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UFR Sciences, Université de Rouen,
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Abstract
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the estimation problem of heteroscedastic regression. A non-asymptotic
upper bound for the quadratic risk (the Oracle inequality) is obtained.
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1 Introduction

Suppose we are given observations (yj)1≤j≤n which obey the heteroscedastic
regression equation

yj = S(xj) + σj(S) ξj , (1.1)

where design points xj = j/n, S(·) is an unknown function to be estimated,
(ξj)1≤j≤n is the sequence of i.i.d. random variables, (σj(S))1≤j≤n are unknown
scale functionals depending on unknown regression function S and the design
points. Our goal is to estimate S in the mean quadratic sense in the both
non-asymptotic and asymptotic setups when the smoothness of S is unknown.

Note that heteroscedastic regressions with this type of scale functionals
has been encountered in consumer budget studies utilizing observations on
individuals with diverse incomes and in analyses of the investment behavior of
firms of different sizes (see, for example, Goldfeld and Quandt (1972)). Such
kind of models was considered by Gunst and Mason (1980), Efroimovich
(1999), Akritas and Van Keilegom (2001) as well.

The problem of minimax estimation of nonparametric regression function
in homoscedastic case (i.e. σj ≡ σ) in the asymptotic setup has been studied
in a number of papers. The optimal rate for L2 − losses and regression func-
tions from a L2−Sobolev or a Hölder space was studied by Ibragimov and
Hasminskii (1982), Speckman (1985), Donoho et al.(1995); the case of regres-
sion functions from Triebel and Besov space was investigated by Donoho and
Johnston (1998); the optimal rate for model (1.1) in Lq−losses and adaptive
estimate for Sobolev spacial regression was considered by Nemirovskii (2000).
Efficient linear estimators for L2−risk over linear estimators and some other
risks was given by Donoho and Liu (1991), Donoho (1994).

The notion of asymptotic optimality is usually associated with conver-
gence rate of the minimax risk (see for example Ibragimov and Hasminskii
(1981), Stone (1982))). An important question in the development of non-
parametric estimation is to study the exact asymptotic behaviour of minimax
risk and to find an efficient estimator, i.e. an estimator which achieves this
asymptotics.

The optimal constant and efficient estimators for L2−losses was obtained
by Nussbaum (1985), Golubev (1992), Golubev and Nussbaum (1993), for
sup-norm losses by Korostelev (1993). For the absolute error loss and the
estimation of regression function S at a fixed point, the optimal constant and
efficient estimators was found by Galtchouk and Pergamenshchikov (2005).

A non-asymptotic approach for nonparametric estimation problem in the
model (1.1) with σj ≡ σ was studied in a few papers. A non-asymptotic upper
bound for quadratic risk over thresholding estimators is given by Kalifa and
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Mallat (2003). Barron et al. (1999), Massart (2004) have constructed an
adaptive procedure of model selection based on least squares estimators and
have obtained a non-asymptotic upper bound for quadratic risk which is best
in the principal term for given class of estimators. This type of upper bounds
is called the Oracle inequalities.

It should be noted that to obtain efficient estimators (in asymptotic
setup), in contrast with least squares estimators Nussbaum (1985) and later
Golubev and Nussbaum (1993) have used some special class of weighted
least squares estimators, where the weights are depending on regularity of
unknown function and was chosen specially to obtain the optimal constant
in quadratic risk (so-called the Pinsker constant).

By reason of asymptotic efficiency, we make use of Golubev-Nussbaum
estimators to obtain non-asymptotic upper bound for quadratic risk in this
paper. The main distinction of our approach from that of Barron-Birge-
Massart is the following one. We choose a family of estimators such that
the every estimator is optimal when the regularity of unknown function is
fixed and a basis is given. In contrast with our approach, in the selection
model theory one chooses a family of basis (models) for which a least squares
estimator will be constructed.

In this paper an adaptive procedure is proposed which is based on weighted
least squares estimators and the non-asymptotic upper bound for the quadratic
risk is obtained which is best in the principal term for the chosen family of
estimators. Moreover, at the same time the asymptotic properties of the pro-
posed procedure are studied as n → ∞. It turns out that this procedure is
asymptotically efficient, that is the asymptotic quadratic risk coinsides with
the lower bound for all estimators, i.e. with the Pinsker constant.

The paper is organized as follows. In the next section we formulate the
problem and give main results. In section 3 we construct an adaptive es-
timation procedure based on Nussbaum’s estimators and we obtain a non-
asymptotic upper bound for the quadratic risk of this procedure. In section
4 we prove the sharp asymptotic upper bound for the quadratic risk of this
estimator. In section 5 the sharp asymptotic lower bound for the minimax
risk is obtained. An appendix contains some technical results.

2 Problems and Results

First we consider the model (1.1) in which the sequence (ξj)1≤j≤n is i.i.d.
with

E ξ1 = 0 , E ξ2
1 = 1 and E ξ4

1 = ξ∗ < ∞ . (2.1)
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We introduce the Sobolev class W q
r

as

W q
r

= {S ∈ Cq−1[0, 1] :

q
∑

j=0

‖S(j)‖2 ≤ r} , (2.2)

where S(j) is the j−th derivative of S, r is some positive constant, q ≥ 1 is
an integer,

‖S‖2 =

∫ 1

0

S2(x)dx .

For any estimate Ŝn of S, based on observations (yj)1≤j≤n, we use the
following quadratic risk

Rn(Ŝn, S) = ES ‖Ŝn − S‖2
n , (2.3)

where

‖S‖2
n =

1

n

n
∑

j=1

S2(xj) .

In the next section we construct an adaptive procedure (see below (3.8))
for which we obtain a non-asymptotic upper bound for the quadratic risk.
To construct this procedure, we make use of the estimator family introduced
by Nussbaum (1985), see below (3.4)-(3.5), and the approach proposed by
Golubev and Nussbaum (1993) for the homoscedastic case, i.e. σl ≡ σ. The
key idea in the construction of this procedure is the following one. We replace
the unknown variance σ2 in the Golubev-Nussbaum estimation procedure by
some estimator for n−1

∑n
j=1 σ

2
j . For this procedure we obtain the non-

asymptotic upper bound for the risk (2.3) which is best for the choosen
family of estimators (see Theorem 3.3). This type of upper bound is called
Oracle inequality.

To study asymptotic properties, we need to impose some additional con-
ditions on the sequence (σj) in (1.1).

H1) σj = g(xj, S) for some unknown function g : [0, 1] × L1[0, 1] → R+,
which is square integrable with respect to x such that

lim
n→∞

sup
S∈W q

r

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

g2(xj, S) − ς(S)

∣

∣

∣

∣

∣

∣

= 0 , (2.4)

where ς(S) :=
∫ 1

0
g2(x, S)dx. Moreover there exist some reals

0 < g∗ ≤ g∗ <∞, for which

g∗ ≤ inf
0≤x≤1

inf
S∈W r

q

g(x, S) ≤ sup
0≤x≤1

sup
S∈W r

q

g(x, S) ≤ g∗ . (2.5)
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H2) The function g(x, S) is differentiable in the Frechet sense with respect
to S in L1[0, 1] uniformly over 0 ≤ x ≤ 1, i.e. for any S, S0 from
L1[0, 1]

g(x, S) = g(x, S0) + Lx,S
0

(S − S0) + Υ(x, S0, S) ,

where the linear operator Lx,S
0

(the Frechet derivative) is bounded uni-
formly over 0 ≤ x ≤ 1 in L1[0, 1], i.e. for any S0 from L1[0, 1] there
exists some positive constant C∗ = C∗(S0) such that

sup
0≤x≤1

sup
S∈L

1
[0,1] , S 6=0

|Lx,S
0

(S) |
‖S‖1

≤ C∗ (2.6)

and the residual term Υ(x, S0, S) satisfies the following property

lim
‖S‖

1
→0

sup
0≤x≤1

|Υ(x, S0, S)|
‖S‖1

= 0 ,

where ‖S‖1 =
∫ 1

0
|S(x)| dx.

H3) The function g0(x) = g(x, 0) is continuous on the interval [0, 1].

Now we formulate the main asymptotic results.We set

γq(S) = C∗
q r

1/(2q+1) (ς(S))2q/(2q+1) , (2.7)

with

C∗
q = (2q + 1)1/(2q+1)

(

q

π (q + 1)

)2q/(2q+1)

.

It is well known (see, for example [19]) that the optimal rate is ϕn = n2q/(2q+1)

in the case when S ∈ W q
r
.

Theorem 2.1. Assume that in the model (1.1)-(2.1) the sequence (σj) fulfils
the condition H1). Then the estimator S∗

n defined by (3.8) with
ε = 1/ ln(n+ 1) satisfies the inequality

lim sup
n→∞

ϕn sup
S∈W q

r

1

γq(S)
Rn(S∗

n, S) ≤ 1 (2.8)

Moreover we will show that the estimator S∗
n is efficient in the following

sense.
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Theorem 2.2. Assume that in the model (1.1) the sequence (ξj) is i.i.d.
∼ N (0, 1) and the sequence (σj) fulfils the conditions H1)– H3). Then the
risk (2.3) admets the following asymptotic lower bound

lim inf
n→∞

inf
Ŝn

ϕn sup
S∈W q

r

1

γq(S)
Rn(Ŝn, S) ≥ 1 . (2.9)

Remark 2.1. Inequalities (2.8) and (2.9) imply that γq(S) is the so-called
Pinsker’s constant, i.e. the sharp asymptotic lower bound for the quadratic
risk.

3 Non-asymptotic estimation

In this section we construct the estimation procedure for the model (1.1)-
(2.1). We use the trigonometric basis {φj, j ≥ 1} in L2[0, 1] with

φ1(x) = 1, φj(x) =
√

2Trj(2π[j/2]x) , j ≥ 2 , (3.1)

where [a] is the integer part of a real a,

Trj(x) =

{

cos x for even j ,

sin x for odd j .

It is easy to see that for this basis

(φi, φj)n =
1

n

n
∑

l=1

φi(xl)φj(xl) = 0

for i 6= j and 1 ≤ i, j ≤ n. Moreover, ‖φj‖2
n

= 1 for j ≤ n − 1 and
‖φn‖2

n
= νn with

νn =

{

2 for even n ,

1 for odd n .
(3.2)

Now by making use of the discrete Fourier transformation we reduce the
model (1.1) to the model

θ̂j,n = θj,n +
1√
n
ξj,n (3.3)

with

θ̂j,n = (y, φj)n , θj,n = (S, φj)n , ξj,n =
1√
n

n
∑

l=1

σlξlφj(xl) .
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For any given ε > 0, let us define a 2-dimensional parameter τ = (β, t)
with values into the set Aε = {1, . . . , β∗}× {t1, . . . , tm}, where β∗ = [1/

√
ε],

ti = iε for 1 ≤ i ≤ m = [1/ε2]. Notice that the number of elements in the
set Aε is υε = card(Aε) = β∗ · [1/ε2].

For any τ ∈ Aε we set

ρτ (j) =

{

1 for 1 ≤ j ≤ k0(τ)

Ψβ(j w−1
τ

) for j > k0(τ) ,
(3.4)

where

Ψβ(z) = (1 − zβ)1(|z|≤1) , wτ = n1/(2β+1)cτ ,

cτ = π−2β/(2β+1) (t/ιβ)1/(2β+1) , ιβ =
β

(β + 1)(2β + 1)
,

k0(τ) = wτ/ ln(n+ 2) .

For every τ ∈ Aε, we define the following estimator

Ŝτ (x) =
n
∑

j=1

ρτ (j)
1

‖φj‖2
n

θ̂j,nφj(x) . (3.5)

In the sequel we use the following weighted Fourier transformation of S:

Sτ (x) =
n
∑

j=1

ρτ (j)
1

‖φj‖2
n

θj,nφj(x) .

To estimate the unknown function S by estimators (3.4), we should find τ
from Aε which minimizes the loss function

‖Ŝτ − S‖2
n =

n
∑

j=1

ρ2
τ
(j)

θ̂2
j,n

‖φj‖2
n

− 2
n
∑

j=1

ρτ (j)
θ̂j,nθj,n

‖φj‖2
n

+
n
∑

j=1

θ2
j,n

‖φj‖2
n

(3.6)

or equivalently, minimizes the function

n
∑

j=1

ρ2
τ
(j)

θ̂2
j,n

‖φj‖2
n

− 2

n
∑

j=1

ρτ (j)
θ̂j,nθj,n

‖φj‖2
n

.

Since the coefficients θj,n are unknown, we will find τ which minimizes the
function

Jn(τ) =

n
∑

j=1

ρ2
τ
(j)

θ̂2
j,n

‖φj‖2
n

− 2

n
∑

j=1

ρτ (j)
θ̂2

j,n
− ς̂n/n

‖φj‖2
n

,
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where ς̂n is some estimator of

ςn =
1

n

n
∑

l=1

σ2
l
. (3.7)

The estimator ς̂n will be constructed below. Denote by τ̂ = (β̂, t̂) the argmin
of the function Jn(τ), i.e.

Jn(τ̂) = min
τ∈Aε

Jn(τ) .

We denote
S∗

n,ε
= Ŝτ̂ . (3.8)

In this section we study this estimator in the non-asymptotic setup.

Theorem 3.1. Assume that in the model (1.1)–(2.1) the function S belongs
to ∪β≥1 , 0<r≤r

∗

W β
r , where r∗ is an unknown constant. Then, for any n ≥ 1

and ε > 0, the estimate S∗
n,ε

satisfies the following inequality

ES ‖S∗
n,ε

− S‖2
n ≤ 1

1 − 4%σ∗
inf

τ∈Aε

ES ‖Ŝτ − S‖2
n

+
2 c∗ υεB1(%)

n2/3
ES |ς̂n − ςn| + Bn(%, ε) , (3.9)

where 0 < % < 1/4σ∗ is an arbitrary constant and

Bn(%, ε) =
2
√

2(ξ∗ − 1)σ∗ c
∗B1(%)

n7/6
υε +

7 σ∗ 2β∗ B1(%) + B2(%)

n
υε ,

B1(%) = 2
1 − 2%σ∗νn

1 − 4%σ∗νn

, B2(%) = 2
(1 + ξ∗)(1 − 2%σ∗νn)

(1 − 4%σ∗νn)%
, (3.10)

σ∗ = max
1≤l≤n

σ2
l , c∗ = sup

τ∈Aε

cτ .

To estimate ςn, we make use of the following estimator

ς̂n =
n
∑

j=ln+1

θ̂2
j,n

‖φj‖2
n

, n ≥ 3 , (3.11)

with ln = [n1/3 + 1]. This estimator satisfies the following inequality.

Proposition 3.2.

sup
β≥1 ,r≤r∗

sup
S∈W β

r

ES |ς̂n − ςn| ≤
1√
n
T ∗

n
,
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where

T ∗
n

=
√

2(ξ∗ − 1)νn σ∗ +
2r∗ + σ∗
n1/6

+
2
√

2r∗σ∗νn

n1/3
+

5σ∗√
n
.

The proof of this proposition is given in Appendix.
Theorem 3.1 and Proposition 3.2 imply immediately the following result.

Theorem 3.3. Assume that in the model (1.1)–(2.1) the function S belongs
to ∪β≥1 , 0<r≤r

∗

W β
r , where r∗ is an unknown constant. Then, for any n ≥ 1

and ε > 0, the estimate S∗
n,ε

satisfies the following inequality

ES ‖S∗
n,ε

− S‖2
n ≤ 1

1 − 4%σ∗
inf

τ∈Aε

ES ‖Ŝτ − S‖2
n + Dn(%, ε) , (3.12)

where

Dn(%, ε) =
2 c∗ υεB1(%)

n7/6
T ∗

n
+ Bn(%, ε)

and 0 < % < 1/4σ∗ is an arbitrary constant.

Remark 3.1. Note that the principal term in the right-hand side of (3.12)
is best in the class of estimators (Ŝτ , τ ∈ Aε). Usually inequalities of such
type are called the Oracle inequalities.

Proof of Theorem 3.1. Fisrt, by (3.6)–(3.7) we get the following equality

‖Ŝτ − S‖2
n = Jn(τ) + 2

n
∑

j=1

ρτ (j)

‖φj‖2
n

(θ̂2
j,n

− ς̂

n
− θ̂j,nθj,n) +

n
∑

j=1

θ2
j,n

‖φj‖2
n

.

Further, from the model (3.3) we obtain that

θ̂2
j,n

− ς̂n
n

− θ̂j,nθj,n = θj,n

ξj,n√
n

+
ξ̃j,n
n

+
m̃j,n

n
+

1

n
(ςn − ς̂n) ,

where

ξ̃j,n = ξ2
j,n

−mj,n , mj,n = E ξ2
j,n

= 1
n

∑n
l=1 σ

2
l φ

2
j(xl) ,

m̃j,n = mj,n − ςn = 1
n

∑n
l=1 σ

2
l φj(xl) ,

φj(xl) = φ2
j(xl) − 1 .

(3.13)
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Therefore, for any τ ∈ Aε,

‖Ŝτ − S‖2
n = Jn(τ) +

2√
n

n
∑

j=1

ρτ (j)
θj,n

‖φj‖2
n

ξj,n

+ 2Nn(τ) +
n
∑

j=1

θ2
j,n

‖φj‖2
n

, (3.14)

where Nn(τ) =
∑3

i=1 Ni,n(τ) with

N1,n(τ) = n−1

n
∑

j=1

ρτ (j)

‖φj‖2
n

ξ̃j,n ,

N2,n(τ) = n−1
n
∑

j=1

ρτ (j)

‖φj‖2
n

m̃j,n ,

N3,n(τ) = n−1

n
∑

j=1

ρτ (j)

‖φj‖2
n

(ςn − ς̂n) .

Let τ1 be some fixed value of parameter from Aε. Then by (3.14) we find

‖Ŝτ̂ − S‖2
n − ‖Ŝτ1

− S‖2
n = Jn(τ̂) − Jn(τ1) + 2Z1,n(τ̂) + 2Vn(τ̂) , (3.15)

where

Z1,n(τ) =
1√
n

n
∑

j=1

ρτ (j) − ρτ1
(j)

‖φj‖2
n

θj,nξj,n ,

Vn(τ) = Nn(τ) −Nn(τ1) .

Lemma 6.4 implies that
EZ4

1,n
(τ) ≤ ξ∗ d4

1,τ
(3.16)

where

d2
1,τ

= EZ2
1,n

(τ) ≤ σ∗νn

n

n
∑

j=1

(ρτ (j) − ρτ1
(j))2

‖φj‖4
n

θ2
j,n

≤ σ∗νn

n
‖Sτ − Sτ1

‖2
n ,

νn is defined by (3.2).
Taking into account in (3.15) that Jn(τ̂) − Jn(τ1) ≤ 0, we obtain

‖Ŝτ̂ − S‖2
n − ‖Ŝτ1

− S‖2
n ≤ 2Z1,n(τ̂) + 2V ∗

n ,
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where V ∗
n = maxτ∈Aε

|Vn(τ)|.
We set, for x > 0, % > 0 and fixed τ ∈ Aε,

Z̃1,n(τ, x) =
2Z1,n(τ) % n

(% n)2 d2
1,τ

+ x

and Γ1,n(x) =
{

supτ |Z̃1,n(τ, x)| ≤ 1
}

. Notice now that (% n)2 d2
1,τ

+ x ≥
2d1,τ

√
x% n. Therefore by Chebyshev’s inequality and (3.16), we obtain, for

any x > 0 and τ ∈ Aε,

P
(

|Z̃1,n(τ, x)| > 1
)

≤ P
(

|Z1,n(τ)| >
√
x d1,τ

)

≤ e∗(x) ,

where e∗(x) = 1{x≤1} + ξ∗ x−2 1{x>1}. Hence

P
(

Γc
1,n

(x)
)

≤
∑

τ 6=τ1

P
(

|Z1,n(τ, x)| > √
x d1,τ

)

≤ υε e
∗(x) . (3.17)

Thus on the set Γ1,n(x)

‖Ŝτ̂ − S‖2
n ≤ ‖Ŝτ1

− S‖2
n + % nd2

1,τ̂
+

x

% n
+ 2V ∗

n

≤ ‖Ŝτ1
− S‖2

n + % σ∗ νn ‖Sτ̂ − Sτ1
‖2

n +
x

% n
+ 2V ∗

n . (3.18)

Let us estimate now ‖Sτ̂ − Sτ1
‖2

n. We have

‖Sτ̂ − Sτ1
‖2

n = ‖Ŝτ̂ − Ŝτ1
‖2

n + (‖Sτ̂ − Sτ1
‖2

n − ‖Ŝτ̂ − Ŝτ1
‖2

n)

= ‖Ŝτ̂ − Ŝτ1
‖2

n +

n
∑

j=1

(ρτ̂ (j) − ρτ1
(j))2

‖φj‖2
n

(θ2
j,n

− θ̂2
j,n

)

≤ ‖Ŝτ̂ − Ŝτ1
‖2

n − 2Z2,n(τ̂ ) ,

where

Z2,n(τ) =
1√
n

n
∑

j=1

(ρτ (j) − ρτ1
(j))2

‖φj‖2
n

θj,nξj,n

with

d2
2,τ

= EZ2
2,n

(τ) ≤ σ∗ νn

n

n
∑

j=1

(ρτ (j) − ρτ1
(j))4

‖φj‖4
n

θ2
j,n

≤ 2σ∗ νn

n
‖Sτ − Sτ1

‖2
n .
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By the same way as before, for x > 0, we set

Γ2,n(x) = {sup
τ

|Z̃2,n(τ)| ≤ 1} ,

where

Z̃2,n(τ, x) =
2Z2,n(τ)% n

(% n)2d2
2,τ

+ x
.

Similarly to (3.17), one shows that

P(Γc
2,n

(x)) ≤ υε e
∗(x) .

On the set Γ2,n(x) we obtain that

‖Sτ̂ − Sτ1
‖2

n ≤ ‖Ŝτ̂ − Ŝτ1
‖2

n + % nd2
2,τ̂

+
x

% n

≤ ‖Ŝτ̂ − Ŝτ1
‖2

n + 2%σ∗νn‖Sτ̂ − Sτ1
‖2

n +
x

% n
.

Hence

‖Sτ̂ − Sτ1
‖2

n ≤ v∗(%)‖Ŝτ̂ − Ŝτ1
‖2

n +
v∗(%)

% n
x , (3.19)

where v∗(%) = (1 − 2%σ∗νn)−1. Thus on the set Γn(x) = Γ1,n(x) ∩ Γ2,n(x), in
view of (3.18),(3.19), we get

‖Ŝτ̂ − S‖2
n ≤ ‖Ŝτ1

− S‖2
n + %σ∗νnv

∗(%)‖Ŝτ̂ − Ŝτ1
‖2

n

+
1 + %σ∗νnv

∗(%)

% n
x + 2V ∗

n .

Estimating here the term ‖Ŝτ̂ − Ŝτ1
‖2

n by 2‖Ŝτ̂ − S‖2
n + 2‖S − Ŝτ1

‖2
n yields

the inequality

‖Ŝτ̂ − S‖2
n ≤ 1

1 − 4%σ∗νn
‖Ŝτ1

− S‖2
n + 2

1 − 2%σ∗νn

1 − 4%σ∗νn
V ∗

n

+
1 − %σ∗νn

(1 − 4%σ∗νn)%n
x .

Applying Lemma 6.5 with M(x) = 2e∗(x)υε gives

ES‖Ŝτ̂ − S‖2
n ≤ 1

1 − 4%σ∗νn

ES‖Ŝτ − S‖2
n

+ B1(%)ES V
∗
n + υεB2(%)

1

n
, (3.20)
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where B1(%) and B2(%) are defined by (3.10). In Appendix 6.2 we show that

ES V
∗
n ≤ υε

(

2
√

2(ξ∗ − 1)σ∗c
∗

n7/6
+

7σ∗ 2β∗

n
+

2 c∗

n2/3
ES |ς̂n − ςn|

)

. (3.21)

Therefore the inequality (3.9) follows immediately from (3.20) and (3.21).

4 Asymptotic upper bound

In this section we prove Theorem 2.1.
We start with the estimation problem (1.1) under the condition that

S ∈ W q
r with the known parameters q, r and ς(S) defined in (2.4). In this

case we use the estimator S̃n = Ŝτε
defined in (3.5) with τε = (q, rε) from Aε,

rε = inf{i ≥ 1 : iε ≥ r/ς(S)}

and ε = εn = 1/ ln(n + 1).

Theorem 4.1. Under the condition H1)

lim sup
n→∞

ϕn sup
S∈W q

r

1

γq(S)
R(S̃n, S) ≤ 1 , (4.1)

where ϕn = n2q/(2q+1).

Proof. First, note that from (3.5), taking into account that ‖φj‖n ≥ 1, we
obtain that

ES ‖S̃n − S‖2
n ≤

n
∑

j=1

(1 − ρ̃j)
2
θ2

j,n

‖φj‖2
n

+
1

n

n
∑

j=1

ρ̃2
j mj,n ,

where ρ̃j = ρτε
(j) andmj,n is defined in (3.13). Moreover, puting k̃0 = [k0(τε)]

and k̃1 = [ωτε
· ln(n + 1)], we estimate the risk R(S̃n, S) as

R(S̃n, S) ≤
k̃1−1
∑

j=k̃0

(1 − ρ̃j)
2θ2

j,n
+ ςn

1

n

n
∑

j=1

ρ̃2
j + ∆1(n) + ∆2(n)

with

∆1(n) =

n
∑

j=k̃1

θ2
j,n

‖φj‖2
n

13



and

∆2(n) =
1

n

n
∑

j=1

ρ̃2
j m̃j,n =

1

n2

n
∑

d=1

σ2
d

n
∑

j=1

ρ̃2
j φj

(xd) .

The last inequality implies that, for any fixed 0 < δ < 1,

R(S̃n, S) ≤ (1 + δ)

k̃1−1
∑

j=k̃0

(1 − ρ̃j)
2θ2

j
+ ςn

1

n

n
∑

j=1

ρ̃2
j

+ ∆1(n) + ∆2(n) + (1 + 1/δ) ∆3(n) ,

where ∆3(n) =
∑k̃1−1

j=k̃0

(θj,n − θj)
2,

θj =

∫ 1

0

S(x)φj(x) dx . (4.2)

Lemmas 6.1–6.3 imply immediately that

lim
n→∞

sup
S∈W q

r

ϕn

3
∑

l=1

|∆l(n)| = 0 .

Therefore denoting ϕn∆l(n) as o(1) yields

ϕn R(S̃n, S) ≤ (1 + δ)ϕn

k̃1−1
∑

j=k̃0

(1 − ρ̃j)
2θ2

j

+ ςn n
−1/(2q+1)

n
∑

j=1

ρ̃2
j + o(1) .

Further, for any S ∈ W q
r

denoting aj =
∑q

i=0(2π[j/2])2i, we have that
∑

j≥1

aj θ
2
j ≤ r . (4.3)

Therefore, in view of (3.4)

lim sup
n→∞

sup
j≥k̃0

ϕn
(1 − ρ̃j)

2

aj
≤ 1

π2q c2q
0

,

where c0 = cτ0 with τ0 = (q, r/ς(S)). From here, by taking into account the
conditions (2.4)–(2.5), we obtain, for sufficiently large n, the following upper
bound for the quadratic risk

ϕn R(S̃n, S) ≤ (1 + 2δ)

(

r

π2qc2q
0

+ ς(S) c0

∫ 1

0

Ψ2
q
(z)dz

)

+ o(1)

= (1 + 2δ) γq(S) + o(1) .
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This implies the inequality (4.1). Hence Theorem 4.1.
Now Theorem 3.1 and Theorem 4.1 imply immediately Theorem 2.1.

5 Asymptotic lower bound

In this section we prove Theorem 2.2. For this we need the next auxiliary
result.

Lemma 5.1. For any 0 < ε < 1 and any estimate Ŝn of S,

‖Ŝn − S‖2
n ≥ (1 − ε)‖T (Ŝ)n − S‖2 − (ε−1 − 1) r/n2 ,

where T (Ŝ)n(x) =
∑n

k=1 Ŝn(xk)1(xk−1,xk](x).

Proof of this Lemma is given in Appendix 6.5.
From this Lemma we deduce that to prove (2.9), it suffices to show that

lim inf
n→∞

inf
Ŝn

ϕn R0(Ŝn) ≥ 1 , (6.1)

where

R0(Ŝn) = sup
S∈W q

r

ES

‖Ŝn − S‖2

γq(S)
.

For η > 0 and x ∈ R, denote

Iη(x) = η−1

∫

R

1(|u|≤1−η)G

(

u− x

η

)

du ,

where 1A is the indicator of a set A, the kernel G ∈ C∞(R) is such that

G(−u) = G(u) for |u| ≤ 1 , G(u) = 0 for |u| ≥ 1 ,

∫ 1

−1

G(u) du = 1 .

It is easy to see that the function Iη(x) possesses the properties : Iη is
symmetric,

Iη(x) =







1 for |x| ≤ 1 − 2η ;

0 for |x| ≥ 1 ;

and
∫

R
f(x)Iη(x) dx →

∫ 1

−1
f(x) dx , η → 0 ,

∫

R
f(x)I2

η (x) dx →
∫ 1

−1
f(x) dx , η → 0 ,

(6.2)
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uniformly over all functions bounded by any fixed constant c > 0, i.e.
sup

f
sup−1≤x≤1

|f(x)| ≤ c.

We choose the trigonometric basis in L2[−1, 1] as follows

e1(x) = 1/
√

2, e2(x) = cos(π x), e3(x) = sin(π x), . . . ,

e2i(x) = cos(iπ x), e2i+1(x) = sin(iπ x), . . . .
(6.3)

For any array z = {zm,j, 1 ≤ m ≤ M, 1 ≤ j ≤ N} with M = [1/(2h)] − 1
and N a positive integer, we denote

Sz(x) =

M
∑

m=1

N
∑

j=1

zm,j Dm,j(x) , (6.4)

where

Dm,j(x) = ej (vm(x)) Iη (vm(x)) , vm(x) = (x− am)/h ,

am = 2mh , h = Ln (n)−1/(2q+1) , Ln = ln(n + 1) .

To construct a priori distribution on the family of arrays, we choose the
following random array ϑ = {ϑm,j, 1 ≤ m ≤M, 1 ≤ j ≤ N} with

ϑm,j = δm,j ξ̂m,j , δm,j =
g0(am)κj√

nh
, (6.5)

where

κ2
j =

((

N

j

)q

− 1

)

+

, N = [LnN
∗
ε ], g0(·) = g(·, 0) ,

N∗
ε = 2

(

r̃ε(q + 1)(2q + 1)

qπ2q

)1/(2q+1)

, r̃ε =
(1 − ε) r

ς(0)
, (6.6)

ε is a small positive real, 0 < ε < 1, ς(0) =
∫ 1

0
g2(x, 0)dx, (ξ̂m,j) are i.i.d.

bounded random variables with a density ρd(x) such that

E ξ̂m,j = 0, Eξ̂2
m,j

= 1, |ξ̂m,j| ≤ d ,

id =

∫ d

−d

(ρ̇d(x))
2

ρd(x)
dx→ 1 as d→ ∞ . (6.7)

The construction of a such density ρd is given in Appendix 6.6.
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For any estimator Ŝn, we denote by Ŝ0
n its projection on W q

r , i.e. Ŝ0
n =

PrW q
r
(Ŝn ). Since W q

r is convex set we get that ‖Ŝn − S‖2 ≥ ‖Ŝ0
n − S‖2.

Therefore, for sufficiently large n,

R0(Ŝn) = sup
S∈W q

r

ES

‖Ŝn − S‖2

γq(S)
≥ sup

S∈W q
r

ES

‖Ŝ0
n − S‖2

γq(S)

≥
∫

{z:Sz∈W q
r
}
Ez

‖Ŝn − Sz‖2

γq(Sz)
µϑ(dz)

≥ 1

γq(ε)

∫

{z:Sz∈W q
r
}
Ez‖Ŝ0

n − Sz‖2 µϑ(dz) ,

where γ∗q (ε) = sup‖S‖≤ε
γq(S) (the last inequality is true since ‖Sϑ‖ → 0

as n → ∞). Here we denote by Ez the expectation with respect to the
distribution of the process (1.1) with S = Sz and the measure µϑ denotes the
distribution of ϑ in R

ι (ι = MN) which is a priori distribution for the Bayes
risk. The last inequality implies that

R0(Ŝ
0
n) ≥ 1

γ∗
q
(ε)

R̃0(Ŝ
0
n) − 2

1

γ∗
q
(ε)

ωn , (6.8)

where

R̃0(Ŝ
0
n) =

∫

Ez‖Ŝ0
n − Sz‖2 µϑ(dz) ,

ωn =

∫

{z:Sz /∈W q
r
}
(r + ‖Sz‖2)µϑ(dz) .

To reduce the nonparametric problem to a parametric one, we replace the
functions Ŝ0

n and S by their Fourier series with respect to the basis (ẽm,i),
where

ẽm,i(x) =
1√
h
ei (vm(x)) I(vm(x)) , 1 ≤ m ≤M , 1 ≤ i ≤ N

and I(x) = 1(|x|≤1). We estimate the term ‖Ŝ0
n − Sz‖2 as

‖Ŝ0
n − Sz‖2 ≥

M
∑

m=1

N
∑

j=1

(λ̂m,j − λm,j(z))
2 .

Here λ̂m,j and λm,j mean the Fourier coefficients for the functions Ŝ0
n and S,

respectively, i.e.

λ̂m,j =

∫ 1

0

Ŝ0
n(x)ẽm,j(x)dx and λm,j(z) =

∫ 1

0

Sz(x)ẽm,j(x) dx .
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Due to the definition of the function λm,j(z) we obtain that

λm,j(z) =
M
∑

l=1

N
∑

i=1

zl,i

∫ 1

0

Dl,i(x)ẽm,j(x) dx

=

M
∑

l=1

N
∑

i=1

zl,i√
h

∫ 1

0

ei (vl(x)) ej (vm(x)) Iη(vl(x))I(vm(x)) dx

=
√
h

N
∑

i=1

zm,i

∫ 1

−1

ei(u)ej(u)Iη(u) du .

Therefore

Λm,j =
∂λm,j

∂zm,j

=
√
h

∫ 1

−1

e2j(v)Iη(v) dv =
√
h (e2j , Iη) .

By the van Trees inequality (see Appendix 6.7) one gets

R̃0(S
0
n) ≥

M
∑

m=1

N
∑

j=1

Λ2
m,j

Am,j + Bm,j + Im,j

=

M
∑

m=1

N
∑

j=1

h(e2j , Iη)
2

Am,j + Bm,j + (δm,j)
−2 id

, (6.9)

where Im,j is the Fisher information relative the random variable ξm,j,

Am,j =
n
∑

k=1

∫

R
ι

1

g2(xk, Sz)

(

∂Sz(xk)

∂zm,j

)2

µϑ(dz) ,

Bm,j =

n
∑

k=1

∫

R
ι

(

L̃m,j(xk, Sz)

g(xk, Sz)

)2

µϑ(dz) , L̃m,j(x, Sz) = Lx,Sz

(

∂Sz

∂zm,j

)

.

First note that from (6.4) we obtain that

Am,j =

n
∑

k=1

D2
m,j

(xk)

∫

R
ι

1

g2(xk, Sz)
µϑ(dz) = (1 + o(1))

n
∑

k=1

1

g2
0(xk)

D2
m,j

(xk)

= nh (1 + o(1))
1

g2
0
(am)

∫ 1

−1

e2
j
(x) I2

η
(x)dx = nh (1 + o(1))

1

g2
0
(am)

(e2
j
, I2

η
) .

Now we study the behaviour of Bm,j. Due to the inequality (2.6) and the
definition (6.4), we obtain that

| L̃m,j(x, Sz) | ≤ C∗
∥

∥

∥

∥

∂Sz

∂zm,j

∥

∥

∥

∥

= C∗ ∥
∥Dm,j

∥

∥ ≤ C∗ h .
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Therefore by the condition H3) we get

|Bm,j| ≤ C∗ 1

g2
∗
nh2 .

Taking into account this inequality, the inequality (6.9) and the definition of
δm,j in (6.5), we evaluate the Bayes risk as

1

γ∗
q
(ε)

R̃0(Ŝ
0
n) ≥

1

n γ∗
q
(ε)

M
∑

m=1

g2
0
(am)

N
∑

j=1

αj(η)

(1 + o(1)) βj(η) + (κj)
−2 id

≥ (1 + o(1))

2nh γ∗
q
(ε)

ς(0)
N
∑

j=1

αj(η)

(1 + o(1)) βj(η) + (κj)
−2 id

=
(1 + o(1)) ς(0)

2 γ∗
q
(ε)n2q/(2q+1)

1

Ln

N
∑

j=1

αj(η)

(1 + o(1)) βj(η) + (κj)
−2 id

,

where we denote αj(η) = (e2
j , Iη)

2 and βj(η) = (e2
j , I

2
η ).

In Appendix 6.9 we show that

lim
n→∞

ϕn ωn = 0 . (6.10)

This result and the previous inequality imply

lim inf
n→∞

inf
Ŝn

ϕn R0(Ŝn) ≥ ς(0)N∗
ε

2 γ∗
q
(ε)

Ω∗(η, d) lim inf
n→∞

1

N

N
∑

j=1

κ2
j

κ2
j

+ 1

=
ς(0)N∗

ε

2 γ∗
q
(ε)

Ω∗(η, d) lim
n→∞

1

N

N
∑

j=1

(1 − (j/N)q)

=
ς(0)N∗

ε

2 γ∗
q
(ε)

q

q + 1
Ω∗(η, d)

= (1 − ε)1/(2q+1)
γ0

q

γ∗
q
(ε)

Ω∗(η, d) , (6.11)

where γ0
q

= γq(0), Ω∗(η, d) = lim infN→∞ ΩN(η, d) and

ΩN (η, d) =

∑N
j=1 (αj(η) κ

2
j
) (βj(η) κ

2
j

+ id)
−1

∑N
j=1 κ

2
j
(κ2

j
+ 1)−1

. (6.12)

In Appendix 6.8 we show that

lim
η→0

lim
d→∞

Ω∗(η, d) = 1 . (6.13)
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The condition H1) implies γ∗
q
(ε) → γ0

q
as ε → 0. Therefore limiting ε →

0 , η → 0 , d→ ∞ in (6.11) yields

lim inf
n→∞

inf
Ŝn

ϕn R̃0(Ŝn) ≥ 1 .

Thus (6.8) implies the inequality (6.3) from which it follows (6.1) through
Lemma 5.1.

6 Appendix

6.1 Properties of trigonometric basis

Lemma 6.1. Let θj,θj,n be coefficients from (3.3) and (4.2), respectively.
Then for 1 ≤ j ≤ n and n ≥ 2

sup
S∈W q

r

|θj,n − θj| ≤ 2π
√
r
j

n
. (A.1)

Proof. Indeed, we have

|θj,n − θj| =

∣

∣

∣

∣

∣

n
∑

l=1

∫ xl

xl−1

(S(xl)φj(xl) − S(x)φj(x)) dx

∣

∣

∣

∣

∣

≤ 1

n

n
∑

l=1

∫ xl

xl−1

(

|Ṡ(z)φj(z)| + |S(z)φ̇j(z)|
)

dz

=
1

n

∫ 1

0

(

|Ṡ(z)| |φj(z)| + |S(z)| |φ̇j(z)|
)

dz .

By making use of the Bounyakovskii-Cauchy-Schwartz inequality we get

|θj,n − θj| ≤
1

n

(

‖Ṡ‖ ‖φ‖ + ‖φ̇‖ ‖S‖
)

≤ 1

n

(

‖Ṡ‖ + π j ‖S‖
)

.

The definition of class W q
r in (2.2) implies (A.1). Hence Lemma 6.1.

Lemma 6.2. For any m ≥ 0,

sup
N

sup
x∈[0,1]

N−m

∣

∣

∣

∣

∣

N
∑

l=2

lm(φ2
l (x) − 1)

∣

∣

∣

∣

∣

≤ 2m . (A.2)
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Proof. By the properties of the trigonometric functions we get

N
∑

l=2

lm(φ2
l (x) − 1) =

∑

1≤l≤N/2

(2l)m[2 cos2(2πlx) − 1]

+
∑

1≤l≤(N−1)/2

(2l + 1)m (2 sin2(2πlx) − 1)

=
∑

1≤l≤N/2

(2l)m cos(4πlx)

−
∑

1≤l≤(N−1)/2

(2l + 1)m cos(4πlx) .

This yields
∣

∣

∣

∣

∣

N
∑

l=2

lm(φ2
l (x) − 1)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

1≤l≤(N−1)/2

((2l + 1)m − (2l)m) cos(4πlx)

∣

∣

∣

∣

∣

∣

+ Nm

≤
∑

1≤l≤(N−1)/2

|(2l + 1)m − (2l)m| + Nm

=
∑

1≤l≤(N−1)/2

m−1
∑

j=0

(

m

j

)

(2l)j + Nm .

This implies (A.2).

Lemma 6.3. For any function S ∈ W q
r ,

sup
n≥1

sup
1≤m≤n−1

m2q

(

n
∑

j=m+1

θ2
j,n

‖φj‖2
n

)

≤ 2r

π2(q−1)
, (A.3)

where νn is defined by (3.2).

Proof. First, note that any function S from W q
r we can be represented by

its Fourier series, i.e. S =
∑∞

j=1 θjφj with the coefficients defined by (4.2).
By denoting the residual term for S as

∆m(x) = S −
m
∑

j=1

θjφj =
∞
∑

j=m+1

θjφj(x) ,

we obtain that
n
∑

j=m+1

θ2
j,n

‖φj‖2
n

= inf
α1,...,αm

‖S −
m
∑

j=1

αj φj‖2
n ≤ ‖∆m‖2

n .
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Moreover

‖∆m‖2
n =

1

n

n
∑

k=1

∆2
m(xk) =

n
∑

k=1

∫ xk

xk−1

∆2
m(xk)dx

≤ 2

∫ 1

0

∆2
m(x)dx + 2

n
∑

k=1

∫ xk

xk−1

(∆m(xk) − ∆m(x))2dx .

The last term in this inequality we estimate as

(∆m(xk) − ∆m(x))2 =

(
∫ xk

x

∆̇m(z)dz

)2

≤ 1

n

∫ xk

xk−1

(∆̇m(z))2dz .

Therefore

‖∆m‖2
n ≤ 2‖∆m‖2 + 2

1

n2
‖∆̇m‖2

= 2
∞
∑

j=m+1

θ2
j

+ 2
1

n2

∞
∑

j=m+1

θ2
j
‖φ̇j‖2 .

Taking here into account the inequality (4.3) we obtain (A.3). Hence Lemma 6.3.

Lemma 6.4. Let ξj,n be defined in (3.3) for the model (1.1)–(2.1). Then,
for any real numbers v1, . . . , vn,

E
(

∑n
j=1 vj ξj,n

)4

≤ ξ∗
(

E
(

∑n
j=1 vj ξj,n

)2
)2

,

E
(

∑n
j=1 vj ξj,n

)2

≤ σ∗ νn

∑n
j=1 v

2
j ,

(A.4)

where σ∗ = max1≤j≤n σ
2
j and νn is defined in (3.2).

Proof. By the definition of ξj,n we obtain that
∑n

j=1 vj ξj,n =
∑n

l=1 σlṽl ξl
with ṽl = 1√

n

∑n

j=1
vjφj(xl). Therefore, this implies immediately the first

inequality in (A.4). Moreover

E

(

n
∑

j=1

vj ξj,n

)2

=
n
∑

l=1

σ2
l ṽ

2
l ≤ σ∗

n
∑

l=1

ṽ2
l

= σ∗

n
∑

i,j=1

vi vj (φi, φj)n .
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The orthogonal properties of the basis (φj) and (3.2) imply the second in-
equality in (A.4). Hence Lemma 6.4.

6.2 Proof of (3.21)

Indeed, we have

ES V
∗
n (τ) ≤

3
∑

i=1

∑

τ 6=τ
1

ES |Ni,n(τ) − Ni,n(τ1)|

≤ υε

3
∑

i=1

sup
τ∈Aε

ES |Ni,n(τ) − Ni,n(τ1)| . (A.5)

We start with the first term in the right-hand part. We have

ES|N1,n(τ) −N1,n(τ1)| =
1

n
ES

∣

∣

∣

∣

∣

n
∑

j=1

(ρτ (j) − ρτ1
(j))ξ̃j,n

∣

∣

∣

∣

∣

≤ 1

n

n
∑

j=1

(ρτ (j) + ρτ1
(j)) (E ξ̃2

j,n
)1/2 ,

where ξ̃j,n is defined in (3.13). Moreover,

Eξ̃2
j,n

= E
(

ξ2
j,n

−mj,n

)2

= Eξ4
j,n

−m2
j,n

=
1

n2

n
∑

r,s=1

σ2
rσ

2
s φ

2
j(xr)φ

2
j(xs)E ξ2

r
ξ2
s
−m2

j,n

= (ξ∗ − 1)
1

n2

n
∑

r=1

σ4
r φ

4
j(xr) ≤ 2(ξ∗ − 1)σ2

∗νn

n
. (A.6)

Thus, for any fixed τ and τ1 from Aε,

ES |N1,n(τ) −N1,n(τ1)| ≤
√

2(ξ∗ − 1)νnσ∗
n
√
n

(wτ + wτ1
) ,

where wτ = n1/(2β+1)cτ ≤ c∗n1/3 since β ≥ 1. Therefore

sup
τ∈Aε

ES |N1,n(τ) −N1,n(τ1)| ≤
2
√

2(ξ∗ − 1)νnσ∗ c
∗

n7/6
. (A.7)

23



To estimate the second term in the right-hand part of (A.5), note that

N2,n(τ) =
1

n2

n
∑

d=1

σ2
d

n
∑

j=1

ρτ (j)φj(xd)

− 1

n2

n
∑

d=1

σ2
d ρτ (n)(1 − 1

νn

)φn(xd) .

Let us show that, for any n ≥ 2,

sup
x

|
n
∑

j=1

ρτ (j)φj(x)| ≤ 3 · 2β . (A.8)

Indeed, by definition (3.4), ρτ (j) = 1 for j ≤ k0(τ). Therefore the inequality
(A.8) follows immediately from Lemma 6.2, for n ≤ k0(τ). Let us show (A.8),
for n > k0(τ). In this case we can represent the sum in the left-hand part of
(A.8) as

n
∑

j=1

ρτ (j)φj(x) =
n
∑

j=2

ρτ (j)φj(x)

=
∑

2≤j≤wτ∧n

φj(x) −
1

(wτ )
β

∑

2≤j≤wτ∧n

jβφj(x)

+
1

(wτ )
β

∑

2≤j≤k0(τ)

jβφj(x) ,

where a ∧ b = min(a, b). Now it is easy to see that inequality (A.8) follows
directly from Lemma 6.2. Therefore by (A.8)

sup
τ∈Aε

E |N2,n(τ) −N2,n(τ1)| ≤
6 · 2β∗

n2

n
∑

d=1

σ2
d +

2

n2

n
∑

d=1

σ2
d (1 − 1

νn
)

≤ 7 σ∗ 2β∗

n
.

For the last addend in (A.5), in view of (3.4), we get

E |N3,n(τ) −N3,n(τ1)| ≤
wτ + wτ1

n
E |ς̂n − ςn|

≤ c∗(n1/(2β+1) + n1/(2β
1
+1)

n
E |ς̂n − ςn|

≤ 2 c∗

n2/3
E |ς̂n − ςn| .
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6.3 Proof of Proposition 3.2

First notice that taking into account (3.13) in (3.11) we obtain that

ς̂n − ςn =

n
∑

j=ln+1

1

‖φj‖2
n

θ2
j,n

+
2√
n

n
∑

j=ln+1

1

‖φj‖2
n

θj,n ξj,n

+
1

n

n
∑

j=ln+1

1

‖φj‖2
n

ξ̃j,n +
1

n

n
∑

j=ln+1

1

‖φj‖2
n

m̃j,n − (ln + 1)νn − 1

nνn

ςn .

Therefore by applying here (A.6) and Lemma 6.4 we come to the following
upper bound

ES |ς̂n − ςn| ≤
n
∑

j=ln+1

1

‖φj‖2
n

θ2
j,n

+
2
√
σ∗νn√
n





n
∑

j=ln+1

1

‖φj‖4
n

θ2
j,n





1/2

+

√

2(ξ∗ − 1)νnσ∗√
n

+
(ln + 1)σ∗

n
+

1

n

∣

∣

∣

∣

∣

∣

n
∑

j=ln+1

1

‖φj‖2
n

m̃j,n

∣

∣

∣

∣

∣

∣

.

Moreover, by Lemma 6.2 we have
∣

∣

∣

∣

∣

∣

n
∑

j=ln+1

1

‖φj‖2
n

m̃j,n

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

n

n
∑

d=1

σ2
d

n−1
∑

j=ln+1

φj(xd) +
1

νn

m̃n,n

∣

∣

∣

∣

∣

∣

≤ σ∗

n
∑

d=1

∣

∣

∣

∣

∣

∣

n−1
∑

j=ln+1

φj(xd)

∣

∣

∣

∣

∣

∣

+
1

νn

|m̃n,n|

≤ 3 σ∗ .

This proposition follows now directly from Lemma 6.3

6.4 Mean forecast bound

Lemma 6.5. Let α, ξ be two integrable random variables. Let β be a positive
real number and {Γx, x > 0} be a family of events such that, for any x > 0,

P (ξ > α + βx , Γx) = 0 .

Assume also that there exists some positive integrable on R+ function M(x)
for which P(Γc

x) ≤M(x), for all x ∈ R+. Then

E ξ ≤ Eα + βM∗ ,

where M∗ =
∫∞
0

M(x)dx.
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Proof. Denote η = ξ − α. Then

ξ = α + η ≤ α + η+

and
E ξ ≤ Eα + E η+ .

Moreover,

E η+ =

∫ ∞

0

P(η+ > z)dz = β

∫ ∞

0

P(η+ > βx)dx

= β

∫ ∞

0

(P(η+ > βx,Γx) + P(η+ > βx,Γc
x)) dx

= β

∫ ∞

0

(P(η > βx,Γx) + P(η+ > βx,Γc
x)) dx

≤ β

∫ ∞

0

P(Γc
x)dx ≤ β

∫ ∞

0

M(x)dx ≤ βM∗ .

6.5 Proof of Lemma 5.1

First notice that, for any S ∈ W q
r , one has

‖Ŝn − S‖2
n =

1

n

n
∑

j=1

(Ŝn(xj) − S(xj))
2 =

n
∑

j=1

∫ xj

xj−1

(Ŝn(xj) − S(xj))
2dx

=
n
∑

j=1

∫ xj

xj−1

(Ŝn(xj) − S(x))2dx

+ 2

n
∑

j=1

∫ xj

xj−1

(Ŝn(xj) − S(x))(S(x) − S(xj))dx

+
n
∑

j=1

∫ xj

xj−1

(S(x) − S(xj))
2dx = ‖T (Ŝ)n − S‖2 + Dn + ∆n ,

where

Dn = 2
n
∑

j=1

∫ xj

xj−1

(Ŝn(xj) − S(x))(S(x) − S(xj))dx ,

∆n =

n
∑

j=1

∫ xj

xj−1

(S(x) − S(xj))
2dx .
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For any 0 < ε < 1, by making use of the elementary inequality
2ab ≤ εa2 + ε−1b2, one gets

Dn ≤ ε‖T (Ŝ)n − S‖2 + ε−1∆n .

Moreover, for any S ∈ W q
r with q ≥ 1, by the Bounyakovskii-Cauchy-

Schwartz inequality we obtain that

∆n =

n
∑

j=1

∫ xj

xj−1

(
∫ xj

x

Ṡ(t)dt

)2

dx ≤ 1

n

n
∑

j=1

∫ xj

xj−1

(Ṡ(t))2dt =
1

n2
‖Ṡ‖2 ≤ r

n2
.

Hence Lemma 5.1.

6.6 Construction of the density ρd

We set

ρd(t) =
1

ςd
fd

(

t

ςd

)

, ς2d =

(
∫ d

−d

z2fd(z)dz

)−1

, (A.9)

where fd is a truncated Gaussian density which is defined by the following
way. First we need to choose the smooth indicator function. We choose this
function for d ≥ 3 as

Λd(t) =

∫

R

1(|z|≤d−2)G(z − t)dz ,

where

G(t) = G∗ exp{−1/(1 − t2)} I(t) , G∗ =

(
∫ 1

−1

exp{−1/(1 − t2)} dt

)−1

and I(t) = 1{|t|≤1}. Notice that this smoothing density G is infinitely times
differentiable. Now we set

fd(t) =
f(t)Λd(t)

f ∗
d

, f(t) =
e−t2/2

√
2π

and f ∗
d =

∫

R

f(t)Λd(t)dt .

The properties of the density ρd are given in the following Lemma

Lemma 6.6. The density ρd satisfies the following properties:

1. For any d ≥ 3,
∫

R

tρd(t)dt = 0,

∫

R

t2ρd(t)dt = 1 .

2. The Ficher information id for ρd goes to 1 as d→ ∞.
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Proof. Notice that the first part of this Lemma follows immediately from
the definition (A.9). Let us shows the second one. Due to properties of Λd,

fd(z) = f(z)1(|z|≤d−3) + f(z)Λd(z)1(|z|≥d−3) .

Therefore

f ∗
d =

∫

R

f(z)1(|z|≤d−3)dz +

∫

R

f(z)Λd(z)1(|z|≥d−3)dz →
∫

R

f(z)dz = 1 ,

since sup
x∈R

|Λd(x)| ≤ 1. Similarly ς2d → 1 as d→ ∞.
Consider the Fisher information id. We have

id =

∫ d

−d

(ρ̇d)
2(z)

ρd(z)
dz =

1

f ∗
d ς

2
d

∫ d/ςd

−d/ςd

(ḟd(u))
2

fd(u)
du

=
1

f ∗
d ς

2
d

∫ d/ςd

−d/ςd

(ḟ(u))2

f(u)
Λd(u) du + 2

1

f ∗
d ς

2
d

∫ d/ςd

−d/ςd

ḟ(u) Λ̇d(u) du

+
1

f ∗
d ς

2
d

∫ d/ςd

−d/ςd

(Λ̇d(u))
2

Λd(u)
f(u) du .

From the definition of Λd it is easy to deduce that, for any integrable on R

function f ,

lim
d→∞

∫

R

f(u) Λd(u) du =

∫

R

f(u) du , lim
d→∞

∫

R

f(u) Λ̇d(u) du = 0

and Λ̇d(u) = 0 for u ≤ d− 3. Therefore we obtain the following assymptotic
relationship for id as d→ ∞

id = 1 + o(1) +

∫ d/ςd

−d/ςd

(Λ̇d(u))
2

Λd(u)
f(u) 1{|u|≥d−3} du . (A.10)

To estimate the last integral, notice that by the Bounyakovskii-Caushy-
Schwartz inequality

(Λ̇d(u))
2 =

(∫

R

1(|z|≤d−2)Ġ(u− z)dz

)2

≤
∫

R

1(|z|≤d−2)dz

∫

R

1(|z|≤d−2)

(

Ġ(u− z)
)2

dz

≤ 2d

∫

R

1(|z|≤d−2)

(

Ġ(u− z)
)2

dz ,
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where

(Ġ(t))2 =
16t2

(1 − t2)4
G∗ e

−(1−t2)−1

G(t) ≤ c∗G(t) ,

with c∗ = 16G∗ sup
z≥1

z4e−z <∞. Therefore

(Λ̇d(u))
2 ≤ 2c∗d

∫

R

1(|z|≤d−2)G(u− z)dz = 2c∗dΛd(u) .

From here we estimate the last integral in (A.10) by

2c∗d

∫

R

f(u)1(|u|>d−3)du → 0 as d→ ∞ .

Hence we get Lemma 6.6.

6.7 The van Trees inequality for regression models

Let (Rn,B(Rn),Pϑ, ϑ ∈ Θ ⊆ R
ι) be a statistical model relative the observa-

tions (yj)1≤j≤n governed by the regression equation

yj = Sϑ(xj) + σj(ϑ) ξj , (A.11)

where ξ1, . . . , ξn are i.i.d. N (0, 1) random variables, ϑ = (ϑ1, . . . , ϑι) is an
unknown vector parameter and σj(ϑ) = g(xj, Sϑ), where the function g(x, S)
is defined in the condition H1). Assume that a prior distribution µ of the
parameter ϑ in R

ι is defined by the density Φ(ϑ) of the following form

Φ(ϑ) = Φ(ϑ1, . . . , ϑι) =
ι
∏

j=1

Φj(ϑj) ,

where Φj is a continuous density on R with a compact support such that

Il =

∫

R

(Φ̇l(z))
2

Φl(z)
dz < ∞ .

Let λ(·) be a real-valued function, λ : R
ι → R. We assume that this function

is differentiable with respect to ϑl, for any 1 ≤ l ≤ ι, such that the partial
derivatives are integrable with respect to the density Φ(·) and we put

Λl =

∫

Rι

∂λ(ϑ)

∂ϑl
Φ(ϑ)dϑ .
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Let now λ̂n be an estimator of λ = λ(ϑ) based on observations (yj)1≤j≤n. For
any B(Rn × R

ι) - mesurable integrable function ζ = ζ(x, ϑ), x ∈ R
n, ϑ ∈ R

ι,
we set

Ẽ ζ(Y, ϑ) =

∫

Rι

Eϑ ζ(Y, ϑ) Φ(ϑ) dϑ ,

where Eϑ is the expectation with respect to the distribution Pϑ of the vector
Y = (y1, . . . , yn). Note that in this case

Eϑ ζ(Y, ϑ) =

∫

R
n

ζ(v, ϑ) f(v, ϑ) dv ,

where

f(v, ϑ) =

n
∏

j=1

1√
2πσj(ϑ)

exp

{

− (vj − Sϑ(xj))
2

2σ2
j (ϑ)

}

.

We prove the following result (cp. Gill and Levit (1995)).

Lemma 6.7. Assume that the function g(·, ·) satisfies the condition H1) −
H2) and the unknown function Sϑ(·) is differentiable with respect to ϑl, for
any 1 ≤ l ≤ ι, moreover,

∂Sϑ(·)
∂ϑl

∈ L1[0, 1] .

Then for any square integrable estimator λ̂n of λ and any 1 ≤ l ≤ ι,

Ẽ(λ̂n − λ)2 ≥ Λ2
l

Al + Bl + Il

,

where

Al =

n
∑

j=1

∫

R
ι

1

σ2
j (ϑ)

(

∂Sϑ(xj)

∂ϑl

)2

Φ(ϑ) dϑ ,

Bl = 2
n
∑

j=1

∫

R
ι

(

L̃l(xj, Sϑ)

g(xj, Sϑ)

)2

Φ(ϑ) dϑ , L̃l(x, S) = Lx,S

(

∂Sϑ

∂ϑl

)

,

the operator Lx,S
is defined in the condition H2).

Proof. We put

%l(v, ϑ) =
∂

∂ϑl
(f(v, ϑ)Φ(ϑ))

f(v, ϑ)Φ(ϑ)
.
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Integrating by parts and taking into account that the density Φl has a finite
compact support yields

Ẽ (λ̂n − λ)%l =

∫

R
n

∫

R
ι

(λ̂n(v) − λ(ϑ))
∂

∂ϑl

(f(v, ϑ)Φ(ϑ)) dϑ dv

=

∫

R
n

∫

R
ι−1

(
∫

R

(λ̂n(v) − λ(ϑ))
∂

∂ϑl

(f(v, ϑ)Φ(ϑ)) dϑl

) ι
∏

j 6=l

dϑj dv

=

∫

R
n

∫

R
ι−1

(
∫

R

(

∂

∂ϑl
λ(ϑ)

)

f(v, ϑ)Φ(ϑ) dϑl

) ι
∏

j 6=l

dϑj dv

=

∫

R
ι

(

∂

∂ϑl
λ(ϑ)

)

Φ(ϑ)

(
∫

R
n

f(v, ϑ) dv

)

dϑ = Λl .

Therefore by the Bouniakovskii-Cauchy-Schwartz inequality

Ẽ(λ̂n − λ(ϑ))2 ≥ Λ2
l

Ẽ%2
l

.

To evaluate the denominator in the last ratio, note that

%l(v, ϑ) =
∂

∂ϑl
(f(v, ϑ))

f(v, ϑ)
+

Φ̇l(ϑl)

Φl(ϑl)
=

∂

∂ϑl
ln f(v, ϑ) +

Φ̇l(ϑl)

Φl(ϑl)
.

By (A.11) we find that

∂

∂ϑl
ln f(Y, ϑ) =

n
∑

j=1

(ξ2
j
− 1)

1

σj(ϑ)

∂

∂ϑl
σj(ϑ) +

n
∑

j=1

ξj
1

σj(ϑ)

∂

∂ϑl
Sϑ(xj) .

Thus

Ẽ
∂

∂ϑl

ln f(Y, ϑ) = 0 .

Moreover, the condition H2) implies the relationship

∂

∂ϑl
σj(ϑ) =

∂

∂ϑl
g(xj, Sϑ) = L̃l(xj, Sϑ)

from which it follows

Ẽ

(

∂

∂ϑl
ln f(Y, ϑ)

)2

= Al + Bl .

Hence Lemma 6.7.
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6.8 Proof of (6.13)

Notice that to prove (6.13) it suffices to show that

lim sup
η→0 , d→∞

sup
N≥1

|ΩN (η, d) − 1| = 0 , (A.12)

where ΩN(η, d) is defined in (6.12). Indeed, by the direct calculation we find
that, for any N ≥ 1,

|ΩN (η, d) − 1| ≤
(

maxj≥1 (|αj(η) − 1| + |βj(η) − 1|) + |id − 1|
)

min(β∗(η), id)
,

where β∗(η) = minj≥1 βj(η). Therefore the definitions of αj(η) and βj(η)
and the properties (6.2) and (6.7) imply (A.12).

6.9 Proof of (6.10)

In this proof we use the following Lemmas.

Lemma 6.8. Let Sϑ be defined in (6.4) and S
(l)
ϑ be its derivative of order

l, 1 ≤ l ≤ q. Then, for sufficiently large n and any 0 < ε < 1,

q
∑

l=1

‖S(l)
ϑ ‖2 ≤ (1 − ε/2)r + (1 + µ)

q
∑

l=1

ζ̂l + (1 + µ−1)L−2
n ,

where µ = ε/(2 − 2ε) and

ζ̂l =
M
∑

m=1

g2
0
(am)

N
∑

j=1

κ2
j

1

n

(

jπ

2 h

)2l

ζm,j , ζm,j = ξ̂2
m,j

− 1 . (A.13)

Proof. From the definition of Sϑ in (6.4) we obtain that

S
(l)
ϑ (x) =

M
∑

m=1

N
∑

j=1

ϑm,jD
(l)
m,j(x) ,

where

D
(l)
m,j(x) =

1

hl
Q(l)

0,j
(vm(x)) +

1

hl
Q(l)

1,j
(vm(x)) ,

Q(l)
0,j

(u) = e
(l)
j (u)Iη(u) , Q(l)

1,j
(u) =

l
∑

i=1

(

l
i

)

e
(l−i)
j (u)I (i)

η
(u) .
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Setting

Q
(l)

m,i
(u) =

N
∑

j=1

ϑm,jQ
(l)
i,j

(u) , i = 0, 1 ,

we find that

‖S(l)
ϑ ‖2 =

1

h2l−1

M
∑

m=1

∫ 1

−1

(

Q
(l)

0,j
(v) + Q

(l)

1,j
(v)
)2

dv

=
1

h2l−1

M
∑

m=1

(

‖Q(l)

m,0
‖2 + 2(Q

(l)

m,0
, Q

(l)

m,1
) + ‖Q

m,1
‖2
)

.

Therefore, for any µ > 0, we get that

‖S(l)
ϑ ‖2 ≤ 1 + µ

h2l−1

M
∑

m=1

‖Q(l)

m,0
‖2 +

1 + µ−1

h2l−1

M
∑

m=1

‖Q(l)

m,1
‖2 . (A.14)

Moreover

‖Q(l)

m,0
‖2 =

∫ 1

−1

(

N
∑

j=1

ϑm,j Q0,j(u)

)2

du

=

∫ 1

−1

(

N
∑

j=1

ϑm,je
(l)
j (u)

)2

I2
η
(u)du ≤

∫ 1

−1

(

N
∑

j=1

ϑm,je
(l)
j (u)

)2

du

=
N
∑

j=1

ϑ2
m,j

∫ 1

−1

(

e
(l)
j (u)

)2

du ≤
N
∑

j=1

ϑ2
m,j (πj/2)2l .

Taking into account the definition of ϑm,j yields the following bound for the
first sum in the right-hand term of (A.14)

1

h2l−1

M
∑

m=1

‖Q(l)

m,0
‖2 ≤

M
∑

m=1

g2
0
(am)

N
∑

j=1

κ2
j ξ̂

2
m,j

1

n

(

jπ

2h

)2l

= Hl + ζ̂l ,

where

Hl =
1

n

( π

2h

)2l
M
∑

m=1

g2
0
(am)

N
∑

j=1

κ2
j j

2l .
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Moreover we can rewrite Hl as

Hl ≤ (1 + o(1))
π2l

n(2h)2l+1
ς0

N
∑

j=1

κ2
j j

2q

≤ (1 + o(1))
N2q+1π2lq

(q + 1)(2q + 1)n(2h)2l+1
ς0 .

This yields that

Hl =







(1 + o(1))(1 − ε)r , if l = q ,

o
(

n−1/(2q+1)
)

, if l < q .

Let us consider now the second term in the right-hand part of (A.14). By
putting

ψm,i(u) =

N
∑

j=1

ϑm,je
(l−i)
j (u)

we can rewrite Q
(l)

m,1
as Q

(l)

m,1
(u) =

∑l
i=1

(

l
i

)

I(i)
η

(u)ψm,i(u). Applying the
Bouniakovskii-Cauchy-Schwartz inequality yields

‖Q(l)

m,1
‖2 ≤

∫ 1

−1

l
∑

i=1

(

l
i

)2
(I (i)

η
(u))2

l
∑

s=1

ψ2
m,s

(u) du

≤ C(η)
l
∑

i=1

∫ 1

−1

ψ2
m,i

(u) du = C(η)
l
∑

i=1

∫ 1

−1

(

N
∑

j=1

ϑm,je
(l−i)
j (u)

)2

du

= C(η)
l
∑

i=1

N
∑

j=1

ϑ2
m,j‖e(l−i)

j ‖2 ≤ C(η)
l
∑

i=1

N
∑

j=1

ϑ2
m,j(πj)

2(q−i)

≤ C1(η)

N
∑

j=1

ϑ2
m,j j

2(q−1) ,

where C(η) = max1≤l≤q max−1≤u≤1

∑l
i=1

(

l
i

)2
(I (i)

η
(u))2 and C1(η) = qC(η) π2q.

From this it follows that

1

h2l−1

M
∑

m=1

‖Q(l)

m,1
‖2 ≤ C1(η)

h2l−1

M
∑

m=1

N
∑

j=1

ϑ2
m,jj

2(q−1)

≤ d2C1(η)

nh2l

M
∑

m=1

g(am)
N
∑

j=1

κ2
j j

2(q−1)

≤ C
N2q

L2l+1
n n2(q−l)/(2q+1)

,
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where C is a constant. Notice that, if l = q then

1

h2q−1

M
∑

m=1

‖Q(l)

m,1
‖2 ≤ C

1

L2q+1
n

N q
N
∑

j=1

jq−2 ≤ C
N2q−1

L2q+1
n

≤ C
1

L2
n

.

If l < q then

1

h2l−1

M
∑

m=1

‖Q(l)

m,1
‖2 = O(L2q

n n−2/(2q+1)) = O(L−1
n ) .

Therefore, putting in (A.14) µ = ε/2(1− ε), we come to the assertion of this
Lemma.

Lemma 6.9. Let ζ̂l be defined in (A.13). Then, for any p ≥ 1/2,

E

(

q
∑

l=1

ζ̂l

)2p

≤ C(p, d)Lp
n

np/(2q+1)
, (A.15)

where C(p, d) is a constant depending on p and d.

Proof. From (A.13) it follows that

q
∑

l=1

ζ̂l =
1

n

M
∑

m=1

g2
0
(am)ζ̃m , (A.16)

where

ζ̃m =

N
∑

j=1

κ2
jζm,j

q
∑

l=1

(

π j

2h

)2l

.

The process (ζ̃m, m ≥ 1) is a square-integrable martingale-difference. Apply-
ing the Burkholder-Davis-Gundy inequality to the right-hand part of (A.16)
yields, for p ≥ 1,

E

(

q
∑

l=1

ζ̂l

)2p

≤ C(p)

n2p
E

(

M
∑

m=1

g4
0
(am)ζ̃2

m

)p

, (A.17)

where C(p) is a constant depending on p. Moreover,

|ζ̃m| ≤ (d+ 1)2q
N
∑

j=1

((

N

j

)q

− 1

)(

π j

h

)2q

=
q(d+ 1)2π2q

h2q
N2q+1 ≤ C L2q+1

n

1

h2q
= C Ln n

2q/(2q+1) .

35



Thus (A.17) implies

E

(

q
∑

l=1

ζ̂l

)2p

≤ C
L2p

n n4pq/(2q+1)

n2p

(

M
∑

m=1

g4(am)

)p

≤ C
L2p

n n4pq/(2q+1)

n2php

= C
Lp

n

np/(2q+1)

and therefore (A.15).
Let us prove now (6.10). To end this, note that

‖Sϑ‖2 =

∫ 1

0

(

M
∑

m=1

N
∑

j=1

ϑm,jDm,j(x)

)2

dx

≤ h

M
∑

m=1

N
∑

j=1

ϑ2
m,j =

d

n

M
∑

m=1

g2
0
(am)

N
∑

j=1

κ2
j

≤ Const · d
ϕ2

n Ln

N
∑

j=1

κ2
j = o(1) → 0 as n→ ∞ .

Therefore, for sufficiently large n,

|ωn| ≤ (r + 1)µϑ(z : Sz /∈ W q
r
) = (r + 1)P(Sϑ /∈ W q

r
) .

To obtain (6.10), it suffices to prove the relationship

lim
n→∞

ϕn P

(

q
∑

l=1

‖S(l)
ϑ ‖2 > r

)

= 0 .

Indeed, Lemma 6.8 implies that, for sufficiently large n,
q
∑

l=1

‖S(l)
ϑ ‖2 ≤ (1 − ε/2)r + (1 + µ)

q
∑

l=1

ζ̂l + (1 + µ−1)L−2
n ,

where µ = ε
2(1−ε)

and ζ̂l is defined by (A.13). Thus, for sufficiently large n,

P

(

q
∑

l=1

‖S(l)
ϑ ‖2 > r

)

≤ P

(

q
∑

l=1

ζ̂l > r1

)

≤ (r1)
−2pE(

q
∑

l=1

ζ̂l)
2p ,

where r1 = εr/(2(1 + µ)). By making use of Inequality (A.15) with p > 2q
we obtain that

ϕ2
nP(

q
∑

l=1

‖S(l)
ϑ ‖2 > r) ≤ c Lp

n n
2q/(2q+1)

np/(2q+1)
=

c Lp
n

n(p−2q)/(2q+1)
→ 0 as n→ ∞ .

Hence (6.10).
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