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On Ramis’s solution of the local inverse
problem of differential Galois theory

C. Mitschi* and M.F. Singer!
June 16, 1994

Abstract: Recently, J.P. Ramis gave necessary and sufficient conditions for a
linear algebraic group to be the Galois group of a Picard-Vessiot extension of
the field C{x}[z ] of germs of meromorphic functions at zero. The conditions
of Ramis are stated in terms of the Lie algebra of the group. In this paper, we
give equivalent simple group theoretic conditions, and show how these generalize
previous conditions of Kovacic in the solvable case.

1 Introduction

The general inverse problem in differential Galois theory can be stated as
follows:

Let k denote a differential field of characteristic O and C' the
subfield of constants of k, which we assume to be algebraically
closed. Characterize those linear algebraic groups G that are Ga-
lois groups of Picard-Vessiot extensions of k.

An early contribution to this problem is due to Bialynicki-Birula [1] who
showed that if the transcendence degree of k over C' is finite and nonzero
then any connected nilpotent group is a Galois group over k. This result
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was generalized by Kovacic, who showed the same is true for any connected
solvable group.

When one considers specific fields, more is known. If K = C(z), the field
of rational functions over C, Tretkoff and Tretkoff [14] have shown that any
linear algebraic group is a Galois group when C' = C, the field of complex
numbers. For arbitrary C', Singer [13] showed that a large class of linear al-
gebraic groups (including all connected groups) are Galois groups over C(x).
One can also combine the recent results of Magid [7] with those of Kovacic [6],
to give a different proof of this result for connected linear algebraic groups. If
K = C{z}[z7"], Kovacic [5] showed that a necessary and sufficient condition
for a connected solvable group G to be a Galois group over K is that the
unipotent radical of the center of G/[R,, R,] have dimension at most 1, where
R, is the unipotent radical of G. In [10], Ramis showed that any connected
semisimple group is a Galois group over K. Recently, Ramis extended this
result to show that a necessary and sufficient condition for a linear algebraic
group to be a Galois group over K is that it have a local Galois structure
(cf., infra), a condition expressed in terms of the Lie algebra of the group.

In this paper we give a more group theoretic condition that is equivalent
to this latter condition and more in line with the condition of Kovacic. We
can now state the solution of the inverse problem over K = C{z}[z '] as:

Theorem Let G be an algebraic group. The following statements are equiv-
alent:

1. G is the Galois group of some Picard Vessiot extension of C{z}[z™!] .
2. The following three conditions hold:

(a) G/GY is cyclic,

(b) the dimension of R,/[R., G°] is at most 1

(c) G/G° acts trivially on R, /[R,,G"].

The rest of the paper is organized as follows. In section 2, we show the
equivalence of Ramis’s Lie theoretic criteria with the above group theoretic
criteria. In section 3, we give two illustrative examples. The authors would



like to thank J.P. Ramis for helpful discussions and for bringing to our at-
tention a gap in a previous version of this paper.

2 Local Galois Structures on Linear Alge-
braic Groups

The following theorem of J. P. Ramis [11] solves the local inverse problem of
differential Galois theory.

Theorem Let G be a complex algebraic group. Then G is the differential
Galois group of some Picard-Vessiot extension of C{z}[z™!] if and only if
there is a local Galois structure on G.

A local Galois structure on G | a linear algebraic group, was defined by
Ramis as a triple (T, a, N') such that

1. T is a torus of G,a € Ng(T) ,
2. The image of a in G/G° generates this finite group,

3. N is an algebraic sub-Lie algebra of G (the Lie algebra of G) commuting
with 7" and a (via the adjoint action) and dim(N) < 1,

4. Let 7 be the Lie algebra of 7. We decompose G = [[,es G , Where &
is the set of weights of 7 and G, is the weight space corresponding to
« . Then G is the Lie algebra 7 + C(7) + N , where C(T) is the Lie
algebra generated by [[,cqo+ Go and ®* is the set of roots (i.e., non-zero
weights).

We note that the last condition is equivalent to the condition that G is
the Lie algebra 7 + [[,e0+[Gas G_o] + N . Furthermore, [ cq+[Ga, G o] is an
ideal of G .

We now begin the proof of the theorem stated in section 1. The following
result will be useful. The proof is given in [4] and is a very simple exercise
in commutators.



Lemma 0 Let A be a nilpotent Lie algebra such that dim AJ[A, Al <1 .
Then A is commutative and so dim A <1 .

Let G° be the identity component of G (see [1] as a general reference). We
may write G¥ as a semidirect product G° = R, P, where R, is the unipotent
radical of G and P is a reductive subgroup (this is the Levi decomposition,
[6]). This allows us to write the Lie algebra G of G as G = R, + P, where
R. = Lie (R,) and P = Lie (P). Note that we can further decompose
P = T + Ilyco Po where 7 is the Lie algebra of a maximal torus 7" of
P , and the P, are the weight spaces corresponding to the set ®* of roots
of T on P . Note that 7 = P, since P is reductive and that 7" is also a
maximal torus for GG. Conversely, for any given maximal torus T of GG there
is a Levi decomposition G = G, P such that 7" C P . Since R, is normal in
G, the adjoint action of T leaves R, invariant so we may decompose R, into
weight spaces for T . We again denote the set of weights by ® and denote
the corresponding weight spaces by (R,)s . Using this notation, we have
Go = (Ru)a + P . We also introduce Lo =T + [[aea+[Ga, G—al, which is an
ideal of Gy. We gather some simple facts in the following technical lemma.

Lemma 1 With the notation as above

1. T + HaECI)* [gaa g—a} =T + Hae@* [(RU)av (RU)—a] + Hae@‘ [Pm (RU)—Q]

2. [(Ru)a, (Ru)=a) and [Pu, (Ru)-a] are in (Ry)o . Furthermore,
(Ru)oNIlaea+[9a, G-al = Laca-[(Ru)a; (Ru)-al + Haes- [Pa; (Ru)-al-

3. [Ru, G| is invariant under the adjoint action of T and [R., G| = [(Ru)o, (Ru)o]+
Haé@* [(Ru)av (RU)—(X] + Hae@* [Paa (Ru)—a] + Hae@* (Ru)a

4- Ru/[Ruv g} = (Ru)O/([(Ru)Oa (Ru)0}+Hae<I>* [(Ru)aa (RU)—a}+Hae<I>* [Paa (Ru)—a])

5. [Ru, Rulo = [(Ru)o, (Ru)ol + Haea+[(Ru)as (Ru)-al-



6. There is a natural isomorphism

Go/Lo — (Ru)o/( [T [(Ru)a, (Ru)-al + T [Pas (Ru)-al) -

acd* acd*

Proof: The first claim follows by writing G, = (Ru)a + Pa and noting
that [P,, P_o] € 7. The second claim follows similarly. To verify the third
claim, we write G = (Ry)o+ Haco (Ru)a + 7 + aco- Po and Ry = (Ry)o+
Haco (Ru)a - Taking the brackets of each of the components separately
and noting that [(Ry)a, 7] = (Ru)a for a € & gives claim 3. Claim 4.
follows from claim 3. Claim 5. is proven in a manner similar to claim 3.
To prove claim 6. we note that Gy = (Ry)o + 7 and that (R,)o N Ly =

Haea+ [(Ru)a: (Ru)-al + Haco+[Pa; (Ru)-al - I

If we let U = R,/[Ru, G|, W = Go/Ly, then Lemma 1 yields a surjective
homomorphism 7 from W to U . One can show that U = R, /[R., G] is the
Lie algebra of R,/[R,,G"] . There is a natural action (via conjugation) of
G on R,/[R.,G"] . Since G° acts trivially on this latter group, we have an
action of G/G° on R,/[R,, G°| with its corresponding adjoint action on U .

Lemma 2 We have dim U < 1 if and only if dim W <1 . In this case 7 is
an isomorphism, so G/G° acts on W .

Proof: Since the homomorphism 7 is surjective, dim U < dim VW always

holds. Note that the kernel of 7 is DV, W| . If dim U < 1 then by Lemma 0
the kernel of 7 is trivial and dim W < 1. I

Lemma 3 If G has a local Galois structure, then G has a local Galois struc-
ture (T, a, N') where T is a mazimal torus of G and a is semisimple.

Proof: Let (77, a’, N') be a local Galois structure of G .Then 7" is contained

in a maximal torus 7" of G . Let us denote by G, (resp. G,) the weight spaces

relative to 1" (resp. 7" ). Recall that Lo = T + ][] [Ga,G-4] is an ideal of
acd*

Go and let £{ =T'+ [] [G,.G'—0]. which is an ideal of G, .

acw*



We have a decomposition G = Go@ ( ][ Gs) for some subset of roots B C
BeB
®* and the local Galois structure gives G = L{+N" . Since clearly £{N Gy C

Ly and Ly = (LN Go) ® (LN [[ Gs) we get surjective homomorphisms
BeB

Go/ Ly — Go/LyN Gy — Go/ Lo

so dim G{/L; < 1 implies dim Gy/Ly < 1.

Since (a/)7'Td is again a maximal torus of G there exists g € G° such
that (a')"'Td’ = gTg~* . Therefore a'g € Ng(T') . Let a = (d’g), denote the
semisimple part of a’g . Then we also have a € Ng(7T') and Ad(a) permutes
the weight spaces of T' | leaving Ly invariant. Since a is semisimple, there
exists a complement A of Ly in Gy which is Ad(a)-invariant. Note that a and
a’ have the same image in G/G° and that the action of G/G" on W = Gy/ Ly
(described in Lemma 2) is induced by the adjoint action of @’ on G/ L}, given
by the local Galois structure. Since @' acts trivially on N , the action of a
on Gy/Ly, hence on N is also trivial and (T, a, N) provides a local Galois
structure on G. 1

Lemma 4 G has a local Galois structure if and only if for some maximal
torus T and a € Ng(T) , and with notations as before,

1. a is semisimple and the image of a generates G /G |
2. dim(W) <1,

3. the action of a on W is trivial.

Proof: Let (T,a,N) be a Galois structure. By Lemma 3, we may assume
that 7' is a maximal torus and that a is semisimple. Note that Gy = 7+ (R4)o-
Therefore (Ru)o = (Haca+ [Gar G-al N(Ru)o) +N = (Upee- [(Ru)s, (Ru)-p] +
[sea[Ps, (Ru)-p]) + N . This implies that there is a natural surjective map

¢: N — (Ru)o/( T [(Ru)s: (Ru)—sl + 11 [Ps, (Ru)-s)

peD* ped*



that is, from A to W and that this map commutes with the action of a .
Since dim N < 1 and a commutes with A/, we get the conclusion of the
lemma.

Now assume that there is a maximal torus 7" and a € Ng(T) satisfying
1., 2., and 3. As in the proof of Lemma 2, since a normalizes T' , Ad(a)
will normalize Ad(7") . Therefore Ad(a) will permute the weight spaces of
T, preserving the group structure of the weights. In particular, Ad(a) will
preserve [[geq«[(Ru)s: (Ru)-s] + Lgea~[Ps; (Ru)-p] - Since a is semisimple,
there is a complementary Ad(a)-invariant Lie algebra N' C (R, )y such that

(Ru)o = (]I [Ga:G-al N (Ru)o) + N

= (I [(R)s (Ro)-pl + I (P (Ru)-) + M-

Therefore

go = T+(Ru)0
= T+ ([T [(R)s. (Ru)-g] + TI [Ps. (Ru)-5]) + N

Bed* BED*

= 71%‘i[1[gaag—a}*_fw-

acd*

Note that the action of @ on N is trivial since a acts trivially on W . This
proves that (T, a, N) is a local Galois structure . ]

Proposition 5 Let G be an algebraic group. Then G has a local Galois
structure if and only if the following three conditions hold:

1. GG is eyclic,

2. the dimension of R, /[R., G°] is at most 1

3. G/G acts trivially on R, /[Ry, G"].

Proof: The proof follows directly from Lemma 2 and 4 and from the fact
that U is the Lie algebra of R,/[R,,G] . ]



This proposition, together with Ramis’s Theorem, finishes the proof of
the theorem of section 1.

Corollary 7 Let GG be a connected nilpotent group. The following statements
are equivalent:

1. G is the Galois group of some Picard-Vessiot extension of C{x}[x™1].

2. The dimension of R, is al most 1.

Proof: A connected nilpotent group may be written as a direct product
G = R,T , so the quotient R,/[R,,G"] is R,/[Ry, R,] . This has dimension
at most one if and only if R, has dimension at most one, by Lemma 0. g

Kovacic proves the following result in [5]. Kovacic’s techniques allow him
to reduce the inverse problem for an arbitrary connected group to the same
problem for semisimple groups [6], but he readily admits that the techniques
seem to take him no further.

Corollary 8 Let G be a connected solvable group. The following statements
are equivalent:

1. G is the Galois group of some Picard Vessiot extension of C{x}[x™"]

2. The dimension of the unipotent radical of the center of G/[Ry, R, is
at most one.

Proof: Since G is solvable, it is a semi-direct product G = R,T for some
torus T'. Therefore G/[R,, R,] = R./[Ry, Ru]XT . The quotient R, /[R,, R,]
is a commutative unipotent group and so isomorphic to C™ for some m .
Since T is reductive and acts on R, /[R,, R,| by conjugation, we may write
R, /[R., R,] as the sum of weight spaces for T' (we write the group of weights
additively). Therefore the unipotent radical of the center of R, /[R,, R,]x T
is (R,/[Ru, Ru])o- We shall calculate the Lie algebra of this group. Clearly
this Lie algebra is (R,/[Ru,Ru])o - Since T is reductive, we may write
R, = G+ Ry Ry] for some T—invariant space G. Therefore, (Ru)o =



Go + [Ru, Rulo s0 Go = (Ru/[Ru; Rul)o = (Ru)o/[Rus Rulo - Lemma 0 im-
plies that (Ru)o/[Ru, Rulo = (Ru)o/([(Ru)o, (Ru)ol+ e+ [(Ru)as (Ru)-al)-
Noting that P, = 0 for all & € ®* | Lemma 1 shows that this is the same as
the Lie algebra of R,/[R,, G°]. Therefore the unipotent radical of the center
of G/|R,, R,] and R,/[R,,G"] have the same dimension and the result now
follows from the main theorem. I

Corollary 9 Let G be a reductive group with G/G° cyclic. Then G is the
Galois group of some Picard-Vessiot extension of C{z}[z™'] .

Proof: R, is trivial. ]

3 Examples

We now give two examples that illustrate the above theorem.

Example 1: Let k = C{x}[z7!] and consider the following four functions
{[e Ve [e'/VZ 1,logx}. These four functions are linearly independent.
The first three satisfy a third linear differential equation L;(y) = 0 over C(z).
The last two satisfy a second order linear differential equation Lo(y) = 0.
These two equations will have a 1-dimensional solution space in common
(the solution space generated by 1) . Taking a least common multiple of
these two equations, we will get a linear differential equation of order 4 with
the above set as a basis for its solution space.
We will show that the Galois group of this equation over k is:

a 0 0 b 0 a 0 b

-1 -1
8 “O X 2 laeC be,deC| U “O 8 ? 2 |a €C*,b,c,deC
0 0 0 1 0 0 0 1

In group theoretic terms, this is the semi-direct product (C*xC*)x Z /2Z.
where the action of C* on C? is given by the representation

a 0 0
a— |0 at 0
0O 0 1



and the action of Z/2Z is given by permuting the first two columns of any
matrix. One sees that R, = C® and that [R,, G°] = C*x {0} . It then follows
that the action of Z/2Z on R,/[R.,G"] is trivial.

To verify that this is actually the Galois group, one checks that the Picard-
Vessiot extension of & corresponding to L(y) = 0 is

KV loga,e!/V7, [ Ve, [ e=t/v)

Letting ky = k(y/z) , we have the following facts:

1. log x is transcendental over k.

2. e'/V* s transcendental over ky(logx). This follows from the Kolchin-
Ostrowski Theorem [4] which implies that if e!/V® is not transcendental over
ko(log z) then (e/V*)" € ky for some nonzero n € Z . This is easily seen to
be impossible by expanding power series.

3. [V and [ e YV are algebraically independent over ko(log z, e*/V®).

If not, the Kolchin-Ostrowski Theorem implies that c; [ eY/V® 4-¢y [ e /VZ €
ko(log z, el/\/“%) for some constants 1, ¢o , not both zero. In particular ¢; [ e'/V@4
co e~V lies in an elementary extension of ko(el/ */5) . We now will use the
following result of Rosenlicht ([12], Theorem 2):

Let k C k(y1,-..,yn) be ordinary differential fields of characteristic zero
with the same field of constants. Assume that the field of constants is al-
gebraically closed, that y./y; € k and assume that y;/y; & k for i # j. If
Y1+ ...+ yn is the derivative of an element in some elementary differential
extension of k(y1,...,yn) having the same constants as k, then the same is
true of each y;. In this case, if y; is not algebraic over k, then it is the deriva-
tive of ay; for some a; € k, i.e., there is an a; € k such that a, + a;y./y; = 1.

We therefore need to show that neither

—3/2 —3/2
x x
! 5 a=1 norad +

a — a=1

has a solution in ky . This can be done by showing that any Laurent series
solution (in powers of z'/2 ) must be divergent. Note that the situation
changes completely if one replaces k by the field of formal Laurent series.

Now one easily sees that any differential isomorphism ¢ must do one
of the following: o(1) = 1,0(y/z) = v/z,0(logz) = logz + d,o([e/V?) =

10



afeVeib o(feVF) =a7t fe Vo rcoro(l) = 1,0(y/z) = —/z,0(logz) =
logz +d,o(fe/V?) =a™t [e Vo 4 b o(fe/VT) = a[e/VT 4 ¢ for some
constants a € C*,b,c,d € C .

Example 2: (c.f., [3])

Lemma 10 The local Galois group at infinity of any confluent generalized
hypergeometric equation.:

p q
Dy = (=) Pa([T 0+ ) = ([T 0+ v = 1)
j=1 j=1
0= 1’%, i — g & Z for i # j, satisfies:
R, = [RuaGO] .

Proof: The formal monodromy at oo (c.f., [8]) is

=5 &)
where D = diag(e™2™1 ... e 2™») and R = eer P,
0 ... ... ... 1
p_ 1 .0
0 O. 1' 0

A= %(q —p+1) =% pj —Xj_,v; . Therefore M is semisimple.
Following Ramis, we know that G is endowed with a local Galois structure
(7T,a,N) , where N is generated by the logarithm of Mu, the unipotent part
of M. Considering the form of M above, we see that N' = 0. By Lemma
3 we may moreover suppose that T is a maximal torus. From the proof of
Lemma 4, we get a surjective homorphism from N to U, hence dim U = 0,
where U is the Lie algebra of R,/[R,, G"]. ]

Example: For 0 = x% , the following equation
3 1
D3y = 0 y—x6y+§y

11



— -TQy”I + 3Iy” + (1 _ I)y/ + %
0

has Galois group
G = (PSL(2,C)xC")x Z/2Z
and a local Galois structure is
(C*,a,0)

where the maximal torus C* is the exponential torus (c.f., [8]) T = {diag(1,\, A })|\ €
C*} and a is the formal monodromy

generating G/G° ~ Z |27 .
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