles on its boundary. Non-foliated regions with the same names are identified
in the surface S.
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Figure 34. The quadrilateral R representing the cylinder C cut along
the geodesic γ1. This quadrilateral is the union of the four quadrilaterals
R1, . . . , R4 that are drawn. The two horizontal sides of these quadrilaterals
that are not labeled are geodesic segments in µ that join distinguished points
on the edges of that lamination. We have also represented the leaf of Fµ(g)
that is equidistant from the two boundary components of C, together with
its intersection points s, w, u, v with the geodesic edges of the quadrilaterals
R1, . . . , R4. Finally, we have represented the geodesic segments induced by
β1 and β2 on the quadrilateral R. Each of these segments has two boundary
points on the same vertical side of R. The trace of β2 is drawn in bold lines.
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Figure 35. The quadrilateral R1, represented in the upper half-plane model of
hyperbolic plane, is the region between the two shaded regions. It is bounded
by two vertical geodesic segments, both of length l = lg(γ1) = lg(γ2), and two
horizontal horocylic segments, the lower one having length x and the upper
one having length x/h = xe−l. The geodesic segment corresponding to γ1 is
the segment contained in the vertical ray starting at the origin, joining the
point at height 1 to the point at height el. Both the continuous and the dotted
vertical lines in the picture are induced by the leaves of µ that cross R1 and
that spiral along γ1. This spiraling is obtained by iterating, under the map
z 7→ e−lz, the right hand block delimited by the geodesics that are based at
the abscissas x and x − y. This block is made out of the three ideal triangles
suggested by the dotted lines. The (Euclidean) distance y is equal to 3.
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x = y(1 + e−l + e−2l + . . .) =
3

1 − e−l
=

3el/2

2 sinh(l/2)
,

where l = lg(γ1) = lg(γ2).
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t

slope=1/sinh t

Figure 36. This is a useful ingredient for computing lgt(α), lgt (β1) and lgt(β2).
In this figure, the vertical line is a geodesic in the upper half-space model of H

2,
and the oblique line is a hypercycle (a line consisting of points at hyperbolic
distance t from the geodesic line). The value t is equal to the (hyperbolic)
length of any arc of circle joining these two lines perpendicularly. The slope of
the oblique line is then equal to 1/sinh t.

Now we compute the lengths of the segments labeled p, q and r in Figure 37.
These segments are induced by α, β1 and β2 respectively on the quadrilateral
represented. We use the formula of Figure 36 giving a relation between the
length and the slope.

For the segment p, the slope is
2el/2

x
, therefore the length is

2sinh−1(
x

2el/2
) = 2sinh−1(

3

4 sinh(l/2)
).

For the segment q, the slope is
2

x− 3
, therefore the length is

2sinh−1(
x− 3

2
) = 2sinh−1(

3e−l/2

4 sinh(l/2)
).

For the segment r, the slope is 2, therefore

2sinh−1(
1

2
) = 2 log

(1 +
√

5

2

)
.

Now we stretch the structure g along µ. Recall that gt is the hyperbolic
structure defined by the equality Fµ(gt) = etFµ(g). The distances between the
ideal triangles of S \µ are uniformly stretched. All the remarks that we made
about the quadrilaterals R1, . . . , R4 with respect to the metric g are valid for
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Figure 37. One of the four quadrilaterals of Figure 34, drawn in the upper half-
space. The segments labeled p, q, r are the segments induced by the geodesics
α, β1 and β2 respectively. The segment p is only contained in α, the segment q
is only contained in β2, whereas the segments r is contained in β1 and β2. The
computation of the lengths of these segments uses the the coordinates that are
indicated here and the ingredient in Figure 36. The labels (x − 3)/2, x/2 and
x− 1

2
are the abscissas of the corners in dotted lines that are above these labels.
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gt. The lengths of the boundary sides of these quadrilaterals depend on t, and
again, using the invariance of the transverse measure of Fµ(gt), we have

lgt(γ1) = lgt(γ2).

We set

lt = lgt(γ1) = lgt(γ2).

Note that lt = etlg(γ1) = etlg(γ2), since γ1 and γ2 are in the stump of µ.
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Figure 38. The universal covering of the structure g. In this picture, we can see
the annuli of the horocyclic foliation by examining the non-foliated triangular
regions of the ideal triangulation. Lifts of α, β1 and β2 are also represented.

The curve α consists of four segments of the type labeled by p in Figure
37. The curve β1 is composed of two segments of the type r and two segments
of the type q, and the curve β2 is composed of four segments of the type r.
From this we deduce the following:

lgt(α) = 8 sinh−1
( 3

4 sinh(lt/2)

)
,

lgt(β1) = 4sinh−1(
3e−lt/2

4 sinh(lt/2)
) + 4 log(1 +

√
5

2
)

and

lgt(β2) = 8 log
(1 +

√
5

2

)
.
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Summing up, if t 7→ gt is the stretch ray directed by µ and starting at g,
we have

(1) lim
t→∞

lgt(α) = 0. More precisely, we have lgt ∼t→∞ 12e−lt/2 = 12e−etl/2;

(2) {lgt(β1) | t ≥ 0} and {lgt(β2) | t ≥ 0} are bounded subsets of R∗
+. In

fact, lgt(β2) is constant and lgt(β1) decreases towards 4 log(
1 +

√
5

2
).

Now if if t 7→ gt is the anti-stretch ray directed by µ and starting at g, we
have

(1) lim
t→∞

lgt(α) = ∞;

(2) lim
t→∞

lgt(γi) = 0 for i = 1, 2;

(3) {lgt(β2) | t ≤ 0} is a bounded subset of R∗
+ (and in fact it is constant);

(4) lim
t→∞

lgt(β1) = ∞.

From these computations, one gets the feeling that the following facts hold:
— Changing the orientation of a stretch line seems to interchange the roles

of the stump and of the horocyclic measured geodesic lamination.
— The length of any simple closed geodesic with empty intersection with

the stump and with the horocyclic measured geodesic lamination is almost
constant along a stretch line.

— The length of a simple closed geodesic intersecting the horocyclic lami-
nation (respectively the stump) tends to infinity under the stretch ray (respec-
tively anti-stretch ray).

The results stated in Section 3.11 below (Theorems 3.31 and 3.32) show
that this is indeed the case, and not only for lengths of simple closed geodesics,
but more generally for lengths of arbitrary measured geodesic laminations.

Figure 39 gives another view on the dynamical behaviour of the stretch
line considered in the example that we are studying in this section. In that
figure, we have drawn the Poincaré disk realized as the universal covering of
the surface S equipped respectively with hyperbolic structures f , g and h
that belong to a stretch line directed by µ, and appearing in that order. The
central disk represents the structure g that we started with, the left-hand disk
corresponds to a structure f that lies before g on the stretch line (that is, we
can obtain g by stretching f along the same complete lamination µ) and the
right-hand figure represents the structure h obtained by stretching g along µ.

From this example, we deduce the following result which says that Thurston’s
asymmetric metric and its dual are not Lipschitz-equivalent.

Proposition 3.30. There does not exist any constant C satisfying K(g, h) ≤
CK(h, g) for all g and h in T.
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Figure 39. Each of these three pictures represents the universal covering H
2 of

the surface S2,0 studied in Section 3.10 successively equipped with the struc-
tures g−t, g = g0 and gt for some t > 0. We have represented a part of the
preimage of γ1 ∪γ2 by geodesics in bold lines, as well as the preimage of µ that
decomposes in a neat way H

2 into ideal triangles. In each ideal triangle, we
have represented the small non-foliated triangular region, which permits the
visualization of the horocyclic foliation. In this way, we can see that the width
of the cylinder C increases whereas its circumference decreases.

Proof. We consider the stretch line studied above, directed by µ and starting
at g, and the closed geodesic α. Then, we have, for every t ≥ 0,

rgt ,g(α) ∼t→∞
lg(α)

12e−
etl
2

= A(g)e
etl
2

where A(g) is a constant that depends on the metric g. Thus, we obtain
K(gt, g) ≥ log rgt,g(α) ∼ et, whereasK(g, gt) = t. This proves the proposition.

We can use the explicit formulae that we produced in this example to
plot the graphs of the functions t 7→ rg,gt (λ) for λ ∈ {α, β1, β2, γ1, γ2}. These
graphs give us an idea of the behaviour of the hyperbolic surfaces gt as t varies.
It is also interesting to draw the graph of the function t 7→ rg,gt (δ) where δ is
the closed geodesic represented in Figure 40, because the intersection pattern
of δ with α satisfies δ ∩ α 6= ∅ and δ ∩ γ = ∅. Figures 41 and 42 represent
respectively the intersection of δ with the cylinder R of Figures 34 and 37.

The computations give

lgt(δ) = log

(
elt + 1

16

(
elt − 5 −

√
(elt − 5)2 + 16elt

)2

elt/2
(
1 + 1

16

(
elt + 3 −

√
(elt − 5)2 + 16elt

)2)
)

Therefore,

lim
t→∞

lgt(δ) = ∞
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and

lim
t→−∞

lgt(δ) = 4 log(1 +
√

2).

We have drawn below the graphs of the functions t 7→ rg,gt (λ) for λ ∈
{α, β1, δ}.
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Figure 43. t 7→ lgt (α)
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Figure 44. t 7→ log(rg,gt (α))
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Figure 45. t 7→ lgt (β1)
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Figure 46. t 7→ log(rg,gt(β1))

It is interesting to note that the length function t 7→ lgt(α) of the horocyclic
measured geodesic lamination is strictly decreasing and convex. We can see on
the other figures that in the general case, the length function along a stretch
line is neither monotonic nor convex. But the figures indicate that the function
might be peakless in the sense of Busemann. We recall that a function f
defined on a closed interval I ⊂ R is said to be peakless if I can be decomposed
into three subintervals Il, I0 and Ir whose interiors are pairwise disjoint and
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Figure 47. t 7→ lgt(δ)
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Figure 48. t 7→ log(rg,gt(δ))

following each other in the order indicated, such that f is strictly decreasing
on Il, constant on I0 and strictly increasing on Ir. (Some of the intervals Il,
I0 and Ir might be empty). In the case where I0 is empty, the function f
is said to be strictly peakless. This notion was introduced by Busemann as a
generalization of convexity (see [13] p. 109). Regarding the closed geodesics
γ1 and γ2, which are in the stump, we recall that their gt-lengths (which are
equal) are strictly convex and increasing.

In the sections that follow, we shall study the asymptotic behaviour of
general stretch and anti-stretch lines in Teichmüller space.

3.11 The behaviour of the lengths of measured geodesic
laminations along stretch and anti-stretch lines

In this section, we present some results that show that the estimates made
in the examples studied in Sections 3.8, 3.9 and 3.10 about the lengths of
measured geodesic laminations along stretch and anti-stretch lines, are valid
in a general setting. We shall give estimates on the behaviour of lengths of
geodesic laminations under stretch and anti-stretch rays.

The proofs are contained in [58] and [59].
In what follows, we shall use the term topological measured geodesic lam-

ination to denote a geodesic lamination that admits a transverse measure in
the usual sense, but which is not equipped with any particular such transverse
measure. In other words, a topological measured geodesic lamination is the
support of some measured geodesic lamination.

We first deal with the case of a stretch ray {gt | t ≥ 0}, and then we shall
consider the case of an anti-stretch ray {gt | t ≥ 0}. Our aim is to determine,
in each case, the limit, if it exists, of the length lgt(α) of a measured geodesic
lamination α, as t→ ∞.
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Theorem 3.31 (Théret [58]). Let g be a hyperbolic structure on S, let µ be
a complete geodesic lamination, let {gt | t ≥ 0} be a stretch ray directed by
µ and starting at g = g0 and let λ = λµ(g) be the associated horocyclic mea-
sured geodesic lamination. Let α be an arbitrary compactly supported measured
geodesic lamination on S. We have the following:

(1) If the support of α is contained in the support of λ, then limt→∞ lgt(α) =
0.

(2) If i(α, λ) 6= 0, then limt→∞ lgt(α) = ∞.

(3) If the support of α is disjoint from the support of λ, then {lgt(α) | t ≥ 0}
is a bounded subset of R∗

+.

The next result concerns the limits of the same quantities, but this time
along anti-stretch rays.

Theorem 3.32 (Théret [59]). Let µ a complete geodesic lamination on S and
let {gt | t ≥ 0} be an anti-stretch ray starting at a hyperbolic structure g = g0

and directed by µ. Assume the stump of µ is nonempty, and call it γ. Let α
be an arbitrary compactly supported measured geodesic lamination on S. We
have the following:

(1) If the support of α is contained in the support of γ, then limt→∞ lgt(α) =
0.

(2) If i(α, γ) 6= 0, then limt→∞ lgt(α) = ∞. Note that in order to talk
about i(α, γ), one has to put a transverse measure on γ. The condition
i(α, γ) 6= 0 is then independent of the choice of the transverse measure
on γ.

(3) If the support of α is disjoint from the support of γ, then {lgt(α) | t ≥ 0}
is a bounded subset of R∗

+.

These two theorems suggest that the two measured geodesic laminations γ
and λ play in some cases symmetric roles.

The two theorems show in particular that the length of a measured geodesic
lamination that is disjoint from γ and from λ remains bounded along a stretch
line.

A consequence of this fact is that subsurfaces of S that have empty inter-
section with the stump and the horocyclic measured geodesic lamination are
distorted by a uniformly bounded amount as one follows a stretch line. Let us
be more precise. Consider a stretch line directed by a complete geodesic lami-
nation µ whose stump γ is non-empty. Let λ be the support of any horocyclic
measured geodesic lamination associated to this stretch line. Now assume
that there exists a subsurface S ′ of S with nonempty boundary satisfying the
following conditions:
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• the Euler characteristic of S ′ is negative;

• S′ contains at least one simple closed curve which is essential in S;

• S′ ∩ λ = S′ ∩ γ = ∅.
Note that these requirements imply that any hyperbolic structure on S

induces a hyperbolic structure with geodesic boundary on S ′ and that S′,
equipped with such a structure, is isometrically embedded in S. The homotopy
class of the identity map on S restricts to the homotopy class of the homotopy
map on S′.

Let us say that two hyperbolic structures g and g′ on S′ are K-quasi-
isometric if there exists a homeomorphism f of S ′ sending g to g′, which is
isotopic to the identity of S ′, and a number K > 0 such that L(f) ≤ K and
L(f−1) ≤ K.

If g and g′ on S′ are K-quasi-isometric, then the ratios rg,g′ (α) is bounded
from above by K and from below by 1/K. Conversely, one can show that if
the ratios rg,g′(α), as α varies over the set of essential simple closed curves of
S′, are bounded, then there exists some K for which the two structures g and
g′ are K-quasi-isometric. Therefore, we have the following:

Corollary 3.33 (Théret [59]). Let t 7→ gt be a stretch line directed by µ, with
stump γ. Assume that there exists a subsurface S ′ of S as above. Then there
exists a positive number K such that for every t and t′ in R, the hyperbolic
structures induced on S ′ by gt and gt′ are K-quasi-isometric.

3.12 Thurston’s boundary

Teichmüller space T(S) is embedded in the function space RS
+ by the length

functional l : T → RS
+ defined in (3.2) above. This embedding, composed with

the natural map from RS
+ onto its projectivization PRS

+, gives an embedding
(see [19])

T(S) → PR
S
+. (3.10)

We also recall that the intersection number functional associates to each
λ ∈ ML(S) the element i(λ, ·) ∈ RS

+, and that this defines a map from ML(S)
into RS

+. At the level of projectivizations, we obtain a map

PL(S) → PR
S
+

which restricts to an embedding

PL0(S) → PR
S
+, (3.11)

which induces a topology on the space PL0(S), by restriction of the projec-
tivization of the weak topology on PRS

+.
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We have the following result of Thurston (cf. [19], where the result is
described using measured foliations instead of measured laminations).

Theorem 3.34 (Thurston). The images of the spaces T(S) and PL0(S) in
PRS

+ by the embeddings (3.10) and (3.11) are disjoint. With the space PRS
+

being equipped with the quotient of the weak topology, the closure of the image
of T(S) in PRS

+ is compact, and the complement of this image in the closure
coincides with the image of PL0(S). Equipped with the induced topology, the
union T(S) = T(S) ∪ PL0(S) is homeomorphic to a closed ball of dimension
6g− 6 + 2n, whose boundary is the image of PL0(S).

For this reason, the space PL0(S) is also called Thurston’s boundary of
Teichmüller space.

The following convergence criterion is useful:
Let λ be an element of PL0(S). A sequence (gn) in T(S) converges to the

projective class [λ] ∈ PL0(S) if and only if there exists a sequence xn ∈ R∗
+

such that for all α ∈ S, we have

lim
n→∞

xnlgn(α) = i(λ, α).

3.13 Converging to Thurston’s boundary

Questions about the convergence of stretch and anti-stretch rays were already
considered in [47] where the following is proved:

Theorem 3.35 (Papadopoulos [47], Theorem 5.1 and the remark following
it). Let g be an element of Teichmüller space T(S) and let µ be a complete
geodesic lamination in S. Then, the stretch ray directed by µ and starting at g
converges to the projective class of the associated horocyclic measured geodesic
lamination λµ(g), considered as an element of Thurston’s boundary PL0(S) of
T(S).

We shall say that a measured geodesic lamination µ is uniquely ergodic if as
a topological lamination, µ admits a unique transverse measure up to a scalar
multiple. In particular, if µ consists of a weighted simple closed geodesic, then
it is uniquely ergodic. A uniquely ergodic measured geodesic lamination is
minimal in the sense that every leaf is dense in its support.

Note that our definitions of unique ergodicity for measured geodesic lam-
inations and for measured foliations (Definition 2.8 above) do not coincide
under the natural correspondence between the spaces ML0 and MF0. (This
is so because of the case of foliations which contain cylindrical components.)

As in the case of measured foliations, one can talk about uniquely ergodic
projective classes of measured laminations.
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In the paper [47], it is shown (Proposition 5.2) that if the complete geodesic
lamination µ is measured and uniquely ergodic, then the anti-stretch ray di-
rected by µ converges to the projective class of µ. A more general result has
been obtained by Théret in [59], where the following is proved:

Theorem 3.36 (Théret [59]). Let µ be a complete geodesic lamination on S
whose stump γ is nonempty and is uniquely ergodic. Then, any anti-stretch
ray directed by µ converges to the projective class of γ.

Note that there are instances where the anti-stretch line converges to a
point in Teichmüller space (and not on its boundary). This occurs for any anti-
stretch line directed by a complete geodesic lamination µ which has finitely
many leaves, and where all of these leaves converge to punctures at both ends,
and it occurs only for such complete geodesic laminations. (In other words, µ
is an ideal triangulation.) Note that µ is an ideal triangulation if and only if
the stump of µ is empty. The limiting hyperbolic structure g is the one for
which all the distances between the distinguished points on that lamination
are zero, that is, λµ(g) = ∅.

To state the next result, we say that a measured geodesic lamination µ′

is totally transverse to the complete geodesic lamination µ if the measure-
equivalence class of a measured foliation representing µ′ is totally transverse
to µ in the sense of Definition 3.9.

One application of Theorems 3.35 and 3.36 is the following

Corollary 3.37. Let α and β be two points in the boundary PL0(S) of T(S)
that can be represented by totally transverse measured geodesic laminations,
and suppose that α is uniquely ergodic. Then, there exists a line in Teichmüller
space which is geodesic for Thurston’s asymmetric metric and which converges
to α in the negative direction and to β in the positive direction.

In general, this geodesic is not unique: it suffices to consider a uniquely er-
godic stump which possesses several completions (see the discussion in Section
3.3). The stretch lines that are directed by these various complete geodesic
laminations, passing through hyperbolic structures which have the same as-
sociated horocyclic measured geodesic laminations, converge in the negative
direction and in the positive direction to the same points, α and β respectively,
in the boundary PL0(S) of T(S). (To see that it is possible to find such hy-
perbolic structures, one can use Thurston’s parametrization φµ of Teichmüller
space described in Section 3.5 above.)

It is possible to permute the points α and β, obtaining geodesics that
converge to α in the positive direction and to β in the negative direction (at
least if β is uniquely ergodic). Note that a priori these geodesics will be distinct
from the preceding ones.
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3.14 Stretch lines and earthquakes

There is no attempt here to present any of the basic results on earthquakes.
We consider earthquakes only in their relation to stretch maps. We start by
recalling the definition.

Definition 3.38 (Fenchel-Nielsen flow). This is a flow on Teichmüller space,
which is defined as follows. Let S be a hyperbolic surface and let α be a
homotopy class of an essential simple closed curve on S. The normalized left
Fenchel-Nielsen flowline through S is the one-parameter family (Et

α(S))t∈R

of hyperbolic surfaces such that for each t ≥ 0 (respectively t ≤ 0), Et
α(S)

is the hyperbolic surface obtained by cutting the hyperbolic surface S along
the closed geodesic in the class α and gluing back the two boundary geodesics
of the resulting surface after a left (respectively right) twist of magnitude
|t|lg(α). We say that the hyperbolic surface Et

α(S) is obtained from S by a
time-t normalized Fenchel-Nielsen twist along α.

We note that this “normalized” parametrization of the Fenchel-Nielsen flow
is different from the parametrization used by Kerckhoff in [28]; it is the one
used in Papadopoulos [45].

Definition 3.39 (Earthquake flow, see [28] and [62]). Let S be a hyperbolic
surface, let γ be a compactly supported measured geodesic lamination on S
and let αn be a sequence of elements in R∗

+×S converging to γ in the topology
of ML0(S). Then, for each t ∈ R, the sequence of hyperbolic structures
Et

αn
(S) converges to a hyperbolic structure Et

γ(S) that does not depend on
the choice of the sequence αn converging to γ. We say that the hyperbolic
structure Et

γ(S) is obtained from S by a time-t normalized earthquake along
γ. The earthquake is said to be a left (respectively right) earthquake if t ≥ 0
(respectively t ≤ 0).

Theorem 3.40 (Earthquake and stretch commute, Théret [59]). Let µ be a
complete geodesic lamination on S and let γ be a sublamination of µ equipped
with a transverse measure. Let Et

γ denote as above the normalized earthquake
flow along γ and let St

µ denote the stretch flow directed by µ. Then, for every
t and s in R, we have Et

γ ◦ Ss
µ = Ss

µ ◦ Et
γ .

In the paper [47], there is a definition and a study of the extension of
the normalized earthquake flow to Thurston’s boundary PL0(S) which is a
quotient flow of a flow defined on the unprojectivized space ML0(S). In fact,
in the paper [47], in the case where S is closed, these flows are defined on the
space MF0(S) of equivalence classes of measured foliation, and on the space
PMF0(S) of projective classes of measured foliations on S. We can define the
flows on ML0(S) and PL0(S) by using the natural correspondence between
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foliations and laminations. As an application of Theorem 3.40, we have the
following:

Corollary 3.41 (Théret [59]). Assume that the surface S is closed. Let γ be a
measured geodesic lamination on S and let µ be a completion of γ with stump
γ. Then, the time-t normalized earthquake (defined on ML0(S)) along γ of
the horocyclic geodesic lamination λµ(S) is the horocyclic geodesic lamination
λµ(Eα

t (S)). In other words, we have, for all t ∈ R, λµ(Eα
t (S)) = Eα

t (λµ(S)).

Theorem 3.40 on the commutativity of the earthquake flow along compo-
nents of the stump with the stretch flow (along completions of the stump) can
provide a class of examples of converging anti-stretch lines. Indeed, as soon as
we know that some anti-stretch line directed by a complete geodesic lamina-
tion µ converges to a point on Thurston’s boundary, all the other anti-stretch
lines obtained by the action of an earthquake along a component of the stump
also converge to the same point.

4 Problems

In this last section, we have collected a few problems, which concern mainly
Thurston’s asymmetric metric. Some of them may be easy.

Problem I: On the non-symmetry of Thurston’s metric. There are
several natural questions that arise directly from the fact that Thurston’s
metric K is non-symmetric. For instance: characterize the pairs of hyperbolic
structures g and h that satisfy K(g, h) = K(h, g). In other words, study
the locus in T(S) × T(S) defined by the equation K(g, h) = K(h, g). Since
K is a geodesic metric, another natural question is: give necessary and/or
sufficient conditions on the hyperbolic surfaces g and h under which there
exists a geodesic segment from g to h which is also (up to reparametrization)
a geodesic segment from h to g.

Problem II: On the symmetrization of Thurston’s asymmetric met-

ric. There are several definitions for the symmetrization of an asymmetric
metric K, none of them being more natural than the others. Two such op-
tions are

σK(g, h) = max{K(g, h),K(h, g)}
and

SK(g, h) =
1

2
(K(g, h) +K(h, g)).
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Each of these symmetrizations is a genuine metric. In the case where K is
Thurston’s asymmetric metric, it is natural to try to relate these two associated
symmetrizations to other known metrics on that space.

In this respect, we mention that one can adapt Thurston’s definition of his
asymmetric metric to the context of the Teichmüller space T1,0 of S1,0, that
is, of the torus, T1,0 is the space of flat metrics up to isotopy and homothety
on the torus. A priori, we have two distinct asymmetric metrics, L and K,
defined as in (3.4) and (3.5) above, on T1,0, hyperbolic length being replaced
here by Euclidean length, with a suitable normalization that takes care of
homothety. Such a study has been carried out in the paper [7], where it is
shown that K = L, as in the case of surfaces of negative Euler characteristic,
but with a different kind of proof. Recall that there is a natural identification
between T1,0 and H2. With this identification, we obtain a nonseparating and
nonsymmetric metric δ = K = L on H2. An explicit formula for δ is given in
[7], and it is shown there that its symmetrization Sδ is the Poincaré metric of
H2, which, as is well-known, is also the Teichmüller metric on T1,0.

It is unlikely that for surfaces of negative Euler characteristic, some partic-
ular symmetrization of Thurston’s asymmetric metric is Teichmüller’s metric,
but one can ask the reverse question, that is, to find an interesting asymmetric
metric on Teichmüller space whose symmetrization is Teichmüller’s metric. In
fact, one can ask the same question for the other known metrics on Teichmüller
space.

Problem III: Comparing Thurston’s asymmetric metric with other

metrics on Teichmüller space. As a first approach, one can think that
Thurston’s asymmetric metric is very different from Teichmüller’s metric, be-
cause the first one is defined using hyperbolic geometry, whereas the definition
of the latter is based on complex analysis. But, as is well-known, there are
many tools that make the relation between conformal and hyperbolic geom-
etry. One of the basic tools is a result of Wolpert ([67] p. 326) stating that
given any two hyperbolic structures g and h on S, then, for any quasiconformal
homeomorphism f : g → h with quasiconformal dilatation K(f) and for any
homotopy class γ of essential simple closed curves on S, we have

lh(f(γ)) ≤ K(f)lg(γ).

This gives the following inequality between Thurston’s asymmetric metric L
and the Teichmüller metric:

L(g, h) ≤ 2dT (g, h).

Indeed, let f : (S, g) → (S, h) be the Teichmüller map, where g and h are
considered as conformal structures. Wolpert’s result implies

lh(γ)

lg(γ)
≤ K(f) = e2dT (g,h)
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which gives

log
lh(γ)

lg(γ)
≤ logK(f) = 2dT (g, h),

hence L(g, h) ≤ 2dT (g, h).
Thus, the remaining question is to try to find a reverse inequality (may be

with an additive constant), or to prove that there is no such inequality. In
other words, the question is to see whether there is some large-scale quasi-
isometric relation between Thurston’s asymmetric metric and Teichmüller’s
metric.

In this respect, we note that in [7], it is shown that in the case of the Te-
ichmüller space of the torus, Thurston’s asymmetric metric and Teichmüller’s
metric are not quasi-isometric. (In that paper, there is a discussion of the
notion of quasi-isometry in the context of non-symmetric metrics.)

It may also be possible to relate Thurston’s asymmetric metric to the Weil-
Petersson metric on Teichmüller space T(S). This question is motivated by
a characterization due to Thurston and Wolpert of the Weil-Petersson metric
that is based, like Thurston’s asymmetric metric, on the length-spectrum of
closed curves. Indeed, Thurston introduced a Riemannian metric on T(S)
where the scalar product of two tangent vectors at some hyperbolic surface
(considered as an element of T(S)) is defined as the second derivative with
respect to the earthquake flows along these vectors of the length of a uniformly
distributed sequence of closed geodesics on the given hyperbolic surface, and
Wolpert showed later on that this metric coincides with the Weil-Petersson
metric; see [68].

We note that if dqi is the metric introduced in [65] by Thurston on Te-
ichmüller space, whose definition we recalled in (3.1) above, and if dT denotes
as before Teichmüller’s metric, then there exists a constant C > 0 such that

dT ≤ dqi ≤ CdT

(see [65] p. 268 where Thurston attributes this result to Douady and Earle).
We note finally that it is easy to make definitions of (symmetric or asym-

metric) metrics on Teichmüller space that are based on the comparison of
lengths of closed geodesics between hyperbolic surfaces, but what is interest-
ing is to be able to define metrics that have nice geometrical properties. For
instance, one can take any finite collection {γ1, . . . , γn} of simple closed curves
on the surface whose lengths for an arbitrary hyperbolic metric completely de-
termine that metric, and using these curves, one can define a distance between
two hyperbolic metrics g and h by taking

log sup
i=1,...,n

{ lg(γi)

lh(γi)
,
lh(γi)

lg(γi)
}.
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Clearly, this defines a metric on Teichmüller space, but does it have interesting
geometric properties?

Problem IV: Isometries. Isometries between spaces equipped with asym-
metric metrics can be defined in the same way as between usual metric spaces,
except that one has to be careful about the order of the variables in the case
of an asymmetric metric. A well-known result of H. L. Royden [50] states that
the group of isometries of the Teichmüller metric is the mapping class group.
Masur and Wolf proved an analogous result for the Weil-Petersson metric, see
[41]. Is the same statement true for Thurston’s asymmetric metric ? It is
easy to see that the elements of the mapping class group are isometries for
Thurston’s metric. Therefore, the question is about the reverse inclusion.

We also recall that Bers obtained in [11] a classification of the isometries of
the Teichmüller metric in terms of the properties of the displacement function
and of the intersection pattern of the minimal displacement sets of the isome-
tries. (Bers’ classification is based on Thurston’s classification of mapping
classes into pseudo-Anosov, reducible and parabolic, but it also constitutes
an independent approach to the classification.) Likewise, Daskalopoulos and
Wentworth obtained in [16] a classification of isometries of the Weil-Petersson
metric, again in terms of the displacement function and the displacement sets.
This result is also described in [17]. It is natural to ask for an analogous
classification for the isometries of Thurston’s asymmetric metric. Note that
this is not equivalent to the problem of showing that the isometry group of
Thurston’s asymmetric metric is the mapping class group.

Problem V: Geodesics. Thurston showed that stretch lines are geodesics for
Thurston’s asymmetric metric and that any two points in Teichmüller space
can be joined by a geodesic path that is a concatenation of stretch segments
(see Theorem 8.5 of [61] or Theorem 3.21 above for a precise statement). A
priori, there may exist other types of geodesics. Thus, an interesting problem
is to describe an arbitrary geodesic. In particular, is any geodesic a limit of a
concatenations of stretch segments ? Thurston also proved that a geodesic path
joining two points in Teichmüller space is in general not unique. Therefore,
another natural question is to characterize the set of ordered pairs of points
such that the geodesic joining them is unique. (This question would be easy
if one knew that every geodesic path is a concatenation of stretch paths).

Problem VI: The dual Thurston asymmetric metric. Work out an
asymptotic formula linking K(g, h) and K(h, g). To find a precise formula
is probably not a reasonable problem. Along a stretch line, we suspect a
formula reminding the collar formula sinh(aK(g, h)) sinh(bK(h, g)) ' c with
some constants a, b, c depending on the genus and on the number and punctures
of the surface S, and on the “complexity” of the complete lamination directing
the stretch line. We already know that Thurston’s asymmetric metric and its
dual are not Lipschitz equivalent. In fact, there are no constants C1 and C2
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such that for all g and h in T, we have K(g, h) ≤ C1K(h, g)+C2 (Proposition
3.30 above).

Problem VII: Anti-stretch lines. Find conditions for a hyperbolic metric
equipped with a complete geodesic lamination so that the anti-stretch line
starting at that point and directed by that lamination is also a stretch line (up
to reparametrization).

Problem VIII: Curvature. Study the various existing notions of curvature
of Teichmüller space equipped with Thurston’s asymmetric metric (Finsler
curvature, Gromov hyperbolicity, boundedness of curvature in the sense of
Alexandroff and so on). Note that this metric is not nonpositively curved in
the sense of Busemann since there may be several geodesic segments joining
two points.

Problem IX: Convergence of anti-stretch rays. For a given complete
geodesic lamination µ with nonempty stump γ, find weaker hypotheses than
those of Theorem 3.36 that imply the convergence of an anti-stretch ray di-
rected by µ to the projective class of γ. The convergence result in Theorem
3.36 may suggest that if the measured geodesic lamination γ is not uniquely
ergodic, then either an anti-stretch ray directed by µ does not converge to a
definite point on Thurston’s boundary, or it converges to the projective class
of the geodesic lamination γ equipped with some transverse measure which
would be a “barycenter” of all transverse measures carried by γ. Thus, a
natural question would be to find conditions under which one of these two
cases occurs. One can reason by analogy with Masur’s result regarding Te-
ichmüller’s metric stated as Theorem 2.42 above, where a whole family of rays
corresponding to different transverse measures on a given foliation converge to
a single point, corresponding to a special transverse measure on that foliation.

Problem X: Convexity. Kerckhoff showed in [28] that the geodesic-length
function on Teichmüller space associated to a closed geodesic is convex along
earthquake paths and that the sum of geodesic-length functions associated to
a finite family of geodesics that fills up the surface is strictly convex. Wolpert
showed in [69] that geodesic-length functions are strictly convex along Weil-
Petersson geodesics. Such convexity results have been used by several au-
thors to solve various problems. For instance, Kerckhoff used the convexity of
geodesic-length functions along earthquake paths to obtain a solution of the
Nielsen realization problem [28]. Wolpert, in his paper [69], used the strict con-
vexity of geodesic-length functions along Weil-Petersson geodesics to obtain a
new proof of the fact that Teichmüller space is Stein, and a new solution of the
Nielsen realization problem. Kerckhoff, in his paper [30] used the convexity
properties that he obtained in [28] to develop his theory of lines of minima in
Teichmüller space, which opened a new geometrical point of view on that space.
Thurston, in his preprint [63], constructed a mapping class group-equivariant
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spine for the Teichmüller space of a closed surface based on the convexity of
the geodesic-length function. P. Schmutz further developed such a theory in
his paper [51], where he also used the convexity of the geodesic-length function
to study what he called a systole function on Teichmüller space. In view of
all that, it is natural to study convexity properties of length functions along
stretch lines. The graphs that we plotted in 3.10 show that this function is
not convex in general, but one can conjecture that it is peakless in the sense of
Busemann. At the infinitesimal level, Thurston’s asymmetric metric is convex
in the sense that it is a Finsler metric, that is, it is defined by a length struc-
ture induced by a norm on each tangent space whose closed ball is a convex
body (which is not strictly convex).

Problem XI: The visual boundary. Describe the visual boundary at
any point (or at some class of points) of Teichmüller space equipped with
Thurston’s asymmetric metric. For that, one needs first to understand all
the geodesic rays starting at a point (cf. Problem V above). Does the visual
boundary depend on the choice of the basepoint ? Does the action of the
mapping class group extend to the space union its visual boundary ? One can
ask similar questions about the visual boundary of the dual asymmetric metric
K∗(x, y) = K(y, x).

Problem XII: Stretch maps between general metric spaces. Work
out a theory of stretch maps between general (i.e. not necessarily hyperbolic)
metrics on a surface. This problem is mentioned by Thurston in his paper [61].
A particularly interesting class of metrics on surfaces is the class of Euclidean
metrics with cone singularities. It is also an interesting problem to study
stretch maps between higher-dimensional manifolds equipped with metrics of
constant curvature, or between singular spaces (graphs, two-complexes and so
on).

Problem XIII: Moduli space. Study the behaviour of stretch and anti-
stretch lines in moduli space.
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[6] R. Baer, Isotopien von Kurven auf orientierbaren, geschlossenen Flächen, Journal
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[48] A. Papadopoulos & G. Théret, On the topology defined by Thurston’s asymmet-

ric metric, Mathematical Proceedings of the Cambridge Philosophical Society,
to appear in 2007.

[49] R.C. Penner & J. Harer, Combinatorics of Train Tracks, Annals of Math. Studies
125, Princeton University Press, 1992.

[50] H. L. Royden, Automorphisms and isometries of Teichmüller space, in: Advances
in the Theory of Riemann Surfaces (Proc. Conf. Stony Brook, N.Y., 1969) p.
369–383 Ann. of Math. Studies, No. 66. Princeton Univ. Press, 1971.

[51] P. Schmutz Schaller, A cell decomposition of Teichmüller space based on

geodesic length functions, Geom. Funct. Anal. 11, No.1, 142-174 (2001)

[52] G. S. Springer, Introduction to Riemann surfaces, Addison-Wesley, 1957.
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Teichmüller, 26

complete geodesic lamination, 36
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