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The Collatz Problem and Its Generalizations: Experimental Data. Table 1. Primitive Cycles of (3n + d)-mappings

We study here experimentally, with the purpose to calculate and display the detailed tables of cyclic structures of dynamical systems D d generated by iterations of the functions T d acting, for all d ≥ 1 relatively prime to 6, on positive integers :

, if n is odd.

In the case d = 1, the properties of the system D = D 1 are the subject of the well-known Collatz, or 3n + 1 conjecture.

According to Jeff Lagarias, 1990, a cycle of the system D d ((3n + d)-cycle, for short) is called primitive if its members have no common divisor > 1. For every one of 6667 systems D d , 1 ≤ d ≤ 19999, we calculate its complete, as we argue, list of primitive cycles. Our calculations confirm, in particular, two long-standing conjectures of Lagarias, 1990, and suggest the plausibility of, and fully confirm several new deep conjectures of Belaga-Mignotte, 2000. Moreover, based on these calculations, the first author, Belaga 2003, advanced and proved a new deep conjecture concerning a sharp effective upper bound to the minimal member (perigee) of a primitive cycle,

§1. Introduction. From many points of view, the challenge posed by the Collatz problem -written down in his notebook by Lothar Collatz in 1937 and known today also as the 3n+1 conjecture, 3n+1 mapping, 3n+1 problem, Hasse's algorithm, Kakutani's problem, Syracuse algorithm, Syracuse problem, Thwaites conjecture, and Ulam's problem -is unique in the history of modern mathematics. The Collatz conjecture affirms that the repeated iterations of the mapping

T : N -→ N; T (n) = n 2 , if n is even; 3n+1 2
, if n is odd.

(1 : 1) produce ultimately the cycle 1 → 2 → 1, whatever would be the initial number n ∈ N.

The fact is -even if the Theorem of the Collatz problem can be easily understood and appreciated by children entering secondary school and in its classic simplicity and beauty it belongs more to the Euclidean than to modern era of mathematics -it remains still unresolved, after more than forty years of sustained theoretical and experimental efforts: cf. the annotated bibliography, by Jeff Lagarias, of 200 papers, books, and preprints (arxiv.org/math.NT/0309224, the last update: January 5, 2006).

Bibliographical Digression. To avoid bibliographical redundancy, all our references with numbers in square brackets direct the reader to corresponding items of the Lagarias bibliography, with his generally very helpful succinct comments. Four papers common to the Lagarias and our own bibliography, at the end of the paper, will be referred to by the double references, as in [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF]]- [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF].

Not less surprisingly, the Collatz problem and its immediate elementary generalizations [START_REF] Edward | [END_REF], [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF], [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF], [34], [37], [52], [53], [85], [105], [116], [121], were shown to be relevant in one or another substantial way to the deepest open questions in algorithmic theory [20],

[52], [53], [98], [121], [131], [155] and mathematical logic [56], [116], [119], Diophantine approximations and equations theory [START_REF] Edward | [END_REF], [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF], [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF] One of the most simple and natural generalizations of the Collatz problem, introduced by Jeff Lagarias [105] and, independently, by the authors [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF]]- [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF], are so called (3n + d)-, or T d -mappings acting, for all d ≥ 1 relatively prime to 6, on the set N of natural numbers :

T d : N -→ N; T d (n) = n 2 , if n is even; 3n+d 2
, if n is odd.

(1 : 2)

We study here experimentally, with the purpose to calculate and display the detailed tables of cyclic structures of dynamical systems D d generated by iterations of the functions T d . In the case d = 1, the cyclic properties of the system D = D 1 are the subject of the cyclic part of the Collatz conjecture.

According to Lagarias [105], a cycle of the system D d ((3n + d)-cycle, for short) is called primitive if its members have no common divisor > 1. For every one of 6667 systems D d , 1 ≤ d ≤ 19999, we calculate its complete, as we argue, list of primitive cycles. Our calculations confirm, in particular, two long-standing conjectures of Lagarias, 1990, and suggest the plausibility of, and fully confirm several new deep conjectures, Belaga, Mignotte, 2000. Moreover, based on these calculations, the first author, Belaga 2003, advanced and proved a new deep conjecture concerning a sharp effective upper bound to the minimal member (perigee) of a primitive cycle, §2. The 3n + d Generalization of the Collatz Problem and its Diophantine Interpretation. We will need here a short list of Diophantine formulae related to the Collatz problem and its 3n + d generalization. We assume the acquaintance of the reader with the basic notions and reasonings leading to this interpretation. Any of the following papers of the authors will do : [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF]]- [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF], [Belaga, Mignotte 2000]- [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF], [Belaga, Mignotte, 2006 a ], [Belaga, Mignotte, 2006 b ].

In this section, we list the principal definitions necessary for an understanding of the Diophantine interpretation of the original and generalized Collatz problems, as well as the most important results, -without motivations, elaborations, and proofs, but, in a few cases, with supplementary references.

Let D be the set of odd natural numbers not divisible by 3. As we have already mentioned above, the iterations of the T d -mapping (1:2) generates on the set of natural numbers N a dynamical system D d :

D d = {N ; T d : N -→ N} .
(2 : 1) Definition 2.1 (1) For a given map T d and a given n ∈ N, the T d -trajectory and, in particular, the T d -cycle of length , starting at n are defined as follows:

       (i) τ T d (n) = n = T 0 d (n), n 1 = T d (n), n 2 = T 2 d (n) = T d (T d (n)), . . . (ii) τ T d (n) is a T d -cycle of the length ≥ 1 ⇐⇒ n = T d (n) = n, ∀r (1 ≤ r < ), n r = T r d (n) = n .
(2 : 2)

(2) A non-cyclic T d -trajectory starting at n is called ultimately cyclic, if there exist j ≥ 1 such that the T d -trajectory starting at

n j = T j d (n) is cyclic. (3) A T d -trajectory τ T d (n) starting at n is divergent if it is neither cyclic, nor ulti- mately cyclic. Or, equivalently, if |T j d (n)| j→∞ →∞. Definition 2.2.
(1) For any integer r and any set of integers K, let K (r) denote the subset of all q ∈ K relatively prime to r. In this notations, D = N (6) .

(2) For a given d ∈ D, let T = T d be the corresponding map (1:2), and let, for a given n ∈ N, τ d (n) = τ T d (n) be, according to (2:2), the T d -trajectory/cycle starting at n. Then,

q = gcd(d, n) > 1 =⇒ ∀k ≥ 1 . q = gcd(d, T k d (n)) = gcd(τ d (n)), τ d (n) = q • τ d/q (n),
(2 : 3) with τ d (n) being called q-multiple of the T d/q -trajectory/cycle τ d/q (n). This reduces the study of non-primitive T d -trajectories, and in particular, T d -cycles, to the study of their underlying primitive T q -cycles, for all proper divisors q of d.

(3) Otherwise, n ∈ N (d) , and the trajectory 

τ d (n) is called primitive, gcd(d, n) = 1 =⇒ ∀k ≥ 1 . gcd(d, T k d (n)) = gcd(τ d (n) = 1 . ( 2 
C o = {1 → 2 → 1}.
(2) Finiteness of the Set of Primitive T d -cycles. For any d ∈ D, the number of primitive T d -cycles is finite. In the case of the Collatz problem, one conjectures C o being the only primitive cycle.

In contrast to the first two conjectures of Lagarias, the following conjecture has no immediately apparent (3n + 1)-precursor or analogue : Conjecture 2.4. For any n ∈ D, the set of primitive

T d -cycles, d ∈ D (n) , meeting n is infinite.
We have interpreted this conjecture as dual to the first conjectures of Lagarias, with the emerging disparate duality between d-and n-related phenomena being an important new and all-pervading intuition behind the present study [Belaga, Mignotte 2000]- [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF], [Belaga, Mignotte 2006 a ]. This duality finds its precise formal description in the related Diophantine framework, Theorem 2.10(4) below.

Definition 2.5. (1) For any positive integer n ∈ N, define the number Odd(n) obtained by factoring out of n the highest possible power of 2; thus Odd(n) is odd and m = Odd(n) • 2 j , for some j. Hence the notation:

∀n ∈ N , ν 2 (n) = max j ≥ 0 n • 2 -j ∈ N , n = Odd(n) • 2 ν2(n) .
(2 : 5)

(2) Let τ d (n) = {n, T d (n), T d (T d (n)), .
. .} be a primitive T d -trajectory starting at an odd n not divisible by 3 and relatively prime to d, n ∈ D (6) . The full sequence of odd members, in the order of their appearance in τ d (n) is called the odd frame of τ d (n) and denoted by Oddframe(n, d), with the full sequence of the corresponding exponents of 2, denoted by Evenframe(n, d) (2:5):

∀n, d ∈ D,                (i) τ d (n) = n, n 1 , n 2 , . . . ; (ii) Evenframe(n, d) = p 1 , p 2 , . . . ⊂ N, ∀j ≥ 1, p j = ν 2 (3n j-1 + d) ≥ 1; (iii) Oddframe(n, d) = m 0 = n, m 1 , m 2 , . . . ⊂ D (d) , ∀j ≥ 1, m j = Odd(3m j-1 + d) = n rj , r j = 1≤i≤j p i .
(2 : 6)

(3) If τ d (n) is a cycle C of
the length , then the periodic sequence (2:5(iii)) is called the Oddcycle associated with C and denoted by Oddframe(C), with the period k, 1 < k < , called the Oddlength of the cycle C, with the respective list Evenframe(C) of exponents defined by the formula (2:5(ii)), and with the parameters length, Oddlength, and Evenframe(C) satisfying the following obvious relationship implied by the cyclic condition (2:2(ii)):

= p 1 + • • • + p k ≥ k • log 2 3 ⇐⇒ B k, = 2 -3 k > 0 , Λ = {(k, ) ∈ N | ≥ k • log 2 3 }.
(2 : 7) Definition 2.6. Let n, d ∈ M be a primitive membership. Using the notations (7:2,3), we define:

                       a, b, f, g, h : M -→ D ; ∀ n, d ∈ M, A = a( n, d ), B = B k, = b( n, d ), F = f ( n, d ), G = g( n, d ), H = h( n, d ) ; A = 1, if k = 1 ; 3 k-1 + 2 p1 • 3 k-2 + • • • + 2 p1+•••+p k-2 • 3 + 2 p1+•••+p k-1 , otherwise; B = B k, = 2 -3 k = 2 p1+p2+...+p k -3 k > 0 (cf.(4 : 3)); B is called Collatz (k, ) -number; H = gcd(A, B) ; F = A H ; G = B H ; gcd(F, G) = 1.
(2 : 8)

The following theorem translates the iterative "cyclic walk" language for (3n + d)-maps into its Diophantine equivalent: Theorem 2.7. [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF]]- [START_REF] Belaga | Embedding the 3m + 1 Conjecture in a 3x + d Context[END_REF] (1) Diophantine Cyclic Walk. Let n, d ∈ M be a primitive membership, C = C(d, n) be the corresponding primitive T d -cycle starting at m 0 = n, of the Oddlength k > 1, let m 1 = Odd (3m 0 + d) (4:3), and let m 1 , d be the corresponding membership. Let σ k be the circular counterclockwise permutation on k-tuples of positive integers P = Even (n, d). Then the set P 1 = Even (m 1 , d) corresponding to the membership m 1 , d is defined by the formula

P 1 = Even (m 1 , d) = σ k P = σ k p 1 , p 2 , . . . , p k-1 , p k = p 2 , p 3 , . . . , p k , p 1 .
(2) From Primitive Membership to its Diophantine Representation. Let n, d be a membership, and let the functions a, b, f, g, h be defined as above (2:8). Then

F = f ( n, d ) = n, G = g( n, d ) = d.
(3) From the Diophantine Formulae to their Membership Interpretation. Let k ≥ 2 and P = p 1 , . . . , p k ⊂ N k be a k-tuple of positive integers satisfying the inequality

= |P| = p 1 + • • • + p k ≥ k • log 2 3 , (2 : 9)
and let the numbers A, B, F, G, H be defined as in (2:8). Then F, G is a primitive membership.

The following deep theorem demonstrates the strength of the above Diophantine formalism (2:5-9) ; we are not aware of an alternative, non-Diopnantine proof of the below inequality (2:10):

Theorem 2.8. [Belaga 2003]- [START_REF] Edward | [END_REF] (1) Let n, d ∈ M be a primitive membership of the length and Oddlength k, and let τ d (n), (n, d) ∈ ∆ be the corresponding T d -cycle. If n is the minimal member of the Oddframe(n, d), then the inequality holds :

1 ≤ n < d 2 k -3 .
(2 : 10)

(2) The inequality (2:10) is sharp : for any K > 1 and any > 0, there exists the primitive membership n, d ∈ M, such that n is the minimal member of the corresponding primitive cycle of the Oddlength k > K and length satisfying the inequality :

0 < n • (2 k -3) d -1 < .
(2 : 11)

The following statement demonstrates the particular importance of Collatz numbers for our problems : Definition 2.9. (1) The pair (k, ) ∈ Λ (2:7) and the corresponding Collatz number B = B k, (2:8) are called narrow if gcd(k, ) = 1 and = k • log 2 3 . We denote by Λ 0 the set of narrow pairs (k, ) :

Λ 0 = {(k, ) ∈ Λ | gcd(k, ) = 1 & = k • log 2 3 } .
(2 : 12)

(2) Let n, d ∈ M be a primitive (k, )-membership with the corresponding Collatz number B. We associate with n, d ∈ M its Collatz corona A = A k, , a finite set of natural numbers depending only on the Oddlength and length of n, d ∈ M, as follows :

(a) If k = 1, then

A 1, = 1 .
(2 : 13))

(b) If k > 1, then for any aperiodic (k -1)-tuple P = p 1 , . . . , p k-1 of positive integers satisfying the inequality (cf. (2:9))

p 1 + . . . + p k-1 < ,
(2 : 14) the following number belongs to A :

A = A(P) = 3 k-1 + 3 k-2 • 2 p1 + . . . + 3 • 2 p1+...+p k-2 + 2 p1+...+p k-1 .
(2 : 15)

By definition, members of Collatz corona are odd positive integers not divisible by 3. The Collatz corona corresponding to a narrow pair (k, ) is called narrow, too.

Theorem 2.10. (1) Collatz corona A k, is a one-element set iff k = 1 (2:13))

(2) Otherwise, Collatz corona A k, of a Collatz number B = B k, is a finite set of mutually distinct positive integers not equal to B, and its cardinality α k, = #A k, satisfies the following formula (cf. (2:7) for the definition of the set Λ) :

∀(k, ) ∈ Λ        α k, = #A k, = -1 k-1 , if gcd(k, ) = 1 , r| gcd(k, ) µ(r) • r -1 k r -1 , otherwise , α k, ≡ 0 (mod k) , (2 : 16)
where µ is the Möbius function :

µ(m) = 1 , if m = 1 , (-1) q , if m is the product of q distinct primes , 0 ,
if m is divisible by a square of a prime .

The low part of the formula (2:16), defined for pairs (k, ) with the property gcd(k, ) > 1, is universal and covers -but also obscures -the special upper case gcd(k, ) = 1.

(3) The below lower and upper bounds to members A of Collatz corona are sharp :

∀(k, ) ∈ Λ ∀A ∈ A k, A k, = 3 k -2 k , A k, = 2 -k+1 • 3 k-1 -2 k-1 + 3 k-1 ; 3 k-1 < A k, ≤ A ≤ A k, < 2 -k+1 • 3 k-1 .
(2 : 17)

(3) Since the function a in the definition (2:8) and the corresponding construction ((2:15) do not actually depend on the k-th component p k of the correspnding Collatz configuration, their values for two k-configurations of different lengths can be equal. More precisely,

∀(k, ) ∈ Λ ∀j ≥ 1 , A k, ⊂ A k, +j .
(2 : 18)

(4) With the exception of the trivial case, corresponding to the primitive

T 1 -cycle 1 → 2 → 1, k = 1, = 2, A 1,2 = {1}, B = 1 ,
no Collatz number ever belongs to the respective Collatz corona and, if k ≥ 4, it is located below the upper bound (2:17) of the corona,

∀(k, ) ∈ Λ , B = B k, < 2 < A k, , if k ≥ 4 .
(2 : 19)

(5) Moreover, if (k, ) ∈ Λ is not narrow, then A k, extends both below and above B.

Consequently, the original Collatz, or 3n + 1, conjecture is equivalent to the following claim :

The (Diophantine version of the) Collatz conjecture 2.11. For any pair below -albeit inevitably with different degrees of certainty. Moreover, as it has been already mentioned above, the numerical data obtained in our computations suggest the plausibility of previously unknown general laws of the iterative behaviour of (3m + d)-maps, with one of such laws formulated and proved in [Belaga 2003]- [START_REF] Edward | [END_REF].

(k, ) ∈ Λ \ {(1, 2)}, no member of the Collatz corona A k, is
(1) Withing the chosen range, Conjecture 2.3(1) has been fully confirmed: all such systems D d have at least one primitive cycle.

(2) The confirmation of Conjecture 2.3(2) is more problematic: a priori, no quantity of computations could confirm that a certain (sub)set is finite. Thus, the plausibility of such a claim hinges on the quality of availble evidence that the search was exhaustive. Such an evidence is discussed below, §4. (3) Compared to the case of the two Conjectures 2.3, our claim of the confirmation of Conjecture 2.4 is even more problematic: no quantity of (always finite) computations could confirm that a certain (sub)set is infinite ! Still, taking in account relatively small total numbers of memberships in primitive cycles for corresponding numbers n compared to the total number 42765 of primitive cycles found in the chosen range, -the total numbers ranging from 18 to 452 (for n = 1), -we have a strong evidence of the plausibility of Conjecture 2.4. §4. Algorithm Searching for Primitive Cycles.

According to the generalized Collatz conjecture, all trajectories of the system D d , d ∈ D are either cyclic, or ultimately cyclic, This claim became the basic assumption of our algorithm searching for primitive T d -cycles :

Working Assumption 4.1. Let ∆ = {(u, v) ∈ D| gcd(u, v) = 1}.
The following algorithm always halts :

A prim.cycl 3x+d :          ∀(u, v) ∈ ∆ d := u; m := n := v while m = n do m := T d (m); n := T d (n); n := T d (n); endwhile .
(4 : 1)

The algorithm (4:1) computes at the j-th step the iterations T j d (n) and T 2j d (n), and then compares them. See Proposition 4.2 below for a proof that even the full (i. e., not necessarily restricted to primitive cycles) version A cyclic 3x+d of this algorithm detects all T d -cycles.

This classical cycle detection device, remarkable for its simplicity, has been invented by Robert W. Floyd. (Never published by the author. The standard reference is [Knuth 1969], pp. 4-7, Exercise 7. See also [Cohen 1993], §8.5.2, for an update on cycles detection methods.) :

Proposition 4.2. Let f : N -→ N be a function. A f -trajectory starting at a positive integer m, τ (m) = f 0 (m) = m, f (m), f 2 (m) = f (f (m)), f 3 (m), . . . (4 : 2)
is ultimately cyclic iff, for some j ≥ 1, f j (m) = f 2j (m) , (4 : 3)

Proof :

(1) The if (or sufficiency) condition (4:3) is obvious.

(2) The only if (or necessary) condition. Suppose τ (m) runs at the point s = f z (m), z ≥ 1, into a cycle of the length w, so that, for any x ≥ 0, f z+x (n) = f z+x+w (m).

Assuming t = z + x, the condition (4:2) will be satisfied if, for some positive integers x, y ≥ 1, the equality holds :

2t = 2(z + x) = z + x + y • w = t + y • w.
The choice y = z w and x = y • wz would do. End of Proof. The above Working Assumption has been verified in more than 75, 000, 000 cases within the intervals

d ∈ I 1,19999 = [1, 19999] ∩ D , n ∈ I 1,600•d-1 .
(4 : 4) and separately, in a huge controlling check, in more than 24,000,000,000 cases within the intervals

d ∈ I 1,4999 , n ∈ I 1,3000•d-1 . (4 : 5)
To speed the search, trajectories have been traced in the increasing order of the starting number m ∈ D. Then, if the trajectory τ d (m) fell at some point behind the initial point m, n = T j d (m) < m, the search along τ d (m) was ceased, since its continuation, the trajectory τ d (n) starting at n, has been already treated before. Every one of the thus traced trajectories either run ultimately into a primitive cycle, or descended under m, and thus, has been already traced to a cycle earlier.

We have carried out some additional controlling checks, too :

(1) In 82 cases, for all d ∈ I 2755,2999 , an independent search has been carried out, with the bigger initial interval 1 ≤ n ≤ 5000 • d. No new primitive cycles have been discovered.

(2) In one particularly interesting case, d = 343, mentioned below, the chosen initial controlling interval was 1 ≤ n ≤ 60, 000 • 343 > 2 • 10 7 . The calculations have confirmed the existence of only three primitive cycles discovered earlier.

Note also that the minimal members of all primitive cycles, discovered thus far, fall under the upper limit 600 • d in (4:4), with only two cases coming relatively close to this limit :

(1) d = 343; one of primitive T 343 -cycles (out of three discovered) has the minimal member (cf. 

Notations :

(1) The data corresponding to a given shift number d is framed by the double backslash \\.

(2) The first line of the block of data corresponding to a given shift number d, for example, d = 5; a = 5; lg = [3,5,5,27,27]; LG = [1,3,3,17,17]; includes the value of d, in this case, d = 5, the number a of primitive cycles found, a = 5, and the lists of lengths, lg, and Oddlengths, LG, of corresponding cycles, respectively : lg= [. . .], LG= [. . .].

(3) Then, for a given d, follows the detaled descriptions of the corresponding primitive T d -cycles, in the order of the values of their perigees (the minimal members).

(4) The list S[j] of the length Oddlength represents the list of odd members of the cycle listed in the order of the index j, 1 ≤ j ≤ a, according to the above definintion of Oddframe of the cycle, (2:6(iii)).

(5) The list P[j], j, 1 ≤ j ≤ a -1, , represents the first Oddlength -1 members of the list of exponents of 2, corresponding to the passage from one odd member of the Oddf rame of the cycle to the next one (cf. (2:6)), with the exponent for the passage from the last odd member of the cycle to the first one omitted. The full list has been defined above (2:6(ii)) as Evenf rame of the cycle.

(6) The last member of the Evenf rame of the cycle, missing in P[j], is presented immediately after P[j], as p= . . .. The reason of such an independent presentation of this member (p k in the notations (2:7)) is its irrelevance to the construction of numbers A of the formulae (2:8).

  : 4) Primitive trajectories are numerous: according to (2:4), the T d -trajectory starting at a natural number n relatively prime to d is primitve. But how many of such trajectories are primitive cycles? More specifically, do primitive cycles exist for all systems d ∈ D ? And what are the chances of an integer n ∈ D (d) to belong to such a cycle? These are the subjects of the original conjectures of Lagarias [105] : Conjecture 2.3. (1) Existence of a Primitive T d -cycle. For any d ∈ D, there exists at least one primitive T d -cycle. In the case of the Collatz problem, it is the cycle

( 4 )

 4 Let ∆ be the subset of the set of pairs (n, d) ∈ D × D, with relatively prime integers n, d. If a primitive T d -cycle C meets a number n, (n, d) ∈ ∆, then the pair n, d is called a primitive membership pair, or simply membership.

  devisible by the Collatz number B k, . §3. Experimental Study of the Cyclic Structure of Dynamical Systems D d generated by the corresponding (3n+d)-mappings. For all 6667 dynamical systems D d within the range 1 ≤ d ≤ 19999, d ∈ D, our computations have confirmed Conjectures 2.3, 2.4, -see our main Table

( i )

 i The total number of experimentally discovered T d -cycles, 1 ≤ d ≤ 19999, d ∈ D, is equal to 42765. (ii) The numbers ω(d) of such cycles for individual systems Dd are ranging from ω(d) = 1, for 1481 systems D d out of 6667, to 2, for 1507 of them, to 3, for 1005, etc., to 944 for the system D 14303 :

  (10:3)) n o = 177, 337; 517 • 343 < n o < 518 • 343 < 600 • 343 (and the maximal member m o = 159, 053, 606). (2) d = 551; one of primitive T 551 -cycles (out of ten) has the minimal member n o = 212, 665; 385 • 551 < n o < 386 • 551 < 600 • 551 (with m o = 8, 332, 648). §5. Commentaries to the Table of Primitive T d -cycles, 1 ≤ d ≤ 19999 (d odd and not divisible by 3).

Table 3 .

 3 1. Eleven systems D d with the numbers of primitive cycles bigger than 160.

	d	7463	18359 7727	15655 10289 9823	17021 14197 13085 6487	14303
	ω(d)	162	164	198	207	214	241	258	329	335	534	944