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A new proof of the Borel-de Siebenthal Theorem,
the classification of equi-rank groups, and some
compact and semi-compact dual pairs.

HUBERT RUBENTHALER

1. Introduction

Let G be a connected simple real Lie group with finite center and let K be
a maximal compact subgroup of G. By a well known result of Harish-Chandra
([HC]) the group G has a discrete series of representations if and only if the rank
of K is equal to the rank of G.

The list of such G’s, which we will call equi-rank groups was known since a long
time, mostly by case by case computation from the list of real simple Lie algebras
(see for example [0-V], [War|, [He]).

But there exists an intrinsic classification which is essentially due to Borel and
de Siebenthal [B-dS] (more precisely what is now called the Borel-de Siebenthal
Theorem is Remarque 1, p 218 of [B-dS|). Their theorem however was given in
terms of compact groups and the transcription in terms of equi-rank groups was
given by Murakami who called these equi-rank groups groups of interior type ([M],
Theoreme 1 p. 295) (see also the paper by Wallach [Wal]).

Recently A. Knapp [K1], gave a quick proof of the classification of real semi-
simple Lie algebras which relies also on the Borel-de Siebenthal Theorem. In his
book ([K2]), A. Knapp gave a new proof of this theorem (Thm 6.96. p.350) which
uses together the Lie algebra gR of G and its complexification g, and the complex,
imaginary, compact, non-compact roots.

We propose here a third proof of the Borel-de Siebenthal Theorem, or to be
more precise, a new classification of equi-rank groups, which is totally complex (i.e.
we work only at the g level) and is based on the work of Dynkin on subalgebras
of semi-simple Lie algebras ([D], see [T] for a nice résumé).

Our proof underlines what one could call the parabolic and Z-graded aspects of
the involved structures which were never, as far as we know, noticed before.

Moreover our results give some extra information about the different ” parabolic
realizations” of the complexified Lie algebra ¢ of K (paragraph 5) and lead
naturally to the description of some families of dual pairs (€1, £2) inside gR, where
at least one of these subalgebras is compact (paragraph 6).
Acknowledgements. The author would like to thank Nicole Bopp and Robert
J. Stanton for several very useful discussions.



2. Maximal compact subalgebras and complex involutions.

Let gR = tR @ pR be a Cartan decomposition of gR relatively to a Cartan
involution 0. Let g = £ ® p be the decomposition of g = gR ® C obtained by
complexification. We will denote by o the complex linear extension of . Conversely
let us show the following ( certainly well known) result :

Proposition 2.1. — If one has a decomposition g = ¢@p where € (resp. p) is the
+1 (resp. —1) eigenspace of a complex involution o of g, then there exists a real
form gR of g whose mazximal compact subalgebra R is a real form of €. Moreover
all such real forms are conjugate under the group exp &.

Proof. First we need the following lemma.

Lemma 2.2. — Let 601 and 02 be two Cartan involutions of the complex
Lie algebra g which commute with a given complex linear involution o whose
fized point set is denoted by €. Then there exists an element X € € such that
O = (exp X )0 (exp —X).

Let us prove the lemma. Put NV = 620,. One shows easily that if By, is defined
by Bg,(X,Y) = —B(X,60:(Y), then the linear operator N is symmetric with
respect to By, . But By, is hermitian positive definite, therefore IV is diagonalizable
with real eigenvalues \;. Hence, for any ¢t € R, one can define an operator P! whose
eigenvalues are (A?)!. In particular P = NZ2. Of course P! is a one parameter
subgroup inside Aut(g), therefore there exists X € g such that P! = exp(tad X).
Moreover this one parameter subgroup commutes with o (because it is the case
for N) : oPlo~! = exp(tado(X)) = P! = exp(tad(X)) for all t+ € R. Hence
ad X = ad o(X) and one gets X = o(X). Therefore X is in &.

Set 0" = P%(‘)lP_%, this again is a Cartan involution of g. Let us show that
¢’ and 65 commute. Notice first that 91N9f1 = «9192919;1 = #16, = N~ ', hence
6, P!, ' = P~*. Then we have

00y = P10, P~10,0,0, = PiPi0,0y = PEN"!
on the other hand we have
050 = 00,0, P70, P~% = NP~3 = PN~ (because P = N?).
So we get 00> = 026’. But two Cartan involutions which commute are equal,

therefore 6, = P36, P~% = exp(ad 1 X)0; exp(—ad 1 X), with X € ¢. ]
A second lemma is needed.



Lemma 2.3. —  Take the same notations as in the preceeding Lemma. Let
g = Uy @iy = uy @ iuy be the Cartan decompositions of g relatively to the
Cartan involutions 6 and 02. Let gR (resp. gR) be the fized point algebra of o6y
(resp. 002). Then gR and gR are real forms of g and there exists k € exp(adt)
such that go = kgi.

Proof of the Lemma. As ¢ commutes with #; and 6> one has the decompositions
gh=€tNu; ®pNiuy and gg = €N uz @ p Niuy. The fact that gR and gR are real
forms is now obvious. From the preceeding Lemma one has 65 = kf1k~' where
k = exp(ad 1 X) (X € ). This implies that ku; = up. As kb =t and kp =p , one
gets kgR = oR. [J

Let us now prove Proposition 2.1. There allways exists a Cartan involution
0 of g which commutes with 0. Let g = u & iu be the corresponding Cartan
decomposition and gR be the fixed point algebra of the involution ¢f. One has
gR=EtNu®pniuand this is a Cartan decomposition of gR, The Lie algebra gR
is a real form of g and ¢R = £Nu is a real form of £. This proves the first assertion
of the proposition.

Let now gR be another real form of g with Cartan decomposition gR = (R® PR
such that ¢ = ¢g @ itR. Then automatically p = pR® ipR. Set ' = R ipR, then
g = u @ iu’ is a Cartan decomposition and the corresponding Cartan involution
0’ is easily verified to commute with o. By the preceeding lemma there exists

k € exp(ad £) such that gR = kgR, []

3. The classification of equi-rank complex simple Lie algebras.

Proposition 2.1. reduces the problem of classifying all equi-rank groups to the
classification of all Zs-graduations g = €@ p ([¢, €] C & [p,p] C & [¢,p] C p) of
the complex simple Lie algebra g having the property rank(g) = rank(€), up to
conjugacy by an element of the adjoint group of g. The required Lie algebras are
simple because a simple equi-rank group is never a complex group.

From now on g will allways denote a simple complex Lie algebra.

The data consisting of a simple complex Lie algebra together with a Zso-
graduation having the above mentioned properties is called an equi-rank algebra.

QOur main result is the as follows.

Theorem 3.1. — Let g = ¢ p (rank(g) = rank(€)) be an equi-rank algebra,
with € £ g. Then either



1) g=g-19g80Dg1, the parabolic subalgebra go ® g1 is maximal, and t = gy,
p =g 1D g1 is the corresponding Zs-graduation. This corresponds exactly to
the case where € is reductive not semi-simple, i.e. has a no non trivial center
necessarily one dimensional. This is also exactly the case where G/ K is hermitian.

or2) g =g 2o®dg_1Dgo® g1 D ga, the parabolic subalgebra go & g1 & go
1s mazximal, and then € = g_o ® go D g2 and p = g_1 & g1 1S the corresponding
Zs-graduation. This corresponds exactly to the case where € is semi-simple.

Conversely if g is given together with a graduation of one of the preceeding
types, then the corresponding € and p (given as is 1) or 2)) determine an equi-
rank algebra.

Let us now prove this theorem. First of all we need to recall the following
definition due to Dynkin ([D]).

A subalgebra v of g is called a regular subalgebra if there exists a Cartan
subalgebra h of g such that [h,t] C t.

Lemma 3.2. — Lett = 3®t be a reductive subalgebra of g where 3 is the center
of v and v = [v,t]. Suppose moreover that the rank of v is equal to the rank of
g . Then 3 is the center of a Levi subalgebra | = 3 @' of g and v’ is a regular
subalgebra of ' of mazximal rank, i.e. rank(x’)=rank(l’).

Proof.
As rank(r)= rank(g) one can choose a Cartan subalgebra h of g of the form

bzé@hw

where b is a Cartan subalgebra of v'. Let [ = Z,(3) be the centralizer of 3. The
Lie subalgebra [ is a Levi subalgebra of g and therefore is of the form :

[=Z,3)=cal

where ¢ is the center of [ and " = [I, []. Moreover v/ C ¢t C [.

From the fact that c is the centralizer of [ in g, one deduces that 3 C c.

Let B be the Killing form of g. It is well known that ¢* N[ = I’ where ¢! is
the orthogonal of ¢ with respect to B. Let hy = ¢ N h. Then

h=c®bhr.

One has by C by, and therefore rank(l") < rank(t’).

Let (g, h) be the root system of the pair (g, h). For a € 3(g, h), let g* be the
corresponding root space. Then g* L b and hence g* L ¢. Therefore, as v/ C I,
any root space in t/ is in fact in [/, this implies that v/ C ', and consequently
rank(t') < rank([l’).



As the inverse inequality was proved before we get rank(t’) = rank(l').

Recall that 3 C ¢. From the equality

dimh = dim3 + dim f = dim ¢ + dim by
one gets ¢ = 3. The lemma is proved. []
Let us return to the proof of Theorem 3.1.

First case : ¢ is reductive non semi-simple.

By the preceeding lemma ¢ = 3B¢ where ¥’ is the derived algebra of € and where
3 is the center of a Levi subalgebra [ = 3@ [" and ¢ C I’ with rank(#') = rank(l’).

Let B be a parabolic subalgebra of g with Levi factor I. One has . = [ & n,
where n is the nilradical of . It is well known ([Bou2|) that one can choose a
system of simple roots ¥ C R = > (g,h), and a subsystem I' C ¥, such that
the set of roots < I' > which are linear combinations of elements of I' is the root
system of ([, h), and such that

n= Z g

aeRT\<I'>+

where the sets of positive roots R and < I' >7 are defined by ¥ and I respectively.
Let hr be the unique element of 3 defined by the equations

alhr) =1 if aecU\T

alhr)=0 if a€el -1

and put, for i € Z, g, = {X € g | [hr, X| = iX}. Then one has the Z-graduation
g = ®;e78;, and moreover [ = gy and n = ®;>09;.

Let n be the greatest integer such that g, # {0}.

Lemma 3.3. — (Notations as before) Let g = €@ p be a simple equi-rank algebra
with € reductive non-semi-simple. Thenn = 1 (i.e. the nilradical n is commutative)
and dimz = 1.

Proof of the Lemma.

The assertion dim 3 = 1 is an easy consequence of n = 1.

Suppose that n > 2. It is well known that then [g1,g1] # {0} (in fact
[61,01] = g2). Aspt =tand - =g ,®- g 19g1 - -Dgp C p, One
should have [g1,g1] C [p,p] C € C [ = gg. This is not true if go # {0}. Therefore
n=1. []



Note that the condition n = 1 we just proved, implies that the parabolic
subalgebra P = go @ g1 is maximal (because g is simple).

In order to prove Theorem 3.1. in the case where € is reductive non semi-simple,
it is now sufficient to prove that ¢ = gq.

Let [ =€ ® p; where p; = [N p. Recall that then g=¢t D p; Dg_1 D g;.

Put a =g_1 ®[g-1,01] ® g1. It is easily seen that a is an ideal of g. As g is
simple, one has g = a.

Consider now the bracket space [p1,g1]. As p1 C p and g1 C p, one has
[p1,91] C & But p; C [ = go, therefore [p1,g1] C g1 C p. Hence [p1,91] = {0}.
The same arguments shows that [py,g_1] = {0}, and hence [p1, [p1,081]] = {0},
and finally p; is central in g, therefore p; = {0} and tE=ggand p=g 1 D g;.

Conversely suppose that one has a Z-graduation

g=9g-1DPgoDg1.

Then the decomposition g = €@ p where € = gy and p = g_1 @ g1 determines
an equi-rank algebra.

Theorem 3.1. is proved in the first case.

Second case : £ is semi-simple.
Lets us recall what an elementary operation in the sense of Dynkin is.

Let D be the Dynkin diagram of a simple Lie algebra g. Once a Cartan
subalgebra § is chosen, as well as a set of simple roots ¥, the vertices of D are
associated to the elements of ¥, and the different vertices are connected by edges
according to well known rules. Let w be the highest root with respect to W. Then
one gets the so-called extended Dynkin diagram D by adding a vertex associated
to —w and connecting this new vertex to the other vertices by using the same
rules.

It is a matter of fact that D is not a Dynkin Diagram, but if one removes
any vertex from it, as well as the edges connected to this vertex, then one gets a,
possibly non connected, new Dynkin diagram D; (with of course the same number
of vertices as D).

This new Dynkin diagram D, is said to be obtained from D by an elementary
operation.

Let now (X_n, Ha, Xa)aep, be the collection of the usual slo-triples in g
associated to the roots corresponding to the vertices in D;.
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This collection of triples generates a semi-simple Lie subalgebra a; of g whose
Dynkin diagram is precisely D; ([D], [T]). The Lie algebra a, is said to be obtained
from g by an elementary operation.

Another way to understand this algebra a; is as follows. Let ag be the root
which is removed by the elementary operation, and let I' = W \ {«g}. This subset
[ defines, as in the proof of the first case, a (maximal) parabolic subalgebra and
therefore a Z-graduation

g=0=" 0. (3-2)

One can prove that

a1 =98k Dgo D gk

(see [Boul| Exercice 4, Chap. VI, par. 4, p. 229 and [Bou2] Exercice 2, Chap VIII
par. 3, p. 223).

But now, one can make a new elementary operation on any of the connected
components of D;. Of course each time that a diagram of type A, occurs, any
elementary operation does not change the algebra.

Any semi-simple Lie algebra of maximal rank of a simple Lie algebra is obtained
by a finite number of elementary operations (see [D], Th. 5.3. page 145 or [T]).

Therefore £ is obtained in such a way : one has a chain of subalgebras
g=ap20a1 2 2ay=4¢
where each a; is obtained from a;_; by an elementary operation.

Let us focus on a;. As we explained before it exists a Z-graduation of g as in
(3-2) coming from a maximal parabolic subalgebra such that

ar =9 Dgo D gk-
As € C a; one has

p=t"Dg 1@ g 1 OHD Gr1.

If £ > 3, that is if K — 1 > 2, one should have [g1,g1] C g2 C p and also
(01,01 CECa; =g 1 D go® gk. This is impossible since [g1, g1] # {0}.

Hence k < 2. This means that in fact £ = 2, because the case k = 1 would lead
to a; = g which is excluded since € # g.

Now we are in the following situation :

7



g=9g 2Dg 1Dgo D g1 Dgo,

tCa, =g 2®goDgo, g-1D g1 Cp.

As g is simple one has [g_1, g1] = go and hence gy C ¢.

Moreover the graduation is defined by the eigenvalues of an element hr as
in (3-1) where I' = ¥ \ {ag} for some simple root oy (the parabolic subalgebra
B =goD g1 ® go is maximal).

This implies that
E=goNtPgobgant (3 —3).

The following lemma is needed.

Lemma 3.4. —  Let P be a maximal parabolic subalgebra of g. Let g =
0P DPg1Dg DD D gn be the associated Z-graduation (as in (3-
2)). Then for any i =1,...,n the space g; is an irreducible go-module.

Proof of the Lemma.

It is well known that the result is true for i = 1 (see for example [Rul]). As B
is maximal, the center of g is one dimensional. Let us consider g’ = ®,cZgpi. This
algebra is certainly reductive. If it has a non trivial center, then this center is the
one dimensional center of gg, which does not act trivially on the g;’s. Therefore g’
is semi-simple.

On the other hand P’ = @00, is a parabolic subalgebra of g’ which is
maximal again because the center of the Levi factor gg is one dimensional.

Then by the result cited at the beginning of the proof, the ad-action of gg on
the first step (here g;) is irreducible. 1

The Lemma implies that the ad-representation of gy on g o and g9 is irre-
ducible. Therefore one has

gonNt= {0} or go
gont= {0} or g o
The case g_o Nt = go NE = {0} is impossible because (3-3) would imply that
t = go and here £ is semi-simple.

The case g2 Nt = {0} and g_o2 Nt = g_o (as well as the symmetric case) is also
impossible because it would imply that € = g_s @ go and hence non semi-simple.

8



Finally e =g_2 ® go & g2 and hence p=g_1 P g;.-
Conversely suppose that one has a Z-graduation of the following type :

g=9g 2Dg 1Dgo D g1 Dgo,

then it is easy to see that the decomposition g = €@ p where £ =g_o D go D g2
and p =g 1 @ gy corresponds to an equi-rank subalgebra. The proof of Theorem

3.1. is completed. []
Definition 3.5. — Let g = € ® p be an equi-rank algebra. Then any Z-
graduation § = g_1 ® go © g1 (if ¢ = go is reductive non-semi-simple) or

g=0-2Pg_1Pg0Dg1D g2 (ift=9g_2Dgo D ge is semi-simple) as described in
Theorem 3.1. is called a parabolic realization of the equi-rank algebra. (This implies
in particular that the parabolic subalgebras go ® g1 or go B g1 @ g2 are mazximal).

4. The list of equi-rank complex simple Lie algebras.

Let us first recall how parabolic subalgebras of a simple g may be described
by weighted Dynkin diagrams. Each parabolic subalgebra is uniquely defined (up
to conjugacy) by a subset I' of the set ¥ of simple roots. We make the convention
that such a data is described by the Dynkin diagram of g where the roots in ¥\ T"
are circled.

For example consider the following diagram :

D9 —(O—OH—eo—()—eo—

I—.
This diagram describes a parabolic subalgebra of g ~ Dg where the Levi factor
is of type Al X A1 X D4 X C3.

We will now give a diagrammatical description of an elementary operation. The
vertex corresponding to —w where w is the highest root will be denoted by 7, and
the vertex which corresponds to the removed root will be marked by a cross.

For example the diagram



describes an elementary operation in E7 where the resulting algebra is of type A7.
Remember from the previous paragraph that this Ar-algebra is also obtained by
considering the parabolic subalgebra associated to the diagram

*—O0—0—0—0—0

More precisely as the circled root has coefficient 2 in the highest root the
corresponding parabolic realization is of type

Er=9 o®g 1Dgo D g1 Dgo
and

A7 =9 2D go D go-

As we explained is the previous paragraph this gives E; the structure of an
equi-rank algebra where ¢ = A7.

Theorem 3.1. now gives a very easy way to classify all equi-rank complex Lie
algebras. They split into two distinct families.

The first family is obtained by taking for € the Levi factor of a maxi-
mal parabolic subalgebra with an abelian nilradical. This family corresponds to
weighted Dynkin diagrams where the unique circled root has coefficient 1 in the
highest root. This is the hermitian symmetric case.

The second family corresponds to elementary operations where the removed
root (marked by a cross on the extended Dynkin diagram) has coefficient 2 in the
highest root.

These remarks lead very easily to the following table. In this table we have
allready taken into account the isomorphisms of the (extended or not) Dynkin
diagram.

TABLE 1

First Type (Hermitian Case)

(1—1) ._......_@_......_. An E:Ap—1XAn—pXC
a1 ap (7%
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(1-2)
(1-3)
(1-4)
(1-5)
(1-6)
(1-7)
(2-1)

®_. ............. *—o—@>»
@—@ e ._._.ZCD
®_. ............. o—o—0—0o
@— @ -« e ._._._@
o—eo—0o—0—(»

E;

:Bn—l x C

E=A4,_1 xC
t=D,_1xC
E=A,_1 xC
t=D5; xC

t=F; xC

Second Type (Non Hermitian Case)

—0—0 --0—N%—0--0—@ >0

B, p>2 t=D,x B,_,

Cn p<n—-1 t¢=C,xC,yp

Qp
o— o o . 0—N— 90 -0—0 °
ap D,2<p<n—-2 t=D,xD,_,
— o oo o Eg E= A x As
)(

v

——e—o—0—0—0 E; t=A; X Dg

E=A;

11



(2 - 8) A——0—0—0—0—0 </ Eg t=Dg

I
(2 - 9) v_‘_.:z_. F4 E - A1 X 03
(2 — 10) V_._m_‘ F4 E - B4

(2—11) == GQ E:Al XA1

5. Distinct parabolic realizations of the same equi-rank algebra.

In this paragraph we will give some examples of distinct parabolic realizations
of the same equi-rank algebra.

5.1. This first example will show that the description by means of a maximal
parabolic subalgebra and the associate Z-graduation given in theorem 3.1. may be
rather different for the same equi-rank algebra.

Let us consider the following three elementary operations in Fg

o—%—0—0—0 o—o—0——N—0 e—o—0—o0o—o

i i !
v v v

These three diagrams are obviously conjugate under an isomorphism of the
extended Dynkin diagram, which induces an isomorphism of Eg. Therefore the
corresponding equi-rank algebras are conjugate. In each case € = A; x A5 and the
corresponding equi-rank Lie algebra is the case (2-4) of the table in the previous
paragraph.

The first two diagrams are in fact conjugate under an automorphism of the
Dynkin diagram itself and therefore the parabolic realizations basically only differ

by a distinct numbering of the simple roots.

Let us consider the parabolic subalgebras correponding to the first and third
case :

(a) o—(H)—eo— oo (b) o— o0 oo

12



Of course in each case the circled root has coefficient 2 in the highest root.
Consider now the associate parabolic realizations :

(a) Eo=gl,®gl,®g)Dg D gy (b) Eg=g¢>,®g>, Dgy®g; @95

From Theorem 3.1. one knows that
b~ A x A5~ gl ogi@gl ~g?, 00k @ gl
and the corresponding Z-graduations of £ are described by the following diagrams :
(a) o O—o—06— o o b)) & e—o 66— o o

In the (a) case, one has dim g = 5 ("natural” representation of A4 = sl5) and
g4 =~ C x Ay x Ay whereas in the (b) case dim g3 = 1 (this is a general result if the
removed root in the elementary operation is the one connected to —w, in fact the
subalgebra g7 @ g3 is known to be a Heisenberg algebra (see for example Corollary
2.3.in [J])) and g2 ~ C x As.

Of course the spaces g} and g7 have the same dimension (= 1 dimp = 20) but

they are distinct in Fg.

5.2. Consider the following two elementary operations in E7 :

(a) —a—e—06—0—0—0 (b) f—e—e—o 0o —x—0

As the removed roots have coefficient 2 in the highest root, these diagrams
correspond to parabolic realizations of two equi-rank algebra structure on E; which
are obviously conjugate under an extended diagram automorphism.

As in 5.1. the associate parabolic realizations
(a) Er=gl,@0l, @0 D01 @0 (b) Er=g,®¢%, @03 @ g Do)
are different.

For example the corresponding graduation of £ ~ A; X Dg are given by the
following diagrams

(a) O e—e—0o—0o—o (b) e o— o o o (»

13



This shows that in the (a) case dim g = 1 whereas in the (b) case dim g3 = 10.

5.3. The proof of the converse part of Theorem 3.1. 2) shows that if one has any
Z-graduation of the form

g=92Dg9-1DgoDg1 D g2 (5—-3—-1)

then, even if the parabolic subalgebra T = go @ g1 D go is not maximal, that is
even if (5-3-1) is not a parabolic realization, one can define an equi-rank algebra
structure on g by taking

E=9g 2P goP go p=9g 1Da.

This situation occurs if U\ I" = {a1, s} (notations as in paragraph 3) where
aq and as have coefficient 1 in the highest root.

This is for example the case in the following diagram :

s 0 (5-3-2)

In this case it is easy to see that € = g_o @ go ® g2 ~ C x D5 (think in terms
of the extended diagram). Hence the Lie algebra £ is reductive non semi-simple.
Therefore by Theorem 3.1. there exists a parabolic realization of the type

Es =gl ©0©0
where € = gj,.

The only possibilities to get a maximal Levi factor of type C x Dj correspond
to the following diagrams

O— oo o o o_._I_._@

which are conjugate.

Of course the vector spaces g; and g} are isomorphic (of dimension 2* = 16),
but g is E-stable (as a representation of Dj it is the Spin representation) whereas
g1 is not E-stable.

Let Q; (resp. 3) be the set of positive roots a which can be expressed in the
form o = a3 mod(T") (resp. @ = a3 mod(T")) where a; (resp. aw) is the first (resp.
second root) circled in (5-3-2).

Let

14



93&1: Z g” and 93&1: Z g%

ac+ [ === 9D

Then

gi=gi®g; and g=g,®g>,

and in this picture there are the spaces g} ®g'; and g% @®g? ; which are -invariant
(here € =g_o @ go @ g2).

6. Associated compact and semi-compact dual pairs

Let gR be a real form of g whose maximal compact subalgebra £R is a real
form of €. Recall from Proposition 2.1. that such a real form exists and is unique
up to conjugacy by exp &.

Let us also recall that a dual pair in gR is a pair (aR,bR) of reductive
subalgebras of gR, such that bR = ZyR(aR) and bR = Z4R(aR), where Z;R(a)
(resp. Z4R(b)) denotes the centralizer of a (resp. b) in gR.

In this paragraph, we will describe three families of compact or semi-compact
dual pairs (this means that the two algebras aR and bR are compact or one of
them) inside gR which are naturally associated to the corresponding equi-rank
algebra.

6.1. This first family is associated to the first type of equi-rank algebras
(described in the first part of Theorem 3.1. and listed as the first type in Table
1). The obvious remark to do is that as £ is a Levi subalgebra of g then (¢, Z(¥))
(where Z(®) is the center of £) is a dual pair in g. Therefore (¢R, Z(¢R)) is a dual
pair in gR. Here Z(£R) is one dimensional because ¢ is the Levi factor of a maximal
parabolic subalgebra. Hence Z(¥R) is isomorphic to so (2). This leads easily to the
following table.

Table 2

(The numbering of the different cases is as in Table 1, the notations for the real
simple Lie algebras are the same as in Helgason’s book, Table V, page 518 [He])
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(1-1) (s0(2) x su(p) x su(n+1—p),s0(2)) C su(p,n+1—p)

(1-2) (50 (2) x 50 (2n — 1),50(2)) C 50(2,2n — 1)
(1-3) (50 (2) x su(n),50(2)) C sp(n,R)
(1—4) (50 (2) x 50 (2n — 2),50(2)) C 50(2,2n — 2)
(1—5) (50 (2) x s1(n),s0(2)) C 50*(2n)
(1-6) (50 (2) x 50 (10),50(2)) C eg(-14)
(1-7) (50 (2) X eg(78),50 (2)) C er(_25)

6.2. The second family is a family of semi-compact dual pairs, which is also
associated to the first type of equi-rank algebras, or to be more precise to those
equi-rank algebras which correspond to hermitian symmetric spaces of tube type.

But the definition of these pairs is more involved as the preceeding one. In fact
these pairs are real forms of very basic complex dual pairs which have been used
by the author as ”primitive objects” from which all complex dual pairs in g can
be built ([Ru 2]).

Here we shall only consider equi-rank algebras of the first type such that the
underlying hermitian pair (gR, €R) is of tube type.

Let g = g 1 ® go ® g1 be a parabolic realization of such an algebra. Let H
be the element of gy which defines the graduation (i.e. which has eigenvalue i on
gi, see (3 —1)). It is known that the tube type condition is equivalent to the fact
that the element 2H can be put into an slo-triple. More precisely there exists

16



X € g1 and Y € g_; such that (Y, H, X) is an slo-triple ([Y, X] = H, [H, X] =
2X, [H,Y] = —2Y). For a proof see for example [K-W].

Moreover the elements H, X,Y can be described in the following way. Let
Qap,Qo,...,0r be a maximal set of strongly orthogonal roots such that the
corresponding root spaces g* are in g1. Let (X_,,, Ha,, Xa,) be a classical slo-
triple associated to each root. Here H,, is the co-root of a;, X,, € g% and
X_o;, € g7%. Then 2H = Zle H,, and one can take X = Zle Xq, and
Y = Zle X_q, (see for example [M-R-S]).

The algebra £R has a non trivial center, which is necessarily iRH because the
restriction of the Killing form must be negative definite. As there exists a Cartan
subalgebra included in R, on which all the roots take purely imaginary values, one
has for any root g® = g—¢, where bar denotes the conjugation with respect to gR.
Therefore there exists a non zero constant ¢; such that X,, = ¢; X 4,. As X4, € p,
one has B(X_,,, X4,;) > 0, where B is the Killing form. On the other hand, from

the invariance of the Killing form, one gets B(X_q,, Xa;,) = —2B(Ha,, Ha,)-
Hence B(Xa,,Xa,) = ¢;B(X_q,,Xa,) = —3B(H_q,,Ha,)c; > 0. This implies
c; < 0.

Let E,, = |¢; *%Xai. Then E,, = |Ci|7%X—a,— and (—E,,, Hy,, Eo,) is an slo-
triple. Define X = Zle E,, and Y = Zle —E,,. Then (Y,2H, X) is again an
slo-triple. This triple generates an sl subalgebra a of g which is stable under
conjugation with respect to gR, therefore aR = gRNa is a real form of a. One can
take as a basis of aR the elements

k

The relations are then [I,U] = =2V, [1,V] = 2U and [V,U] = —21" and this
proves that aR is isomorphic to sl2(R). The existence of this sls(R) subalgebra in
the tube type case is due to Koranyi and Wolf ([K-W], Prop. 3.12.)

Recall now the following result.

Theorem 6.2.1.. — ([Ru 2], Th. 4.3.)
Let b = Z4(a) be the centralizer of a in g. Then (a,b) is a dual pair in g.

As a is split relatively to gR, the Lie algebra b is also split relatively to gR, i.e.
bR=bNgis areal form of b.
The following corollary is then straightforward.

Corollary 6.2.2.. —
The pair (aR, bR) is a dual pair in gR. The Lie algebra aR is isomorphic to sla(R)
and bR is a subalgebra of €R, hence is compact.
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This leads to the following table of dual pairs.

Table 3

(The numbering of the different cases is as in table 1, the notations for the real
simple Lie algebras are the same as in Helgason’s book, Table V, page 518 [He],
the type of the compact algebra bR is deduced from [Ru2], 6.13.Table 5.)

(1-1) (n=2p—1)  (sl2(R),su(p)) C su(p,p)
(1-2) (s12(R), 50 (21 — 2)) C 50 (2,2n — 1)
(1-3) (s12(R), s0(n)) C sp(n,R)

(1—4) (s12(R), 50 (21 — 3)) C 50 (2,21 — 2)
(1-5) (neven)  (sla(R),sp(n)) C s0*(2n)
(1=7) (s12(R), fa(—s52)) C er(—2s)

6.3. The dual pairs in the third family are compact dual pairs associated the
second type of equi-rank algebras.

Recall the following result.

Proposition 6.3.1. — ([Ru 2|, Prop. 5.15.)

Let g be a simple Lie algebra over C. Let a and b be two semi-simple subalgebras
of g such that anb = {0} and such that a X b is a regular mazimal subalgebra ofg
(this implies that a X b is obtained by a single elementatry operation). Then (a, b)
1s a dual pair in g.
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Remark 6.3.2. —

As noticed in the preceeding proposition, all maximal semi-simple regular subalge-
bras are obtained by a single elementary operation, the converse is true only ifthe
coefficient of the root which is removed has a prime coefficient in the highest root
(see the remark following Theorem 3.5. in [T], exercise 4, par. 4, p. 229 in [Bou 1]
and exercise 2, par. 3, p. 222 in [Bou 2]).

Corollary 6.3.3. —

In all equi-rank algebras of the second type where the subalgebra € can be written
as a product g = a X b with a and b simple algebras, the pair (a,b) is a dual pair
m g.

Proof. As explained in paragraph 3 and 4, the equi-rank algebras of the second

type are obtained by a single elementary operation where the removed root has
coefficient 2 in the highest root. []

Corollary 6.3.4. —

Let g be an equi-rank algebra of the second type where € can be written as a product
t = ax b with a and b simple algebras. Let aR = gRN a and bR = gRN b, then
(aR, bR) is a dual pair in gR.

This leads easily to the following table.

Table 4

(The numbering of the different cases is as in table 1, the notations for the real
simple Lie algebras are the same as in Helgason’s book, Table V, page 518 [He])

(2-1) p>2  (s0(2p),s0(2n—2p+1)) C s0(2p,2n — 2p + 1)
(2-2) p<n—1  (sp(p),sp(n—p)) Csp(p,n—p)

(2-3) 2<p<n-2  (s0(2p),s0(2n —2p)) C s0(2p, 2n — 2p)
(2—-4) (51(2),5u(6)) C e6(2)
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2-17)
(2-9)
(2 —11)

(5u(2),50(12)) C e7(—5)

(su(2), ez(—133)) C es(—24)

(51(2),5p (3)) C faa)

(51(2),5u(2)) C g2(2)

Remark 6.3.5. —
In the cases from the preceeding table where ¢R has an su(2) factor, Gross and
Wallach have studied the discrete series of some groups corresponding to gR ([G-

W)).

[B-dS]

[Boul]
[Bou2]
[D]

[G-W]

[HC]

[He]
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