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Harmonic analysis/ Analyse harmonique On the Hausdorff-Young theorem

Let G mn = ax + b be the matricial group of a local field. The Hausdorff-Young theorem for G 11 was proved by Eymard-Terp [3] in 1978. We will establish here the Hausdorff-Young theorem for G nn for all n ∈ N.

Résumé

Soit G mn = ax + b un groupe matriciel d'un corps local. En 1978 Eymard-Terp [3] ont prouvé le théorème de Hausdorff-Young sur G 11 . On établit ici le théorème de Hausdorff-Young sur G nn pour tout n ∈ N.

Introduction

The Hausdorff-Young theorem was generalized by several authors as they are passing over from a locally compact Abelian group to a locally compact group which is not Abelian but which is unimodular. In this paper we will tackle G mn = ax + b the matricial group of a local field, to be defined below, which is not unimodular and the theory will involve unbounded operators, as the case was before if m = n = 1.

Let K be a local field, n, m ∈ N, m ≥ n ≥ 1. Let M nm be the space of all n × m-matrices with elements from K and GL n be the multiplicative group of all n × n-inversible matrices with elements from K. G nm denotes the group of pairs (b, a), where b ∈ M nm and a ∈ GL n , with multiplication given by (b, a)(b , a ) = (b + ab , aa ). It is the semi-direct product M nm GL n .

Let H be the Hilbert space L 2 (GL n , du |det(u)| n ). For all λ in M mn , the formula [π λ (b, a)ξ](u) = τ (T r(bλu))ξ(ua), [START_REF] Bakali | Analyse harmonique sur les groupes ax + b matriciels[END_REF] defines a unitary representation of G nm in H, where τ is a fixed additive unitary nontrivial character on K (see [START_REF] Gel'fand | Representation theory and Automorphic Function[END_REF], p.224 and p.142). We define L q (H), 1 ≤ q < ∞, to be the Banach space of bounded linear operators on H with A q = {T r(|A| q )} 1 q < ∞, where for a bounded operator A, |A| denotes the operator (A * A) 1 2 and A ∞ will denote the operator norm of A. δ q denotes the unbounded operator in H defined by δ q ξ(u) = |det(u)| mq ξ(u).

Let G ess be the "essential" dual of G = G nm , 1 < p < 2,1 p + 1 q = 1. We will prove that if f ∈ D(G), the space of regular functions with compact support on G, then

F p (f ) ∈ L q ( G ess , L q (H)),
where F p (f )λ := Ff (λ) • δ 1/q := π λ (f ) • δ 1/q , and that if n = m, f ∈ L 1 ∩ L p (G), then the map f -→ F p (f ) extends uniquely to a linear map of L p (G) into L q ( G ess , L q (H)) with norm ≤ 1.

PRELIMINARY

In 1912 Young proved the Hausdorff-Young theorem for G = the circle group when p = 2k/(2k-1), 2 ≤ k ∈ N. In 1923 Hausdorff generalized this result for all p, 1 < p < 2. In 1940 Weil established this theorem for any locally compact Abelian groups. For groups which are not Abelian but which are unimodular, Kunze [START_REF] Kunze | Lp Fourier transforms on locally compact unimodular groups[END_REF] defined and proved the Hausdorff-Young theorem by using the theory of non-commutative integration. In 1974 Lipsman [START_REF] Lipsman | Non-Abelian Fourier analysis[END_REF] gave a concrete realization if those unimodular groups are separable and of type I. In this last case, let G be the set of unitary equivalence classes of continuous irreducible unitary representations of G and L p ( G) = {F is a measurable field of bounded operators on G :

F (π) p < ∞, µ almost all π ∈ G, b G F (π) p p dµ(π) < ∞, 1 ≤ p < ∞} If we write F 1 ∼ F 2 when F 1 (π) = F 2 (π) for µ-almost all π, then L p ( G) = L p ( G)/ ∼ is a Banach space under the norm F p = b G F (π) p p dµ(π) 1 p , 1 ≤ p < ∞,
and the Hausdorff-Young theorem ( [START_REF] Lipsman | Non-Abelian Fourier analysis[END_REF], th.2.2, p.214) asserts that if

1 < p < 2, 1 p + 1 q = 1, f ∈ L 1 ∩ L p (G), then F(f ) := f ∈ L q ( G) and f -→ f, where f (π) := G f (g)π(g)dg, extends uniquely to a map of L p (G) into L q ( G) with norm ≤ 1.
If the group G is not unimodular, new problemes appear to thoroughly deal with the Fourier transformation in L p (G). In our case, that is G = G nm , like Eymard-Terp's case [START_REF] Eymard | La transformation de Fourier et son inverse sur le groupe des ax + b d'un corps local. (French) Analyse harmonique sur les groupes de Lie[END_REF] which helped us as a model, we are led to temper the Fourier transformation of L 1 (G) by the unbounded operators δ 1 q . G nm is a locally compact group on which we fix the left Haar measure to be d(b, a) = dbda |det(a)| n+m , where db (resp. da) is the canonical measure on M nm K nm (resp. on GL n ⊂ M nn ) deduced from the Haar measure on K, and |.| is the module in K (for a ∈ K, |a| is defined by d(ax) = |a|dx, where dx is a Haar measure on (K, +) (see [START_REF] Weil | Basic number theory[END_REF], p.4) ). G nm is not unimodular ( dbda |det(a)| n is a right Haar measure) and its modular function is ∆ nm (b, a) =

1 |det(a)| m .
Letting Grass(m, k) (0 ≤ k ≤ min(n, m)) denote the set of k-finite dimensional vector subspaces in K m , M mk (k) denote the set of all m × k-matrices with rank k and S mk ([1], p.63) denote the canonical realization of Grass(m, k) in M mk (k). S mk is a compact subspace of M mk (k). There exists ( [START_REF] Bakali | Analyse harmonique sur les groupes ax + b matriciels[END_REF], prop.3.1.2, p.85) only one measure s on S mk (m, k ≥ 1, k ≤ m) such that, for all f ∈ L 1 (M mk , dλ), we have:

M mk f (λ)dλ = S mk GL k f (µa)|deta| m da |det(a)| k ds(µ) (2)
s is called the canonical measure of S mk . From now on, G and S denote respectively G nm and S mn . The representation π λ defined by (1) is only irreducible if rang(λ) = n, and the role of essential dual of G is played by S via the connection S λ -→ π λ . Let us recall two important results (which are in [START_REF] Bakali | Analyse harmonique sur les groupes ax + b matriciels[END_REF], p.96, p.118) for the groups G = G nm , m ≥ n:

Theorem 1 ( Plancherel Theorem). Let f ∈ D(G), then F(f ) • δ 1/2 ∈ L 2 (S, L 2 (H)) and f -→ F(f ) • δ 1/2 extends uniquely to an isometric, isomorphism of L 2 onto L 2 (S, L 2 (H)).
Theorem 2 ( Fourier Inversion Theorem). Let A(G) be the Fourier algebra of G and

f ∈ L 1 ∩ A(G), then F(f ) • δ 1 ∈ L 1 (S, L 1 (H))
and , for all x ∈ G, we have:

f (x) = S T r(π λ (x -1 )F(f ) • δ 1 )ds(λ).
2. The Hausdorff-Young theorem for the matricial groups

G nn = ax + b Lemma 3 ([1], p.94). Let K be a disconnected local field. If f ∈ D(G), then the function (λ, a) -→ f (., a)λ vanishes off a compact subset of M mn × GL n , where f(., a)(λ) = Mnm f (b, a)τ (T r(bλ))db.
Definition. We call the Fourier transform of f ∈ L 1 (G) and we denote by Ff , the function

λ -→ Ff (λ) = π λ (f ) defined in S with values in L ∞ (H) the space of bounded operators on H. Remark. If f ∈ L 1 (G), then [Ff (λ)]ξ(u) = Mnm GLn τ (T r(bλu))ξ(ua)f (b, a) dbda |det(a)| n+m , ξ ∈ H, (3) 
in fact, let ξ and η in H. Then

| < Ff (λ)ξ, η > | = | < π λ (f )ξ, η > | = | G < π λ (g)ξ, η > f (g)dg| ≤ G GLn |τ (T r(bλu))ξ(ua)η(u)| du |det(u)| n |f (b, a)|d(b, a) ≤ G |f (b, a)|d(b, a) GLn |ξ(ua)||η(u)| du |det(u)| n < ∞, by Fubini's theorem, the integral G τ (T r(bλu))ξ(ua)η(u)f (b, a)d(b, a) exists, for almost all u ∈ GL n ,

and we have

GLn G τ (T r(bλu))ξ(ua)f (b, a)d(b, a) η(u) du |det(u)| n =< Ff (λ)ξ, η > = GLn Ff (λ)ξ(u)η(u) du |det(u)| n , since η is arbitrary and d(b, a) = dbda |det(a)| n+m , we see that (3) is valid. Lemma 4. Let K be a local field, and let 1 ≤ p ≤ 2, 1/p + 1/q = 1, f ∈ D(G). Then, for all λ ∈ M mn (n), the operator F p (f )λ := Ff (λ) • δ 1/q := π λ (f ) • δ 1/q extends to a Hilbert-Schmidt operator on H that we denote again Ff (λ) • δ 1/q . Proof. Let ξ ∈ dom(δ 1/q ), then [F p (f )λ]ξ(u) = [π λ (f ) • δ 1/q ]ξ(u) = Mnm GLn π λ (b, a)(δ 1/q ξ)(u)f (b, a) dbda |det(a)| n+m = Mnm GLn τ (T r(bλu))δ 1/q ξ(ua)f (b, a) dbda |det(a)| n+m = τ (T r(bλu))|det(a)| m q ξ(a)f (b, u -1 a) dbd(u -1 a) |det(au -1 )| n+m (a → u -1 a) = GLn f (., u -1 a)(λu) |det(a)| m p-1 p |det(au -1 )| m ξ(a) da |det(a)| n = GLn K λ f,p (u, a)ξ(a) da |det(a)| n Hence F p (f )λ acts in H with the kernel K λ f,p (u, a) = f(., u -1 a)(λu) |det(a)| m p-1 p |det(au -1 )| m
This kernel is Hilbert-Schmidt, in fact

GLn GLn |K λ f,p (u, a)| 2 duda |det(u)| n |det(a)| n = Mnn GLn | f (., u -1 a)(λu)| 2 |det(a)| 2m p-1 p |det(au -1 )| 2m duda |det(u)| n |det(a)| n = | f (., a)(λu)| 2 |det(ua)| 2m p-1 p |det(a)| 2m dud(au) |det(u)| n |det(au)| n (a → ua) = | f (., a)(λu)| 2 |det(a)| 2m p-1 p -n-2m |det(u)| 2m p-1 p -n duda
If K is disconnected, this last integral is finite since by lemma 3 (µ, a) -→ f (., a)µ vanishes off a compact subset of M mn × GL n . If K = R or C, let K n be the projection of suppf on GL n . For all u, if a / ∈ K n , we have f (b, a) = 0, ∀b, from which f(., a)(λu) = Mnm f (b, a)τ (T r(bλu))db = 0 follows. On the other hand, the functions µ -→ f(., a)µ are, uniformly on a, rapidly decreasing on M mn , hence

|det(µ * µ)| m(p-1) p -n 2 | f (., a)(µ)| 2 ≤ C 0 1 + µ 4n , for all µ ∈ M mn , where the constant C 0 is independent of a. Setting µ = λu, then |det(u)| 2 m(p-1) p -n 2 = | det(µ * µ) det(λ * λ) | m(p-1) p -n 2 It follows that GLn GLn |K λ f,p (u, a)| 2 duda |det(u)| n |det(a)| n ≤ C 0 det(λ * λ) m(p-1) p -n 2 Kn |det(a)| 2m(p-1) p -n-2m da Mnn du 1 + λu 4n < ∞ Lemma 5. Let us define f * p by f * p (g) = |det(a)| m-n+ m p f (g -1 )
, where g = (b, a). Then, for all f in D(G), we have:

F p (f * p ) = [F p (f )] * Proof. One only has to show that [F p (f )λ] * acts in H = L 2 (GL n , du |det(u)| n ) with the kernel K λ f * p ,p (u, a) = K λ f,p (a, u)
which is Hilbert-Schmidt by the previous lemma.

Letting g = (b, a), then g -1 = (-a -1 b, a -1 ), so that

[f * p ] ∧ (., au -1 )(λu) = Mnm f * p (b, u -1 a)τ (T r(bλu))db = |det(au -1 )| m-n+ m p f (- b u -1 a , 1 u -1 a )τ (T r(bλu))db = |det(au -1 )| m-n+ m p |det(u -1 a)| n f (-b, a -1 u)τ (T r(bλa))db (b → u -1 ab) = |det(au -1 )| m+ m p f (-b, a -1 u)τ (T r(bλa))db Thus K λ f * p ,p (u, a) = [f * p ] ∧ (., u -1 a)(λu) |det(a)| m p-1 p |det(au -1 )| m = |det(au -1 )| m+ m p f (., a -1 u)(λa) |det(a)| m p-1 p |det(au -1 )| m = |det(u)| m-m p -m |det(a)| m+ m p + m(p-1) p -m f (., a -1 u)(λa) = f (., a -1 u)(λa) |det(u)| m p-1 p |det(ua -1 )| m = K λ f,p (a, u) Theorem 6 ([7], p.177). Let 1 < p < 2, 1/p + 1/q = 1, and let k ∈ L 2 (X × X)
, where X is a σ-finite measure space. If K is the integral operator with kernel k, then

K q ≤ ( k p,q k * p,q ) 1 2 ,
where k p,q = ( ( |k(x, y)| p dx) q p dy)

1 q et k * (x, y) = k(y, x).
The main result of this paper is theorem 7 which follows. If m = n in its last statement, the annouced result is obtained. Let us give some simple formulae to use afterwards.

Let λ ∈ M mn and C(λ) := inf { λx , x ∈ M nn , x = 1}, then ([1] lemme3.1.1, p.84) we have

|C(λ) -C(µ)| ≤ λ -µ , (4) 
for all λ et µ in M mn . In fact, for all x ∈ M nn with x = 1, we have

C(λ) ≤ λx ≤ λx -µx + µx =⇒ C(λ) ≤ λ -µ + C(µ), similarly, C(µ) ≤ λ -µ + C(λ), from which (4) follows.
Let λ 0 be fixed in M mn , by the definition of C(λ), we have, for all 0

= u ∈ M nn , C(λ) ≤ λ u u and λu ≥ C(λ) u If λ is very close to λ 0 , then λ -λ 0 ≤ C(λ0) 2 , it follows from (4) that |C(λ) -C(λ 0 )| ≤ C(λ0) 2 and C(λ) ≥ C(λ0) 2 . Therefore λu ≥ C(λ 0 ) 2 u (5) λ 0 u ≥ C(λ 0 ) 2 u (6)
Theorem 7. Let f ∈ D(G), and let K n be the projection of suppf on GL n , then (i) For all λ ∈ M mn (n), the operator F p (f )λ is in L q (H).

(ii) The function λ -→ F p (f )λ is continuous of M mn (n) into the Banach space L q (H). In particular that F p is a linear map of D(G) into L q (S, L q (H)).

(iii) F p (f ) q ≤ C 1 2 f f p , where C f = sup a∈Kn |det(a -1 )| (m-n)p 1 p .
Proof. Let us show that F p (f )λ is in L q (H), in fact, since by lemma 4 F p (f )λ acts in H with the kernel of Hilbert-Schmidt

K λ f,p (u, a) = f (., u -1 a)(λu) |det(a)| m p-1 p |det(au -1 )| m ,
it follows from theorem 6 that

F p (f )λ q ≤ K λ f,p p,q (K λ f,p ) * p,q 1 2 
,

where K λ f,p p,q = GLn GLn |K λ f,p (u, a)| p du |det(u)| n q p da |det(a)| n 1 q and (K λ f,p ) * (u, a) = K λ f,p (a, u) Now (K λ f,p ) * q p,q = GLn GLn |(K λ f,p ) * (a, u)| p da |det(a)| n q p du |det(u)| n = GLn GLn |K λ f,p (u, a)| p da |det(a)| n q p du |det(u)| n = | f (., u -1 a)(λu)| p |det(a)| m(p-1) |det(au -1 )| mp da |det(a)| n q p du |det(u)| n = | f (., a)(λu)| p |det(au)| m(p-1) d(ua) |det(a)| mp |det(ua)| n q p du |det(u)| n (a → ua) = Mnn GLn | f(., a)(λu)| p |det(a)| -m-n |det(u)| m(p-1)-np q da q p du (7)
If K is disconnected, then this last integral is finite by lemma 3 since f ∈ D(G) and λ is fixed. If K = R or C, let K n be the projection of suppf on GL n and µ = λu. Then

|det(µ * µ)| m(p-1) 2 -np 2q | f (., a)(µ)| ≤ C 0 1 + µ 4n ,
and consequently

(K λ f,p ) * q p,q ≤ C 0 |det(λ * λ )| m(p-1) 2 -np 2q q p |det(a)| -m-n da 1 + λu 4n q p du ≤ C 0 |det(λ * λ )| m(p-1) 2 -np 2q q p Kn |det(a)| -m-n da q p Mnn du (1 + λu 4n ) q p < ∞ because q p > 1)
By the proof of lemma 5, we have

K λ f * p ,p (u, a) = K λ f,p (a, u), hence K λ f,p q p,q = GLn GLn |K λ f,p (a, u)| p da |det(a)| n q p du |det(u)| n = GLn GLn |K λ f * p ,p (u, a)| p da |det(a)| n q p du |det(u)| n
On the other hand, the function (b, a) -→ |det(a)| m-n+ m p is, infinitely differentiable if K = R or C, locally constant when K is disconnected since the module |.| in K is locally constant. Therefore f * p ∈ D(G) and the previous reasoning implies that K λ f,p q p,q < ∞, and thus F p (f )λ ∈ L q (H).

(ii) Let λ 0 be fixed in M mn (n), and let λ be very close to λ 0 in M mn (n). We define K λ,λ0 f,p to be the kernel of the operator F p (f )λ -F p (f )λ 0 . Then (repeat the same computation which gave ( 7))

(K λ,λ0 f,p ) * q p,q = Mnn GLn | f(., a)(λu) -f(., a)(λ 0 u)| p |det(a)| -m-n |det(u)| m(p-1)-np q da q p du
If K is disconnected, then, by lemma 3, and by ( 5),( 6), we can integrate, in a neighborhood of λ 0 , on a compact K 1 × K 2 of M n × GL n which is independent of λ, so | f(., a)(λu)| ≤ 1 K1×K2 (u, a)2| f(., a)(λ 0 u) for all λ very close to λ 0 , and by Lebesgue's dominated convergence theorem, we have (K λ,λ0 f,p ) * q p,q -→ 0 when λ -→ λ 0 .

If K = R or C, there exists an independent constant C 1 of a such that, for all µ and ν in M mn , we have

| f (., a)(µ) -f(., a)(ν)| ≤ C 1 µ -ν , since the functions b -→ f (b, a) vanish off a compact part of M nm which is independent of a.
Let K n be the projection of suppf on GL n . For any > 0, we choose a compact subset K of M nn such that

Mnn\K 2 1 + ( C(λ0) 2 ) 4n u 4n q p du ≤ Then (K λ,λ0 f,p ) * q p,q = K Kn | f (., a)(λu) -f (., a)(λ 0 u)| p |det(a)| -m-n |det(u)| m(p-1)-np q da q p du + Mnn\K Kn | f (., a)(λu) -f (., a)(λ 0 u)| p |det(a)| -m-n |det(u)| m(p-1)-np q da q p du ≤ [(C 1 λ -λ 0 ) p ] q p K Kn u p |det(a)| -m-n |det(u)| m(p-1)-np q da q p du + C q p 0 C λ0 Mnn\K Kn ( |det(a)| -m-n 1 + λu 4n + |det(a)| -m-n 1 + λ 0 u 4n )da q p du where C λ0 is a constant depending on λ 0 ≤ C q p 1 λ -λ 0 q C K ( where C K is a constant depending on K ) + C q p 0 C λ0 Kn |det(a)| -m-n da q p Mnn\K 1 1 + λu 4n + 1 1 + λ 0 u 4n q p
du Since, by ( 5) and ( 6), we have

Mnn\K 1 1 + λu 4n + 1 1 + λ 0 u 4n q p du ≤ Mnn\K 2 1 + ( C(λ0) 2 ) 4n u 4n q p du ≤ ,
it follows that (K λ,λ0 f,p ) * p,q -→ 0 when λ -→ λ 0 . Similarly, we prove that K λ,λ0 f,p p,q -→ 0 when λ -→ λ 0 , and the inequality of theorem 6 completes the proof of (ii).

(iii) In fact, we have

S F p (f )λ q q ds(λ) ≤ S K λ f,p q 2 p,q (K λ f,p ) * q 2
p,q ds(λ) by theorem 6

≤ S K λ f,p q ds(λ) 1 2 

S

(K λ f,p ) * q ds(λ)

1 2
by Hölder inequality On the other hand, from the calculation which gave [START_REF] Russo | Recent advances in the Hausdorff-Young theorem[END_REF], it follows that

S (K λ f,p ) * q ds(λ) = S GLn GLn | f (., a)(λu)| p |det(a)| -m-n |det(u)| m(p-1)-np q da q p duds(λ) ≤ GLn S GLn | f(., a)(λu)| q det(u)| m-n duds(λ) p q da |det(a)| m+n q p
We used the Minkowski's generalized inequality (α ≥ 1):

( |φ(a, λ, u)|d µ (a)) α d ν (u)ds(λ) = f q p , by applying to [START_REF] Weil | Basic number theory[END_REF] the Hausdorff-Young theorem for the additive group M nm since the formula τ λ (b) = τ (T r(bλ)) defines a unitary character of the additive group M nm and λ -→ τ λ is an isomorphism of the additive group M mn onto the dual of (M nm , +).

Similarly, since K λ f * p ,p (u, a) = K λ f,p (a, u) by the proof of lemma 5, and f * p ∈ D, we show that

S K λ f,p q ds(λ) ≤ f * p q p Now G |f * p | p dg = G |det(a)| (m-n)p+m | f (g -1 )| p dg = G |det(a -1 )| (m-n)p+m | f(g)| p ∆(g -1 )dg (g → g -1 ) = G |det(a -1 )| (m-n)p | f(g)| p dg ≤ (C f ) p f p p Hence S K λ f,p q ds(λ) ≤ f * p q p ≤ (C f f p ) q ,
and therefore

F p (f ) q = S F p (f )λ q q ds(λ) 1 q ≤ (C f ) 1 2 f p
Remarks. If m < n, the theorems 1, 2 are already true, but in this case you have to alter the definitions of S, H, π λ , δ 1/q (see [START_REF] Bakali | Analyse harmonique sur les groupes ax + b matriciels[END_REF]); and it may not be difficult to prove an analogy of theorem 7 with another C f in (iii). We tackled the case where m ≥ n to be able to reach the value m = n and obtain the Hausdorff-Young theorem.

Theorem 8 ( Hausdorff-Young Theorem).

If n = m, 1 < p < 2, 1 p + 1 q = 1, f ∈ L 1 ∩ L p (G),
then F p (f ) ∈ L q (S, L q (H)) and f -→ F p (f ) extends uniquely to a, norm-decreasing, linear map of L p (G) into L q (S, L q (H)) with norm ≤ 1.

Proof. In fact, by theorem 7 (even if m ≥ n) we have F p (f ) ∈ L q (S, L q (H)) for any f ∈ D(G).

If m = n, we get (C f ) 1 2 = 1, hence f -→ F p (f ) is continuous of (D(G), . p ) into L q (S, L q (H)) with norm ≤ 1, it extends uniquely to L p (G), in particular, if f ∈ L 1 ∩ L p (G), we take a sequence (f k ) ∈ D(G) which tends to f in norm of L 1 (G) and in norm of L p (G). Corollary 9. Setting 1 < p < 2, 1 p + 1 q = 1, x ∈ R. Then (i) The domain of δ x F p (f ) is dense in H for any f ∈ D(G). (ii) If n = m, f ∈ L p (G) and ∆ x f ∈ L p (G), then Dom(δ x F p (f ) is also dense in H. Proof. (i) Let f ∈ D(G), since ∆ x f is also ∈ D(G)
, from the proof of lemma 4 it follows that F p (∆ x f )λ acts in H with the kernel of Hilbert-Schmidt 

K λ ∆ x f,p (u, a) = [∆ x f ] ∧ (., u -1 a)(λu) |det(a)| m p-1 p |det(au -1 )| m = Mnm ∆ x f (b, u -1 a)τ (T r(bλu))db = |det(u -1 a)| -mx K λ f,p (u, a) Let ξ ∈ Dom(δ x ), then [F p (∆ x f )λ]δ x ξ(u) = GLn K λ ∆ x f,p (u, a)δ x ξ(a) da |det(a)| n = GLn |det(u -1 a)| -mx K λ f,p ( 

Hence

F p (∆ x f )δ x ⊆ δ x F p (f ), and consequently the domain of δ x is stable by F p (f ) and thus, since Dom(δ x ) is dense in H, (i) follows.

(ii) Let us take a sequence (f k ) ∈ D(G) such that f k -→ f and ∆ x f k -→ ∆ x f in L p (G). Then, for any ξ ∈ Dom(δ x ), and for almost all u, we have Thus F p (∆ x f )δ x ⊆ δ x F p (f ), which completes the proof of corollary 9.

F p (∆ x f )δ x ξ(u) = lim k F p (∆ x f k )δ x
If n divides m, the essential dual of G amounts to a single point by ([1], p.80) which always bears the Plancherel measure and the Fourier inverse theorem (see th.1 and th.2). Whether the essential dual is very large or a single point, the proof of theorem 7 asserts that the constant C f only depends on f, m and n. So let us raise the following problem Problem 1. What happens to the last two statements if m > n?

Remarks. In Eymard-Terp's article ( [START_REF] Eymard | La transformation de Fourier et son inverse sur le groupe des ax + b d'un corps local. (French) Analyse harmonique sur les groupes de Lie[END_REF], p.227), if m = n = 1, the following result appears

F p (f ) q ≤ A p f p , A p = p 1 2p q -1 2q , f ∈ L 1 ∩ L p (G).
Their proof relies on Babenko-Beckner's inequality ( [START_REF] Beckner | Inequalities in Fourier analysis[END_REF], th.1, p.162) which is valid in the case where K = R (or K = R n , A p → A n p ). If K is disconnected, this inequality fails by ( [START_REF] Russo | Recent advances in the Hausdorff-Young theorem[END_REF], th.B, p.180).

If K is connected, in theorem 8, the norm of F p is strictly < 1, F p ≤ A nm p if K = R, and F p ≤ A 2nm p when K = C, in fact, you just have to apply ( [START_REF] Beckner | Inequalities in Fourier analysis[END_REF], th.1, p.162) to [START_REF] Weil | Basic number theory[END_REF].

  , λ, u)| α d ν (u)ds(λ) 1 α d µ (a), with φ(a, λ, u) = | f (., a)(λu)| p |det(u)| m(p-1)-np q , and α = q p , d µ (a) = da |det(a)| m+n , d ν (u) = du. From (2), for k = n, we have GLn S GLn | f (., a)(λu)| q det(u)| m-n duds(λ) |f (b, a)| p dbda |det(a)| m+n q p

  u, a)|det(a)| mx ξ(a) da |det(a)| n = |det(u)| mx GLn K λ f,p (u, a)ξ(a) da |det(a)| n = δ x F p (f )λξ(u).

8 =

 8 )| mx F p (f k )ξ(u) = |det(u)| mx F p (f )ξ(u)by theorem δ x F p (f )ξ(u).
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