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Abstract. We study here experimentally, with the purpose to calculate and display
the detailed tables of cyclic structures of dynamical systems Dd generated by iterations of
the functions Td acting, for all d ≥ 1 relatively prime to 6, on positive integers :

Td : N −→ N; Td(n) =
{ n

2 , if n is even;
3n+d

2 , if n is odd.

In the case d = 1, the properties of the system D = D1 are the subject of the well-known
Collatz, or 3n + 1 conjecture.

According to Jeff Lagarias, 1990, a cycle of the system Dd ((3n+ d)−cycle, for short)
is called primitive if its members have no common divisor > 1. For every one of 6667
systems Dd, 1 ≤ d ≤ 19999, we calculate its complete, as we argue, list of primitive cycles.
Our calculations confirm, in particular, two long-standing conjectures of Lagarias, 1990,
and suggest the plausibility of, and fully confirm several new deep conjectures of Belaga-
Mignotte, 2000. Moreover, based on these calculations, the first author, Belaga 2003,
advanced and proved a new deep conjecture concerning a sharp effective upper bound to
the minimal member (perigee) of a primitive cycle,

§1. Introduction. From many points of view, the challenge posed by the Collatz
problem – written down in his notebook by Lothar Collatz in 1937 and known today also
as the 3n+1 conjecture, 3n+1 mapping, 3n+1 problem, Hasse’s algorithm, Kakutani’s
problem, Syracuse algorithm, Syracuse problem, Thwaites conjecture, and Ulam’s problem
— is unique in the history of modern mathematics. The Collatz conjecture affirms that
the repeated iterations of the mapping

T : N −→ N; T (n) =
{ n

2 , if n is even;
3n+1

2 , if n is odd. (1 : 1)

produce ultimately the cycle 1 → 2 → 1, whatever would be the initial number n ∈ N.
The fact is — even if the Theorem of the Collatz problem can be easily understood and

appreciated by children entering secondary school and in its classic simplicity and beauty
it belongs more to the Euclidean than to modern era of mathematics – it remains still
unresolved, after more than forty years of sustained theoretical and experimental efforts:
cf. the annotated bibliography, by Jeff Lagarias, of 200 papers, books, and preprints
(arxiv.org/math.NT/0309224, the last update: January 5, 2006).

Bibliographical Digression. To avoid bibliographical redundancy, all our refer-
ences with numbers in square brackets direct the reader to corresponding items of the
Lagarias bibliography, with his generally very helpful succinct comments. Four papers
common to the Lagarias and our own bibliography, at the end of the paper, will be re-
ferred to by the double references, as in [Belaga, Mignotte 1999]–[22].

Not less surprisingly, the Collatz problem and its immediate elementary generaliza-
tions [21], [22], [23], [34], [37], [52], [53], [85], [105], [116], [121], were shown to be relevant in
one or another substantial way to the deepest open questions in algorithmic theory [20],
[52], [53], [98], [121], [131], [155] and mathematical logic [56], [116], [119], Diophantine
approximations and equations theory [21], [22], [23], [36], [133], [154], [158], [159], [160],
[165], p-adic number theory [1], [27], [28], [43], [137], [138-139], multiplicative semigroup
theory [64], [13], [107], discrete and continuous dynamical systems theory [44], [59], [95],
[115], [134], [141], and discrete (random walks) [32], [66, 67], [147], [182] and continuous
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stochastic processes theories [78], [96], [97], [106], [111], [112], [149], [161], [162], [163],
[178], [181], [185].

One of the most simple and natural generalizations of the Collatz problem, introduced
by Jeff Lagarias [105] and, independently, by the authors [Belaga, Mignotte 1999]–[22],
are so called (3n + d)−, or Td−mappings acting, for all d ≥ 1 relatively prime to 6, on the
set N of natural numbers :

Td : N −→ N; Td(n) =
{ n

2 , if n is even;
3n+d

2 , if n is odd. (1 : 2)

We study here experimentally, with the purpose to calculate and display the detailed
tables of cyclic structures of dynamical systems Dd generated by iterations of the functions
Td. In the case d = 1, the cyclic properties of the system D = D1 are the subject of the
cyclic part of the Collatz conjecture.

According to Lagarias [105], a cycle of the system Dd ((3n + d)−cycle, for short)
is called primitive if its members have no common divisor > 1. For every one of 6667
systems Dd, 1 ≤ d ≤ 19999, we calculate its complete, as we argue, list of primitive cycles.
Our calculations confirm, in particular, two long-standing conjectures of Lagarias, 1990,
and suggest the plausibility of, and fully confirm several new deep conjectures, Belaga,
Mignotte, 2000. Moreover, based on these calculations, the first author, Belaga 2003,
advanced and proved a new deep conjecture concerning a sharp effective upper bound to
the minimal member (perigee) of a primitive cycle,

§2. The 3n + d Generalization of the Collatz Problem and its Diophantine
Interpretation. We will need here a short list of Diophantine formulae related to the
Collatz problem and its 3n + d generalization. We assume the acquaintance of the reader
with the basic notions and reasonings leading to this interpretation. Any of the following
papers of the authors will do : [Belaga, Mignotte 1999]–[22], [Belaga, Mignotte 2000]–[23],
[Belaga, Mignotte, 2006a], [Belaga, Mignotte, 2006b].

In this section, we list the principal definitions necessary for an understanding of the
Diophantine interpretation of the original and generalized Collatz problems, as well as
the most important results, – without motivations, elaborations, and proofs, but, in a few
cases, with supplementary references.

Let D be the set of odd natural numbers not divisible by 3. As we have already
mentioned above, the iterations of the Td−mapping (1:2) generates on the set of natural
numbers N a dynamical system Dd :

Dd = {N ; Td : N −→ N} . (2 : 1)

Definition 2.1 (1) For a given map Td and a given n ∈ N, the Td−trajectory and,
in particular, the Td−cycle of length !, starting at n are defined as follows:






(i) τTd
(n) =

{
n = T 0

d (n), n1 = Td(n), n2 = T 2
d (n) = Td(Td(n)), . . .

}

(ii) τTd
(n) is a Td−cycle of the length ! ≥ 1 ⇐⇒

{
n! = T !

d(n) = n,

∀r (1 ≤ r < !), nr = T r
d (n) )= n .

(2 : 2)

(2) A non-cyclic Td−trajectory starting at n is called ultimately cyclic, if there exist
j ≥ 1 such that the Td−trajectory starting at nj = T j

d (n) is cyclic.
(3) A Td−trajectory τTd

(n) starting at n is divergent if it is neither cyclic, nor ulti-
mately cyclic. Or, equivalently, if |T j

d (n)|j→∞→∞.
Definition 2.2. (1) For any integer r and any set of integers K, let K(r) denote the

subset of all q ∈ K relatively prime to r. In this notations, D = N(6).
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(2) For a given d ∈ D, let T = Td be the corresponding map (1:2), and let, for a
given n ∈ N, τd(n) = τTd(n) be, according to (2:2), the Td−trajectory/cycle starting at
n. Then,

q = gcd(d, n) > 1 =⇒ ∀k ≥ 1 . q = gcd(d, T k
d (n)) = gcd(τd(n)), τd(n) = q · τd/q(n), (2 : 3)

with τd(n) being called q−multiple of the Td/q−trajectory/cycle τd/q(n). This reduces the
study of non-primitive Td−trajectories, and in particular, Td−cycles, to the study of their
underlying primitive Tq−cycles, for all proper divisors q of d.

(3) Otherwise, n ∈ N(d), and the trajectory τd(n) is called primitive,

gcd(d, n) = 1 =⇒ ∀k ≥ 1 . gcd(d, T k
d (n)) = gcd(τd(n) = 1 . (2 : 4)

Primitive trajectories are numerous: according to (2:4), the Td−trajectory starting at
a natural number n relatively prime to d is primitve. But how many of such trajectories
are primitive cycles? More specifically, do primitive cycles exist for all systems d ∈ D ?
And what are the chances of an integer n ∈ D(d) to belong to such a cycle?

These are the subjects of the original conjectures of Lagarias [105] :
Conjecture 2.3. (1) Existence of a Primitive Td−cycle. For any d ∈ D, there

exists at least one primitive Td−cycle. In the case of the Collatz problem, it is the cycle
Co = {1 → 2 → 1}.

(2) Finiteness of the Set of Primitive Td−cycles. For any d ∈ D, the number
of primitive Td−cycles is finite. In the case of the Collatz problem, one conjectures Co

being the only primitive cycle.
In contrast to the first two conjectures of Lagarias, the following conjecture has no

immediately apparent (3n + 1)−precursor or analogue :
Conjecture 2.4. For any n ∈ D, the set of primitive Td−cycles, d ∈ D(n), meeting

n is infinite.
We have interpreted this conjecture as dual to the first conjectures of Lagarias, with

the emerging disparate duality between d− and n−related phenomena being an important
new and all-pervading intuition behind the present study [Belaga, Mignotte 2000]–[23],
[Belaga, Mignotte 2006a]. This duality finds its precise formal description in the related
Diophantine framework, Theorem 2.10(4) below.

Definition 2.5. (1) For any positive integer n ∈ N, define the number Odd(n)
obtained by factoring out of n the highest possible power of 2; thus Odd(n) is odd and
m = Odd(n) · 2j , for some j. Hence the notation:

∀n ∈ N , ν2(n) = max
{
j ≥ 0

∣∣ n · 2−j ∈ N
}
, n = Odd(n) · 2ν2(n). (2 : 5)

(2) Let τd(n) = {n, Td(n), Td(Td(n)), . . .} be a primitive Td−trajectory starting at an
odd n not divisible by 3 and relatively prime to d, n ∈ D(6). The full sequence of odd
members, in the order of their appearance in τd(n) is called the odd frame of τd(n) and
denoted by Oddframe(n, d), with the full sequence of the corresponding exponents of 2,
denoted by Evenframe(n, d) (2:5):

∀n, d ∈ D,






(i) τd(n) =
{
n, n1, n2, . . .

}
;

(ii) Evenframe(n, d) =
{
p1, p2, . . .

}
⊂ N, ∀j ≥ 1, pj = ν2(3nj−1 + d) ≥ 1;

(iii) Oddframe(n, d) =
{
m0 = n, m1,m2, . . .

}
⊂ D(d) ,

∀j ≥ 1, mj = Odd(3mj−1 + d) = nrj , rj =
∑

1≤i≤j

pi .

(2 : 6)
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(3) If τd(n) is a cycle C of the length !, then the periodic sequence (2:5(iii)) is
called the Oddcycle associated with C and denoted by Oddframe(C), with the period
k, 1 < k < !, called the Oddlength of the cycle C, with the respective list Evenframe(C) of
exponents defined by the formula (2:5(ii)), and with the parameters length, Oddlength, and
Evenframe(C) satisfying the following obvious relationship implied by the cyclic condition
(2:2(ii)):

! = p1 + · · ·+ pk ≥ ,k · log2 3- ⇐⇒ Bk,! = 2! − 3k > 0 , Λ = {(k, !) ∈ N | ! ≥ ,k · log2 3-}. (2 : 7)

(4) Let ∆ be the subset of the set of pairs (n, d) ∈ D × D, with relatively prime
integers n, d. If a primitive Td−cycle C meets a number n, (n, d) ∈ ∆, then the pair 〈n, d〉
is called a primitive membership pair, or simply membership.

Definition 2.6. Let 〈n, d〉 ∈ M be a primitive membership. Using the notations
(7:2,3), we define:






a, b, f, g, h : M −→ D ;
∀〈n, d〉 ∈M, A = a(〈n, d〉), B = Bk,! = b(〈n, d〉), F = f(〈n, d〉), G = g(〈n, d〉), H = h(〈n, d〉) ;

A =
{

1, if k = 1 ;
3k−1 + 2p1 · 3k−2 + · · ·+ 2p1+···+pk−2 · 3 + 2p1+···+pk−1 , otherwise;

B = Bk,! = 2! − 3k = 2p1+p2+...+pk − 3k > 0 (cf.(4 : 3)); B is called Collatz (k, !)− number;

H = gcd(A,B) ; F =
A

H
; G =

B

H
; gcd(F,G) = 1.

(2 : 8)

The following theorem translates the iterative “cyclic walk” language for (3n + d)−maps
into its Diophantine equivalent:

Theorem 2.7. [Belaga, Mignotte 1999]–[22] (1) Diophantine Cyclic Walk. Let
〈n, d〉 ∈ M be a primitive membership, C = C(d, n) be the corresponding primitive
Td−cycle starting at m0 = n, of the Oddlength k > 1, let m1 = Odd (3m0 + d) (4:3), and
let 〈m1, d〉 be the corresponding membership. Let σk be the circular counterclockwise per-
mutation on k−tuples of positive integers P = Even (n, d). Then the set P1 = Even (m1, d)
corresponding to the membership 〈m1, d〉 is defined by the formula

P1 = Even (m1, d) = σk

(
P

)
= σk

(
p1, p2, . . . , pk−1, pk

)
=

(
p2, p3, . . . , pk, p1

)
.

(2) From Primitive Membership to its Diophantine Representation. Let
〈n, d〉 be a membership, and let the functions a, b, f, g, h be defined as above (2:8). Then
F = f(〈n, d〉) = n, G = g(〈n, d〉) = d.

(3) From the Diophantine Formulae to their Membership Interpretation.
Let k ≥ 2 and P =

(
p1, . . . , pk

)
⊂ Nk be a k−tuple of positive integers satisfying the

inequality

! = |P| = p1 + · · ·+ pk ≥ ,k · log2 3- , (2 : 9)

and let the numbers A,B, F, G,H be defined as in (2:8). Then 〈F,G〉 is a primitive
membership.

The following deep theorem demonstrates the strength of the above Diophantine
formalism (2:5-9) ; we are not aware of an alternative, non-Diopnantine proof of the below
inequality (2:10):

Theorem 2.8. [Belaga 2003]–[21] (1) Let 〈n, d〉 ∈M be a primitive membership of
the length ! and Oddlength k, and let τd(n), (n, d) ∈ ∆ be the corresponding Td−cycle. If
n is the minimal member of the Oddframe(n, d), then the inequality holds :

1 ≤ n <
d

2 !
k − 3

. (2 : 10)
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(2) The inequality (2:10) is sharp : for any K > 1 and any ε > 0, there exists the
primitive membership 〈n, d〉 ∈M, such that n is the minimal member of the corresponding
primitive cycle of the Oddlength k > K and length ! satisfying the inequality :

0 <
n · (2 !

k − 3)
d

− 1 < ε . (2 : 11)

The following statement demonstrates the particular importance of Collatz numbers
for our problems :

Definition 2.9. (1) The pair (k, !) ∈ Λ (2:7) and the corresponding Collatz number
B = Bk,! (2:8) are called narrow if gcd(k, !) = 1 and ! = ,k · log2 3-. We denote by Λ0

the set of narrow pairs (k, !) :

Λ0 = {(k, !) ∈ Λ | gcd(k, !) = 1 & ! = ,k · log2 3-} . (2 : 12)

(2) Let 〈n, d〉 ∈M be a primitive (k, !)−membership with the corresponding Collatz
number B. We associate with 〈n, d〉 ∈ M its Collatz corona A = Ak,!, a finite set of
natural numbers depending only on the Oddlength and length of 〈n, d〉 ∈M, as follows :

(a) If k = 1, then

A1,! =
{
1
}

. (2 : 13))

(b) If k > 1, then for any aperiodic (k − 1)−tuple P =
{
p1, . . . , pk−1

}
of positive

integers satisfying the inequality (cf. (2:9))

p1 + . . . + pk−1 < ! , (2 : 14)

the following number belongs to A :

A = A(P) = 3k−1 + 3k−2 · 2p1 + . . . + 3 · 2p1+...+pk−2 + 2p1+...+pk−1 . (2 : 15)

By definition, members of Collatz corona are odd positive integers not divisible by 3. The
Collatz corona corresponding to a narrow pair (k, !) is called narrow, too.

Theorem 2.10. (1) Collatz corona Ak,! is a one-element set iff k = 1 (2:13))
(2) Otherwise, Collatz corona Ak,! of a Collatz number B = Bk,! is a finite set of

mutually distinct positive integers not equal to B, and its cardinality αk,! = #Ak,! satisfies
the following formula (cf. (2:7) for the definition of the set Λ) :

∀(k, !) ∈ Λ






αk,! = #Ak,! =

{(!−1
k−1

)
, if gcd(k, !) = 1 ,

∑
r| gcd(k,!) µ(r) ·

( !
r−1
k
r−1

)
, otherwise ,

αk,! ≡ 0 (mod k) ,

(2 : 16)

where µ is the Möbius function :

µ(m) =

{ 1 , if m = 1 ,
(−1)q , if m is the product of q distinct primes ,
0 , if m is divisible by a square of a prime .

The low part of the formula (2:16), defined for pairs (k, !) with the property gcd(k, !) > 1,
is universal and covers – but also obscures – the special upper case gcd(k, !) = 1.

(3) The below lower and upper bounds to members A of Collatz corona are sharp :

∀(k, !) ∈ Λ
∀A ∈ Ak,!

} {
Ak,! = 3k − 2k , Ak,! = 2!−k+1 ·

(
3k−1 − 2k−1

)
+ 3k−1 ;

3k−1 < Ak,! ≤ A ≤ Ak,! < 2!−k+1 · 3k−1 .
(2 : 17)
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(3) Since the function a in the definition (2:8) and the corresponding construction
((2:15) do not actually depend on the k−th component pk of the correspnding Collatz
configuration, their values for two k−configurations of different lengths can be equal.
More precisely,

∀(k, !) ∈ Λ ∀j ≥ 1 , Ak,! ⊂ Ak,!+j . (2 : 18)

(4) With the exception of the trivial case, corresponding to the primitive T1−cycle
1 → 2 → 1,

k = 1, ! = 2, A1,2 = {1}, B = 1 ,

no Collatz number ever belongs to the respective Collatz corona and, if k ≥ 4, it is located
below the upper bound (2:17) of the corona,

∀(k, !) ∈ Λ , B = Bk,! < 2!
(

< Ak,! , if k ≥ 4
)

. (2 : 19)

(5) Moreover, if (k, !) ∈ Λ is not narrow, then Ak,! extends both below and above B.
Consequently, the original Collatz, or 3n+1, conjecture is equivalent to the following

claim :
The (Diophantine version of the) Collatz conjecture 2.11. For any pair

(k, !) ∈ Λ \ {(1, 2)}, no member of the Collatz corona Ak,! is devisible by the Collatz
number Bk,!.

§3. Experimental Study of the Cyclic Structure of Dynamical Systems Dd

generated by the corresponding (3n+d)−mappings. For all 6667 dynamical systems
Dd within the range 1 ≤ d ≤ 19999, d ∈ D, our computations have confirmed Conjectures
2.3, 2.4, – see our main Table below – albeit inevitably with different degrees of certainty.
Moreover, as it has been already mentioned above, the numerical data obtained in our
computations suggest the plausibility of previously unknown general laws of the iterative
behaviour of (3m + d)−maps, with one of such laws formulated and proved in [Belaga
2003]–[21].

(1) Withing the chosen range, Conjecture 2.3(1) has been fully confirmed: all such
systems Dd have at least one primitive cycle.

(2) The confirmation of Conjecture 2.3(2) is more problematic: a priori, no quantity
of computations could confirm that a certain (sub)set is finite. Thus, the plausibility of
such a claim hinges on the quality of availble evidence that the search was exhaustive.
Such an evidence is discussed below, §4.

(i) The total number of experimentally discovered Td−cycles, 1 ≤ d ≤ 19999, d ∈ D,
is equal to 42765.

(ii) The numbers ω(d) of such cycles for individual systems D − d are ranging from
ω(d) = 1, for 1481 systems Dd out of 6667, to 2, for 1507 of them, to 3, for 1005, etc., to
944 for the system D14303 :

Table 3.1. Eleven systems Dd with the numbers of primitive cycles bigger than 160.
d 7463 18359 7727 15655 10289 9823 17021 14197 13085 6487 14303
ω(d) 162 164 198 207 214 241 258 329 335 534 944

(3) Compared to the case of the two Conjectures 2.3, our claim of the confirmation
of Conjecture 2.4 is even more problematic: no quantity of (always finite) computations
could confirm that a certain (sub)set is infinite !

Still, taking in account relatively small total numbers of memberships in primitive
cycles for corresponding numbers n compared to the total number 42765 of primitive
cycles found in the chosen range, – the total numbers ranging from 18 to 452 (for n = 1),
– we have a strong evidence of the plausibility of Conjecture 2.4.
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§4. Algorithm Searching for Primitive Cycles.
According to the generalized Collatz conjecture, all trajectories of the system Dd, d ∈

D are either cyclic, or ultimately cyclic, This claim became the basic assumption of our
algorithm searching for primitive Td−cycles :

Working Assumption 4.1. Let ∆ = {(u, v) ∈ D| gcd(u, v) = 1}. The following
algorithm always halts :

Aprim.cycl
3x+d :






∀(u, v) ∈ ∆
d := u; m := n := v
while m )= n do

m := Td(m); n := Td(n); n := Td(n);
endwhile .

(4 : 1)

The algorithm (4:1) computes at the j-th step the iterations T j
d (n) and T 2j

d (n), and
then compares them. See Proposition 4.2 below for a proof that even the full (i. e.,
not necessarily restricted to primitive cycles) version Acyclic

3x+d of this algorithm detects all
Td−cycles.

This classical cycle detection device, remarkable for its simplicity, has been invented
by Robert W. Floyd. (Never published by the author. The standard reference is [Knuth
1969], pp. 4-7, Exercise 7. See also [Cohen 1993], §8.5.2, for an update on cycles detection
methods.) :

Proposition 4.2. Let f : N −→ N be a function. A f -trajectory starting at a
positive integer m,

τ(m) =
{
f0(m) = m, f(m), f2(m) = f(f(m)), f3(m), . . .

}
(4 : 2)

is ultimately cyclic iff, for some j ≥ 1,

f j(m) = f2j(m) , (4 : 3)

Proof : (1) The if (or sufficiency) condition (4:3) is obvious.
(2) The only if (or necessary) condition. Suppose τ(m) runs at the point s = fz(m),

z ≥ 1, into a cycle of the length w, so that, for any x ≥ 0, fz+x(n) = fz+x+w(m).
Assuming t = z + x, the condition (4:2) will be satisfied if, for some positive integers

x, y ≥ 1, the equality holds :

2t = 2(z + x) = z + x + y · w = t + y · w.

The choice y =
⌈

z
w

⌉
and x = y · w − z would do. End of Proof.

The above Working Assumption has been verified in more than 75, 000, 000 cases
within the intervals

d ∈ I1,19999 = [1, 19999] ∩D , n ∈ I1,600·d−1 . (4 : 4)

and separately, in a huge controlling check, in more than 24,000,000,000 cases within the
intervals

d ∈ I1,4999 , n ∈ I1,3000·d−1 . (4 : 5)

To speed the search, trajectories have been traced in the increasing order of the
starting number m ∈ D. Then, if the trajectory τd(m) fell at some point behind the initial
point m, n = T j

d (m) < m, the search along τd(m) was ceased, since its continuation, the
trajectory τd(n) starting at n, has been already treated before. Every one of the thus
traced trajectories either run ultimately into a primitive cycle, or descended under m, and
thus, has been already traced to a cycle earlier.
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We have carried out some additional controlling checks, too :
(1) In 82 cases, for all d ∈ I2755,2999, an independent search has been carried out, with

the bigger initial interval 1 ≤ n ≤ 5000 · d. No new primitive cycles have been discovered.
(2) In one particularly interesting case, d = 343, mentioned below, the chosen initial

controlling interval was 1 ≤ n ≤ 60, 000 · 343 > 2 · 107. The calculations have confirmed
the existence of only three primitive cycles discovered earlier.

Note also that the minimal members of all primitive cycles, discovered thus far, fall
under the upper limit 600 · d in (4:4), with only two cases coming relatively close to this
limit :

(1) d = 343; one of primitive T343-cycles (out of three discovered) has the minimal
member (cf. (10:3)) no = 177, 337; 517 ·343 < no < 518 ·343 < 600 ·343 (and the maximal
member mo = 159, 053, 606).

(2) d = 551; one of primitive T551-cycles (out of ten) has the minimal member
no = 212, 665; 385 · 551 < no < 386 · 551 < 600 · 551 (with mo = 8, 332, 648).

§5. Commentaries to the Table of Primitive Td-cycles, 1 ≤ d ≤ 19999 (d odd
and not divisible by 3).

Notations :
(1) The data corresponding to a given shift number d is framed by the double back-

slash \\.
(2) The first line of the block of data corresponding to a given shift number d, for

example,

d = 5; a = 5; lg = [3, 5, 5, 27, 27];LG = [1, 3, 3, 17, 17];

includes the value of d, in this case, d = 5, the number a of primitive cycles found, a = 5,
and the lists of lengths, lg, and Oddlengths, LG, of corresponding cycles, respectively :
lg= [. . .], LG= [. . .].

(3) Then, for a given d, follows the detaled descriptions of the corresponding primitive
Td−cycles, in the order of the values of their perigees (the minimal members).

(4) The list S[j] of the length Oddlength represents the list of odd members of the
cycle listed in the order of the index j, 1 ≤ j ≤ a, according to the above definintion of
Oddframe of the cycle, (2:6(iii)).

(5) The list P[j], j, 1 ≤ j ≤ a − 1, , represents the first Oddlength − 1 members
of the list of exponents of 2, corresponding to the passage from one odd member of the
Oddframe of the cycle to the next one (cf. (2:6)), with the exponent for the passage from
the last odd member of the cycle to the first one omitted. The full list has been defined
above (2:6(ii)) as Evenframe of the cycle.

(6) The last member of the Evenframe of the cycle, missing in P[j], is presented
immediately after P[j], as p= . . .. The reason of such an independent presentation of this
member (pk in the notations (2:7)) is its irrelevance to the construction of numbers A of
the formulae (2:8).
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