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An adaptive nonparametric estimation procedure is constructed for the estimation problem of heteroscedastic regression. A non-asymptotic upper bound for the quadratic risk (the Oracle inequality) is obtained. Asymptotic efficiency of this procedure is proved, i.e. Pinsker's constant is found in the asymptotical lower bound for the risk. It is shown that the asymptotical quadratic risk for the constructed procedure coincides with this constant.

Introduction

Suppose we are given observations (y j ) 1≤j≤n which obey the heteroscedastic regression equation y j = S(x j ) + σ j (S) ξ j ,

where design points x j = j/n, S(•) is an unknown function to be estimated, (ξ j ) 1≤j≤n is the sequence of i.i.d. random variables, (σ j (S)) 1≤j≤n are unknown scale functionals depending on unknown regression function S and the design points. Our goal is to estimate S in the mean quadratic sense in the both non-asymptotic and asymptotic setups when the smoothness of S is unknown. Note that heteroscedastic regressions with this type of scale functionals has been encountered in consumer budget studies utilizing observations on individuals with diverse incomes and in analyses of the investment behavior of firms of different sizes (see, for example, [START_REF] Goldfeld | Nonlinear Methods in Econometrics[END_REF]). Such kind of models was considered by [START_REF] Gunst | Regression analysis and its applications: a data oriented approach[END_REF], [START_REF] Efroimovich | Nonparametric curve estimation. Methods, theory and applications[END_REF], [START_REF] Akritas | ANCOVA methods for heteroscedastic nonparametric regression models[END_REF] as well.

The problem of minimax estimation of nonparametric regression function in homoscedastic case (i.e. σ j ≡ σ) in the asymptotic setup has been studied in a number of papers. The optimal rate for L 2losses and regression functions from a L 2 -Sobolev or a Hölder space was studied by [START_REF] Ibragimov | Bounds for the risk of nonparametric regression estimates[END_REF], [START_REF] Speckman | Spline smoothing and optimal rate of convergence in nonparametric regression models[END_REF], [START_REF] Donoho | Wavelet shrinkage : asymptotia?[END_REF]; the case of regression functions from Triebel and Besov space was investigated by Donoho and Johnston (1998); the optimal rate for model (1.1) in L q -losses and adaptive estimate for Sobolev spacial regression was considered by Nemirovskii (2000). Efficient linear estimators for L 2 -risk over linear estimators and some other risks was given by [START_REF] Donoho | Geometrizing rates of convergence[END_REF], [START_REF] Donoho | Statistical estimation and optimal recovery[END_REF].

The notion of asymptotic optimality is usually associated with convergence rate of the minimax risk (see for example [START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF], [START_REF] Stone | Optimal global rates of convergence for nonparametric regression[END_REF]). An important question in the development of nonparametric estimation is to study the exact asymptotic behaviour of minimax risk and to find an efficient estimator, i.e. an estimator which achieves this asymptotics.

The optimal constant and efficient estimators for L 2 -losses was obtained by [START_REF] Nussbaum | Spline smothing in regression models and asymptotic efficiency in L 2[END_REF], [START_REF] Golubev | Asymptotic minimax estimation of regression function in additive model[END_REF], [START_REF] Golubev | Adaptive spline estimates in a nonparametric regression model[END_REF], for sup-norm losses by [START_REF] Korostelev | Exact asymptotically minimax estimator for nonparametric regression in uniform norm[END_REF]. For the absolute error loss and the estimation of regression function S at a fixed point, the optimal constant and efficient estimators was found by [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF].

A non-asymptotic approach for nonparametric estimation problem in the model (1.1) with σ j ≡ σ was studied in a few papers. A non-asymptotic upper bound for quadratic risk over thresholding estimators is given by [START_REF] Kalifa | Thresholding estimators for linear inverse problems and deconvolutions[END_REF]. [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Massart | A non-asymptotic theory for model selection[END_REF] have constructed an adaptive procedure of model selection based on least squares estimators and have obtained a non-asymptotic upper bound for quadratic risk which is best in the principal term for given class of estimators. This type of upper bounds is called the Oracle inequalities.

It should be noted that to obtain efficient estimators (in asymptotic setup), in contrast with least squares estimators [START_REF] Nussbaum | Spline smothing in regression models and asymptotic efficiency in L 2[END_REF] and later [START_REF] Golubev | Adaptive spline estimates in a nonparametric regression model[END_REF] have used some special class of weighted least squares estimators, where the weights are depending on regularity of unknown function and was chosen specially to obtain the optimal constant in quadratic risk (so-called the Pinsker constant).

By reason of asymptotic efficiency, we make use of Golubev-Nussbaum estimators to obtain non-asymptotic upper bound for quadratic risk in this paper. The main distinction of our approach from that of Barron-Birge-Massart is the following one. We choose a family of estimators such that the every estimator is optimal when the regularity of unknown function is fixed and a basis is given. In contrast with our approach, in the selection model theory one chooses a family of basis (models) for which a least squares estimator will be constructed.

In this paper an adaptive procedure is proposed which is based on weighted least squares estimators and the non-asymptotic upper bound for the quadratic risk is obtained which is best in the principal term for the chosen family of estimators. Moreover, at the same time the asymptotic properties of the proposed procedure are studied as n → ∞. It turns out that this procedure is asymptotically efficient, that is the asymptotic quadratic risk coinsides with the lower bound for all estimators, i.e. with the Pinsker constant.

The paper is organized as follows. In the next section we formulate the problem and give main results. In section 3 we construct an adaptive estimation procedure based on Nussbaum's estimators and we obtain a nonasymptotic upper bound for the quadratic risk of this procedure. In section 4 we prove the sharp asymptotic upper bound for the quadratic risk of this estimator. In section 5 the sharp asymptotic lower bound for the minimax risk is obtained. An appendix contains some technical results.

Problems and Results

First we consider the model (1.1) in which the sequence (ξ j )

1≤j≤n is i.i.d. with E ξ 1 = 0 , E ξ 2 1 = 1 and E ξ 4 1 = ξ * < ∞ . (2.1)
We introduce the Sobolev class W q r as

W q r = {S ∈ C q-1 [0, 1] : q j=0 S (j) 2 ≤ r} , (2.2) 
where S (j) is the j-th derivative of S, r is some positive constant, q ≥ 1 is an integer,

S 2 = 1 0 S 2 (x)dx .
For any estimate Ŝn of S, based on observations (y j ) 1≤j≤n , we use the following quadratic risk

R n ( Ŝn , S) = E S Ŝn -S 2 n , (2.3) 
where

S 2 n = 1 n n j=1 S 2 (x j ) .
In the next section we construct an adaptive procedure (see below (3.8)) for which we obtain a non-asymptotic upper bound for the quadratic risk. To construct this procedure, we make use of the estimator family introduced by [START_REF] Nussbaum | Spline smothing in regression models and asymptotic efficiency in L 2[END_REF], see below (3.4)- (3.5), and the approach proposed by [START_REF] Golubev | Adaptive spline estimates in a nonparametric regression model[END_REF] for the homoscedastic case, i.e. σ l ≡ σ. The key idea in the construction of this procedure is the following one. We replace the unknown variance σ 2 in the Golubev-Nussbaum estimation procedure by some estimator for n -1 n j=1 σ 2 j . For this procedure we obtain the nonasymptotic upper bound for the risk (2.3) which is best for the choosen family of estimators (see Theorem 3.3). This type of upper bound is called Oracle inequality.

To study asymptotic properties, we need to impose some additional conditions on the sequence (σ j ) in (1.1).

H 1 ) σ j = g(x j , S) for some unknown function g :

[0, 1] × L 1 [0, 1] → R + ,
which is square integrable with respect to x such that

lim n→∞ sup S∈W q r 1 n n j=1 g 2 (x j , S) -ς(S) = 0 , (2.4) 
where ς(S) := 1 0 g 2 (x, S)dx. Moreover there exist some reals 0 < g * ≤ g * < ∞, for which

g * ≤ inf 0≤x≤1 inf S∈W r q g(x, S) ≤ sup 0≤x≤1 sup S∈W r q g(x, S) ≤ g * .
(2.5)

H 2 ) The function g(x, S) is differentiable in the Frechet sense with respect to S in L 1 [0, 1] uniformly over 0 ≤ x ≤ 1, i.e. for any S, S 0 from

L 1 [0, 1] g(x, S) = g(x, S 0 ) + L x,S 0 (S -S 0 ) + Υ(x, S 0 , S) ,
where the linear operator L x,S 0 (the Frechet derivative) is bounded uniformly over 0 ≤ x ≤ 1 in L 1 [0, 1], i.e. for any S 0 from L 1 [0, 1] there exists some positive constant C * = C * (S 0 ) such that

sup 0≤x≤1 sup S∈L 1 [0,1] , S =0 | L x,S 0 (S) | S 1 ≤ C * (2.6)
and the residual term Υ(x, S 0 , S) satisfies the following property

lim S 1 →0 sup 0≤x≤1 |Υ(x, S 0 , S)| S 1 = 0 ,
where

S 1 = 1 0 |S(x)| dx. H 3 ) The function g 0 (x) = g(x, 0) is continuous on the interval [0, 1].
Now we formulate the main asymptotic results.We set

γ q (S) = C * q r 1/(2q+1) (ς(S)) 2q/(2q+1) , (2.7) 
with

C * q = (2q + 1) 1/(2q+1) q π (q + 1) 2q/(2q+1)
.

It is well known (see, for example [START_REF] Nussbaum | Spline smothing in regression models and asymptotic efficiency in L 2[END_REF]) that the optimal rate is ϕ n = n 2q/(2q+1) in the case when S ∈ W q r . Theorem 2.1. Assume that in the model (1.1)-(2.1) the sequence (σ j ) fulfils the condition H 1 ). Then the estimator S * n defined by (3.8) with ε = 1/ ln(n + 1) satisfies the inequality

lim sup n→∞ ϕ n sup S∈W q r 1 γ q (S) R n (S * n , S) ≤ 1 (2.8)
Moreover we will show that the estimator S * n is efficient in the following sense.

Theorem 2.2. Assume that in the model (1.1) the sequence (ξ j ) is i.i.d. ∼ N (0, 1) and the sequence (σ j ) fulfils the conditions H 1 )-H 3 ). Then the risk (2.3) admets the following asymptotic lower bound

lim inf n→∞ inf Ŝn ϕ n sup S∈W q r 1 γ q (S)
R n ( Ŝn , S) ≥ 1 .

(2.9)

Remark 2.1. Inequalities (2.8) and (2.9) imply that γ q (S) is the so-called Pinsker's constant, i.e. the sharp asymptotic lower bound for the quadratic risk.

3 Non-asymptotic estimation

In this section we construct the estimation procedure for the model (1.1)-(2.1). We use the trigonometric basis {φ j , j ≥ 1} in L 2 [0, 1] with

φ 1 (x) = 1, φ j (x) = √ 2T r j (2π[j/2]x) , j ≥ 2 , (3.1) 
where [a] is the integer part of a real a, T r j (x) = cos x for even j , sin x for odd j .

It is easy to see that for this basis

(φ i , φ j ) n = 1 n n l=1 φ i (x l ) φ j (x l ) = 0 for i = j and 1 ≤ i, j ≤ n. Moreover, φ j 2 n = 1 for j ≤ n -1 and φ n 2 n = ν n with ν n = 2 for even n , 1 for odd n . (3.2) 
Now by making use of the discrete Fourier transformation we reduce the model (1.1) to the model

θj,n = θ j,n + 1 √ n ξ j,n (3.3) 
with θj,n = (y, φ j ) n , θ j,n = (S,

φ j ) n , ξ j,n = 1 √ n n l=1 σ l ξ l φ j (x l ) .
For any given ε > 0, let us define a 2-dimensional parameter τ = (β, t) with values into the set A ε = {1, . . . , β * } × {t 1 , . . . , t m }, where

β * = [1/ √ ε], t i = iε for 1 ≤ i ≤ m = [1/ε 2 ]. Notice that the number of elements in the set A ε is υ ε = card(A ε ) = β * • [1/ε 2 ].
For any τ ∈ A ε we set

ρ τ (j) = 1 for 1 ≤ j ≤ k 0 (τ ) Ψ β (j w -1 τ ) for j > k 0 (τ ) , (3.4) 
where

Ψ β (z) = (1 -z β )1 (|z|≤1) , w τ = n 1/(2β+1) c τ , c τ = π -2β/(2β+1) (t/ι β ) 1/(2β+1) , ι β = β (β + 1)(2β + 1) , k 0 (τ ) = w τ / ln(n + 2) .
For every τ ∈ A ε , we define the following estimator

Ŝτ (x) = n j=1 ρ τ (j) 1 φ j 2 n θj,n φ j (x) . (3.5) 
In the sequel we use the following weighted Fourier transformation of S:

S τ (x) = n j=1 ρ τ (j) 1 φ j 2 n θ j,n φ j (x) .
To estimate the unknown function S by estimators (3.4), we should find τ from A ε which minimizes the loss function

Ŝτ -S 2 n = n j=1 ρ 2 τ (j) θ2 j,n φ j 2 n -2 n j=1 ρ τ (j) θj,n θ j,n φ j 2 n + n j=1 θ 2 j,n φ j 2 n (3.6)
or equivalently, minimizes the function

n j=1 ρ 2 τ (j) θ2 j,n φ j 2 n -2 n j=1 ρ τ (j) θj,n θ j,n φ j 2 n .
Since the coefficients θ j,n are unknown, we will find τ which minimizes the function

J n (τ ) = n j=1 ρ 2 τ (j) θ2 j,n φ j 2 n -2 n j=1 ρ τ (j) θ2 j,n -ςn /n φ j 2 n ,
where ςn is some estimator of

ς n = 1 n n l=1 σ 2 l . (3.7)
The estimator ςn will be constructed below. Denote by τ = ( β, t) the argmin of the function J n (τ ), i.e.

J n (τ ) = min τ ∈Aε J n (τ ) .
We denote

S * n,ε = Ŝτ . (3.8)
In this section we study this estimator in the non-asymptotic setup.

Theorem 3.1. Assume that in the model (1.1)-(2.1) the function S belongs to ∪ β≥1 , 0<r≤r * W β r , where r * is an unknown constant. Then, for any n ≥ 1 and ε > 0, the estimate S * n,ε satisfies the following inequality

E S S * n,ε -S 2 n ≤ 1 1 -4 σ * inf τ ∈Aε E S Ŝτ -S 2 n + 2 c * υ ε B 1 ( ) n 2/3 E S |ς n -ς n | + B n ( , ε) , (3.9) 
where 0 < < 1/4σ * is an arbitrary constant and

B n ( , ε) = 2 2(ξ * -1) σ * c * B 1 ( ) n 7/6 υ ε + 7 σ * 2 β * B 1 ( ) + B 2 ( ) n υ ε , B 1 ( ) = 2 1 -2 σ * ν n 1 -4 σ * ν n , B 2 ( ) = 2 (1 + ξ * )(1 -2 σ * ν n ) (1 -4 σ * ν n ) , (3.10) 
σ * = max 1≤l≤n σ 2 l , c * = sup τ ∈Aε c τ .
To estimate ς n , we make use of the following estimator

ςn = n j=l n +1 θ2 j,n φ j 2 n , n ≥ 3 , (3.11) 
with

l n = [n 1/3 + 1]
. This estimator satisfies the following inequality.

Proposition 3.2. sup β≥1 ,r≤r * sup S∈ W β r E S |ς n -ς n | ≤ 1 √ n T * n ,
where

T * n = 2(ξ * -1)ν n σ * + 2r * + σ * n 1/6 + 2 √ 2r * σ * ν n n 1/3 + 5σ * √ n .
The proof of this proposition is given in Appendix. Theorem 3.1 and Proposition 3.2 imply immediately the following result.

Theorem 3.3. Assume that in the model (1.1)-(2.1) the function S belongs to ∪ β≥1 , 0<r≤r * W β r , where r * is an unknown constant. Then, for any n ≥ 1 and ε > 0, the estimate S * n,ε satisfies the following inequality

E S S * n,ε -S 2 n ≤ 1 1 -4 σ * inf τ ∈Aε E S Ŝτ -S 2 n + D n ( , ε) , (3.12) 
where 

D n ( , ε) = 2 c * υ ε B 1 ( ) n 7/6 T * n + B n ( , ε) and 0 < < 1/4σ * is an arbitrary constant.
-S 2 n = J n (τ ) + 2 n j=1 ρ τ (j) φ j 2 n ( θ2 j,n - ς n -θj,n θ j,n ) + n j=1 θ 2 j,n φ j 2 n .
Further, from the model (3.3) we obtain that

θ2 j,n -ςn n -θj,n θ j,n = θ j,n ξ j,n √ n + ξj,n n + mj,n n + 1 n (ς n -ςn ) , where ξj,n = ξ 2 j,n -m j,n , m j,n = E ξ 2 j,n = 1 n n l=1 σ 2 l φ 2 j (x l ) , mj,n = m j,n -ς n = 1 n n l=1 σ 2 l φ j (x l ) , φ j (x l ) = φ 2 j (x l ) -1 . (3.13) Therefore, for any τ ∈ A ε , Ŝτ -S 2 n = J n (τ ) + 2 √ n n j=1 ρ τ (j) θ j,n φ j 2 n ξ j,n + 2N n (τ ) + n j=1 θ 2 j,n φ j 2 n , (3.14) 
where

N n (τ ) = 3 i=1 N i,n (τ ) with N 1,n (τ ) = n -1 n j=1 ρ τ (j) φ j 2 n ξj,n , N 2,n (τ ) = n -1 n j=1 ρ τ (j) φ j 2 n mj,n , N 3,n (τ ) = n -1 n j=1 ρ τ (j) φ j 2 n (ς n -ςn ) .
Let τ 1 be some fixed value of parameter from A ε . Then by (3.14) we find

Ŝτ -S 2 n -Ŝτ 1 -S 2 n = J n (τ ) -J n (τ 1 ) + 2Z 1,n (τ ) + 2 V n (τ ) , (3.15) 
where

Z 1,n (τ ) = 1 √ n n j=1 ρ τ (j) -ρ τ 1 (j) φ j 2 n θ j,n ξ j,n , V n (τ ) = N n (τ ) -N n (τ 1 ) . Lemma 6.4 implies that E Z 4 1,n (τ ) ≤ ξ * d 4 1,τ (3.16) 
where

d 2 1,τ = E Z 2 1,n (τ ) ≤ σ * ν n n n j=1 (ρ τ (j) -ρ τ 1 (j)) 2 φ j 4 n θ 2 j,n ≤ σ * ν n n S τ -S τ 1 2 n , ν n is defined by (3.2). Taking into account in (3.15) that J n (τ ) -J n (τ 1 ) ≤ 0, we obtain Ŝτ -S 2 n -Ŝτ 1 -S 2 n ≤ 2 Z 1,n (τ ) + 2 V * n ,
where

V * n = max τ ∈Aε |V n (τ )|. We set, for x > 0, > 0 and fixed τ ∈ A ε , Z1,n (τ, x) = 2 Z 1,n (τ ) n ( n) 2 d 2 1,τ + x and Γ 1,n (x) = sup τ | Z1,n (τ, x)| ≤ 1 . Notice now that ( n) 2 d 2 1,τ + x ≥ 2d 1,τ √ x n.
Therefore by Chebyshev's inequality and (3.16), we obtain, for any x > 0 and τ ∈ A ε ,

P | Z1,n (τ, x)| > 1 ≤ P |Z 1,n (τ )| > √ x d 1,τ ≤ e * (x)
,

where e * (x) = 1 {x≤1} + ξ * x -2 1 {x>1} . Hence P Γ c 1,n (x) ≤ τ =τ 1 P |Z 1,n (τ, x)| > √ x d 1,τ ≤ υ ε e * (x) . (3.17) Thus on the set Γ 1,n (x) Ŝτ -S 2 n ≤ Ŝτ 1 -S 2 n + nd 2 1,τ + x n + 2V * n ≤ Ŝτ 1 -S 2 n + σ * ν n S τ -S τ 1 2 n + x n + 2 V * n . (3.18) 
Let us estimate now S τ -S τ 1 2 n . We have

S τ -S τ 1 2 n = Ŝτ -Ŝτ 1 2 n + ( S τ -S τ 1 2 n -Ŝτ -Ŝτ 1 2 n ) = Ŝτ -Ŝτ 1 2 n + n j=1 (ρ τ (j) -ρ τ 1 (j)) 2 φ j 2 n (θ 2 j,n -θ2 j,n ) ≤ Ŝτ -Ŝτ 1 2 n -2 Z 2,n (τ ) ,
where

Z 2,n (τ ) = 1 √ n n j=1 (ρ τ (j) -ρ τ 1 (j)) 2 φ j 2 n θ j,n ξ j,n with d 2 2,τ = E Z 2 2,n (τ ) ≤ σ * ν n n n j=1 (ρ τ (j) -ρ τ 1 (j)) 4 φ j 4 n θ 2 j,n ≤ 2σ * ν n n S τ -S τ 1 2 n .
By the same way as before, for x > 0, we set

Γ 2,n (x) = {sup τ | Z2,n (τ )| ≤ 1} , where Z2,n (τ, x) = 2Z 2,n (τ ) n ( n) 2 d 2 2,τ + x .
Similarly to (3.17), one shows that

P(Γ c 2,n (x)) ≤ υ ε e * (x) .
On the set Γ 2,n (x) we obtain that

S τ -S τ 1 2 n ≤ Ŝτ -Ŝτ 1 2 n + nd 2 2,τ + x n ≤ Ŝτ -Ŝτ 1 2 n + 2 σ * ν n S τ -S τ 1 2 n + x n .
Hence

S τ -S τ 1 2 n ≤ v * ( ) Ŝτ -Ŝτ 1 2 n + v * ( ) n x , (3.19) 
where

v * ( ) = (1 -2 σ * ν n ) -1 . Thus on the set Γ n (x) = Γ 1,n (x) ∩ Γ 2,n (x), in view of (3.18),(3.19), we get Ŝτ -S 2 n ≤ Ŝτ 1 -S 2 n + σ * ν n v * ( ) Ŝτ -Ŝτ 1 2 n + 1 + σ * ν n v * ( ) n x + 2 V * n .
Estimating here the term Ŝτ -Ŝτ

1 2 n by 2 Ŝτ -S 2 n + 2 S -Ŝτ 1 2 n yields the inequality Ŝτ -S 2 n ≤ 1 1 -4 σ * ν n Ŝτ 1 -S 2 n + 2 1 -2 σ * ν n 1 -4 σ * ν n V * n + 1 -σ * ν n (1 -4 σ * ν n ) n x .
Applying Lemma 6.5 with M (x) = 2e * (x)υ ε gives

E S Ŝτ -S 2 n ≤ 1 1 -4 σ * ν n E S Ŝτ -S 2 n + B 1 ( )E S V * n + υ ε B 2 ( ) 1 n , (3.20) 
where B 1 ( ) and B 2 ( ) are defined by (3.10). In Appendix 6.2 we show that

E S V * n ≤ υ ε 2 2(ξ * -1)σ * c * n 7/6 + 7σ * 2 β * n + 2 c * n 2/3 E S |ς n -ς n | . (3.21)
Therefore the inequality (3.9) follows immediately from (3.20) and (3.21).

Asymptotic upper bound

In this section we prove Theorem 2.1.

We start with the estimation problem (1.1) under the condition that S ∈ W q r with the known parameters q, r and ς(S) defined in (2.4). In this case we use the estimator Sn = Ŝτε defined in (3.5) with τ ε = (q, r ε ) from A ε ,

r ε = inf{i ≥ 1 : iε ≥ r/ς(S)} and ε = ε n = 1/ ln(n + 1). Theorem 4.1. Under the condition H 1 ) lim sup n→∞ ϕ n sup S∈W q r 1 γ q (S) R( Sn , S) ≤ 1 , (4.1) 
where ϕ n = n 2q/(2q+1) .

Proof. First, note that from (3.5), taking into account that φ j n ≥ 1, we obtain that

E S Sn -S 2 n ≤ n j=1 (1 -ρj ) 2 θ 2 j,n φ j 2 n + 1 n n j=1 ρ2 j m j,n ,
where ρj = ρ τε (j) and m j,n is defined in (3.13). Moreover, puting k0 = [k 0 (τ ε )] and k1 = [ω τε • ln(n + 1)], we estimate the risk R( Sn , S) as

R( Sn , S) ≤ k1 -1 j= k0 (1 -ρj ) 2 θ 2 j,n + ς n 1 n n j=1 ρ2 j + ∆ 1 (n) + ∆ 2 (n) with ∆ 1 (n) = n j= k1 θ 2 j,n φ j 2 n and ∆ 2 (n) = 1 n n j=1 ρ2 j mj,n = 1 n 2 n d=1 σ 2 d n j=1 ρ2 j φ j (x d ) .
The last inequality implies that, for any fixed 0 < δ < 1,

R( Sn , S) ≤ (1 + δ) k1 -1 j= k0 (1 -ρj ) 2 θ 2 j + ς n 1 n n j=1 ρ2 j + ∆ 1 (n) + ∆ 2 (n) + (1 + 1/δ) ∆ 3 (n) , where ∆ 3 (n) = k1 -1 j= k0 (θ j,n -θ j ) 2 , θ j = 1 0 S(x) φ j (x) dx . (4.2) 
Lemmas 6.1-6.3 imply immediately that

lim n→∞ sup S∈W q r ϕ n 3 l=1 |∆ l (n)| = 0 .
Therefore denoting ϕ n ∆ l (n) as o(1) yields

ϕ n R( Sn , S) ≤ (1 + δ)ϕ n k1 -1 j= k0 (1 -ρj ) 2 θ 2 j + ς n n -1/(2q+1) n j=1 ρ2 j + o(1) .
Further, for any S ∈ W q r denoting a j = q i=0 (2π[j/2]) 2i , we have that

j≥1 a j θ 2 j ≤ r . (4.3) 
Therefore, in view of (3.4)

lim sup n→∞ sup j≥ k0 ϕ n (1 -ρj ) 2 a j ≤ 1 π 2q c 2q 0 ,
where c 0 = c τ 0 with τ 0 = (q, r/ς(S)). From here, by taking into account the conditions (2.4)-(2.5), we obtain, for sufficiently large n, the following upper bound for the quadratic risk

ϕ n R( Sn , S) ≤ (1 + 2δ) r π 2q c 2q 0 + ς(S) c 0 1 0 Ψ 2 q (z)dz + o(1) = (1 + 2δ) γ q (S) + o(1) .
This implies the inequality (4.1). Hence Theorem 4.1. Now Theorem 3.1 and Theorem 4.1 imply immediately Theorem 2.1.

Asymptotic lower bound

In this section we prove Theorem 2.2. For this we need the next auxiliary result.

Lemma 5.1. For any 0 < ε < 1 and any estimate Ŝn of S,

Ŝn -S 2 n ≥ (1 -ε) T ( Ŝ) n -S 2 -(ε -1 -1) r/n 2 ,
where

T ( Ŝ) n (x) = n k=1 Ŝn (x k )1 (x k-1 ,x k ] (x).
Proof of this Lemma is given in Appendix 6.5.

From this Lemma we deduce that to prove (2.9), it suffices to show that lim inf

n→∞ inf Ŝn ϕ n R 0 ( Ŝn ) ≥ 1 , (6.1) 
where

R 0 ( Ŝn ) = sup S∈W q r E S Ŝn -S 2
γ q (S) .

For η > 0 and x ∈ R, denote

I η (x) = η -1 R 1 (|u|≤1-η) G u -x η du , where 1 A is the indicator of a set A, the kernel G ∈ C ∞ (R) is such that G(-u) = G(u) for |u| ≤ 1 , G(u) = 0 for |u| ≥ 1 , 1 -1 G(u) du = 1 .
It is easy to see that the function I η (x) possesses the properties : I η is symmetric, 

I η (x) =    1 for |x| ≤ 1 -2η ; 0 for |x| ≥ 1 ; and R f (x)I η (x) dx → 1 -1 f (x) dx , η → 0 , R f (x)I 2 η (x) dx → 1 -1 f (x) dx , η → 0 , (6.2 
S z (x) = M m=1 N j=1 z m,j D m,j (x) , (6.4) 
where

D m,j (x) = e j (v m (x)) I η (v m (x)) , v m (x) = (x -a m )/h , a m = 2mh , h = L n (n) -1/(2q+1) , L n = ln(n + 1) .
To construct a priori distribution on the family of arrays, we choose the following random array

ϑ = {ϑ m,j , 1 ≤ m ≤ M, 1 ≤ j ≤ N } with ϑ m,j = δ m,j ξm,j , δ m,j = g 0 (a m )κ j √ nh , (6.5) 
where

κ 2 j = N j q -1 + , N = [L n N * ε ], g 0 (•) = g(•, 0) , N * ε = 2 rε (q + 1)(2q + 1) qπ 2q 1/(2q+1) , rε = (1 -ε) r ς(0) , (6.6) 
ε is a small positive real, 0 < ε < 1, ς(0) = 1 0 g 2 (x, 0)dx, ( ξm,j ) are i.i.d. bounded random variables with a density ρ d (x) such that

E ξm,j = 0, E ξ2 m,j = 1, | ξm,j | ≤ d , i d = d -d ( ρd (x)) 2 ρ d (x) dx → 1 as d → ∞ . (6.7)
The construction of a such density ρ d is given in Appendix 6.6.

For any estimator Ŝn , we denote by Ŝ0 n its projection on W q r , i.e. Ŝ0 n = Pr W q r ( Ŝn ). Since W q r is convex set we get that Ŝn -S 2 ≥ Ŝ0 n -S 2 . Therefore, for sufficiently large n,

R 0 ( Ŝn ) = sup S∈W q r E S Ŝn -S 2 γ q (S) ≥ sup S∈W q r E S Ŝ0 n -S 2 γ q (S) ≥ {z:Sz∈W q r } E z Ŝn -S z 2 γ q (S z ) µ ϑ (dz) ≥ 1 γ q (ε) {z:Sz∈W q r } E z Ŝ0 n -S z 2 µ ϑ (dz) ,
where γ * q (ε) = sup S ≤ε γ q (S) (the last inequality is true since S ϑ → 0 as n → ∞). Here we denote by E z the expectation with respect to the distribution of the process (1.1) with S = S z and the measure µ ϑ denotes the distribution of ϑ in R ι (ι = M N ) which is a priori distribution for the Bayes risk. The last inequality implies that

R 0 ( Ŝ0 n ) ≥ 1 γ * q (ε) R0 ( Ŝ0 n ) -2 1 γ * q (ε) ω n , (6.8) 
where

R0 ( Ŝ0 n ) = E z Ŝ0 n -S z 2 µ ϑ (dz) , ω n = {z:Sz / ∈W q r } (r + S z 2 ) µ ϑ (dz) .
To reduce the nonparametric problem to a parametric one, we replace the functions Ŝ0 n and S by their Fourier series with respect to the basis (ẽ m,i ), where

ẽm,i (x) = 1 √ h e i (v m (x)) I(v m (x)) , 1 ≤ m ≤ M , 1 ≤ i ≤ N and I(x) = 1 (|x|≤1) . We estimate the term Ŝ0 n -S z 2 as Ŝ0 n -S z 2 ≥ M m=1 N j=1 ( λm,j -λ m,j (z)) 2 .
Here λm,j and λ m,j mean the Fourier coefficients for the functions Ŝ0 n and S, respectively, i.e. λm,j = Due to the definition of the function λ m,j (z) we obtain that

λ m,j (z) = M l=1 N i=1 z l,i 1 0 D l,i (x)ẽ m,j (x) dx = M l=1 N i=1 z l,i √ h 1 0 e i (v l (x)) e j (v m (x)) I η (v l (x))I(v m (x)) dx = √ h N i=1 z m,i 1 -1 e i (u)e j (u)I η (u) du . Therefore Λ m,j = ∂λ m,j ∂z m,j = √ h 1 -1 e 2 j (v)I η (v) dv = √ h (e 2 j , I η ) .
By the van Trees inequality (see Appendix 6.7) one gets

R0 (S 0 n ) ≥ M m=1 N j=1 Λ 2 m,j A m,j + B m,j + I m,j = M m=1 N j=1 h(e 2 j , I η ) 2 A m,j + B m,j + (δ m,j ) -2 i d , (6.9) 
where I m,j is the Fisher information relative the random variable ξ m,j ,

A m,j = n k=1 R ι 1 g 2 (x k , S z ) ∂S z (x k ) ∂z m,j 2 µ ϑ (dz) , B m,j = n k=1 R ι Lm,j (x k , S z ) g(x k , S z ) 2 µ ϑ (dz) , Lm,j (x, S z ) = L x,Sz ∂S z ∂z m,j .
First note that from (6.4) we obtain that

A m,j = n k=1 D 2 m,j (x k ) R ι 1 g 2 (x k , S z ) µ ϑ (dz) = (1 + o(1)) n k=1 1 g 2 0 (x k ) D 2 m,j (x k ) = n h (1 + o(1)) 1 g 2 0 (a m ) 1 -1 e 2 j (x) I 2 η (x)dx = n h (1 + o(1)) 1 g 2 0 (a m ) (e 2 j , I 2 η ) .
Now we study the behaviour of B m,j . Due to the inequality (2.6) and the definition (6.4), we obtain that

| Lm,j (x, S z ) | ≤ C * ∂S z ∂z m,j = C * D m,j ≤ C * h .
Therefore by the condition H 3 ) we get

|B m,j | ≤ C * 1 g 2 * n h 2 .
Taking into account this inequality, the inequality (6.9) and the definition of δ m,j in (6.5), we evaluate the Bayes risk as

1 γ * q (ε) R0 ( Ŝ0 n ) ≥ 1 n γ * q (ε) M m=1 g 2 0 (a m ) N j=1 α j (η) (1 + o(1)) β j (η) + (κ j ) -2 i d ≥ (1 + o(1)) 2nh γ * q (ε) ς(0) N j=1 α j (η) (1 + o(1)) β j (η) + (κ j ) -2 i d = (1 + o(1)) ς(0) 2 γ * q (ε) n 2q/(2q+1) 1 L n N j=1 α j (η) (1 + o(1)) β j (η) + (κ j ) -2 i d ,
where we denote α j (η) = (e 2 j , I η ) 2 and β j (η) = (e 2 j , I 2 η ). In Appendix 6.9 we show that lim n→∞ ϕ n ω n = 0 .

(6.10)

This result and the previous inequality imply lim inf

n→∞ inf Ŝn ϕ n R 0 ( Ŝn ) ≥ ς(0) N * ε 2 γ * q (ε) Ω * (η, d) lim inf n→∞ 1 N N j=1 κ 2 j κ 2 j + 1 = ς(0) N * ε 2 γ * q (ε) Ω * (η, d) lim n→∞ 1 N N j=1 (1 -(j/N ) q ) = ς(0) N * ε 2 γ * q (ε) q q + 1 Ω * (η, d) = (1 -ε) 1/(2q+1) γ 0 q γ * q (ε) Ω * (η, d) , (6.11) 
where

γ 0 q = γ q (0), Ω * (η, d) = lim inf N →∞ Ω N (η, d)
and The condition H 1 ) implies γ * q (ε) → γ 0 q as ε → 0. Therefore limiting ε → 0 , η → 0 , d → ∞ in (6.11) yields lim inf

Ω N (η, d) = N j=1 (α j (η) κ 2 j ) (β j (η) κ 2 j + i d ) -1 N j=1 κ 2 j (κ 2 j + 1) -1 . ( 6 
n→∞ inf Ŝn ϕ n R0 ( Ŝn ) ≥ 1 .
Thus (6.8) implies the inequality (6.3) from which it follows (6.1) through Lemma 5.1.

Appendix

6.1

Properties of trigonometric basis Lemma 6.1. Let θ j ,θ j,n be coefficients from (3.3) and (4.2), respectively. Then for 1 ≤ j ≤ n and n ≥ 2 sup

S∈W q r |θ j,n -θ j | ≤ 2π √ r j n . (A.1)
Proof. Indeed, we have

|θ j,n -θ j | = n l=1 x l x l-1 (S(x l )φ j (x l ) -S(x)φ j (x)) dx ≤ 1 n n l=1 x l x l-1 | Ṡ(z)φ j (z)| + |S(z) φj (z)| dz = 1 n 1 0 | Ṡ(z)| |φ j (z)| + |S(z)| | φj (z)| dz .
By making use of the Bounyakovskii-Cauchy-Schwartz inequality we get

|θ j,n -θ j | ≤ 1 n Ṡ φ + φ S ≤ 1 n Ṡ + π j S .
The definition of class W q r in (2.2) implies (A.1). Hence Lemma 6.1.

Lemma 6.2. For any m ≥ 0, sup

N sup x∈[0,1] N -m N l=2 l m (φ 2 l (x) -1) ≤ 2 m . (A.2)
Proof. By the properties of the trigonometric functions we get

N l=2 l m (φ 2 l (x) -1) = 1≤l≤N/2 (2l) m [2 cos 2 (2πlx) -1] + 1≤l≤(N -1)/2 (2l + 1) m (2 sin 2 (2πlx) -1) = 1≤l≤N/2 (2l) m cos(4πlx) - 1≤l≤(N -1)/2 (2l + 1) m cos(4πlx) .
This yields

N l=2 l m (φ 2 l (x) -1) ≤ 1≤l≤(N -1)/2 ((2l + 1) m -(2l) m ) cos(4πlx) + N m ≤ 1≤l≤(N -1)/2 |(2l + 1) m -(2l) m | + N m = 1≤l≤(N -1)/2 m-1 j=0 m j (2l) j + N m .
This implies (A.2).

Lemma 6.3. For any function S ∈ W q r , sup

n≥1 sup 1≤m≤n-1 m 2q n j=m+1 θ 2 j,n φ j 2 n ≤ 2r π 2(q-1) , (A.3)
where ν n is defined by (3.2).

Proof. First, note that any function S from W q r we can be represented by its Fourier series, i.e. S = ∞ j=1 θ j φ j with the coefficients defined by (4.2). By denoting the residual term for S as

∆ m (x) = S - m j=1 θ j φ j = ∞ j=m+1 θ j φ j (x) , we obtain that n j=m+1 θ 2 j,n φ j 2 n = inf α 1 ,...,αm S - m j=1 α j φ j 2 n ≤ ∆ m 2 n . Moreover ∆ m 2 n = 1 n n k=1 ∆ 2 m (x k ) = n k=1 x k x k-1 ∆ 2 m (x k )dx ≤ 2 1 0 ∆ 2 m (x)dx + 2 n k=1 x k x k-1 (∆ m (x k ) -∆ m (x)) 2 dx .
The last term in this inequality we estimate as

(∆ m (x k ) -∆ m (x)) 2 = x k x ∆m (z)dz 2 ≤ 1 n x k x k-1 ( ∆m (z)) 2 dz . Therefore ∆ m 2 n ≤ 2 ∆ m 2 + 2 1 n 2 ∆m 2 = 2 ∞ j=m+1 θ 2 j + 2 1 n 2 ∞ j=m+1 θ 2 j φj 2 .
Taking here into account the inequality (4.3) we obtain (A.3). Hence Lemma 6.3.

Lemma 6.4. Let ξ j,n be defined in (3.3) for the model (1.1)-(2.1). Then, for any real numbers v 1 , . . . , v n ,

E n j=1 v j ξ j,n 4 ≤ ξ * E n j=1 v j ξ j,n 2 2 
,

E n j=1 v j ξ j,n 2 ≤ σ * ν n n j=1 v 2 j , (A.4) 
where σ * = max 1≤j≤n σ 2 j and ν n is defined in (3.2). Proof. By the definition of ξ j,n we obtain that n j=1 v j ξ j,n = n l=1 σ l ṽl ξ l with ṽl = 1 √ n n j=1 v j φ j (x l ). Therefore, this implies immediately the first inequality in (A.4). Moreover

E n j=1 v j ξ j,n 2 = n l=1 σ 2 l ṽ2 l ≤ σ * n l=1 ṽ2 l = σ * n i,j=1 v i v j (φ i , φ j ) n .
The orthogonal properties of the basis (φ j ) and (3.2) imply the second inequality in (A.4). Hence Lemma 6.4.

Proof of (3.21)

Indeed, we have

E S V * n (τ ) ≤ 3 i=1 τ =τ 1 E S |N i,n (τ ) -N i,n (τ 1 )| ≤ υ ε 3 i=1 sup τ ∈Aε E S |N i,n (τ ) -N i,n (τ 1 )| . (A.5)
We start with the first term in the right-hand part. We have

E S |N 1,n (τ ) -N 1,n (τ 1 )| = 1 n E S n j=1 (ρ τ (j) -ρ τ 1 (j)) ξj,n ≤ 1 n n j=1 (ρ τ (j) + ρ τ 1 (j)) (E ξ2 j,n ) 1/2 ,
where ξj,n is defined in (3.13). Moreover,

E ξ2 j,n = E ξ 2 j,n -m j,n 2 = Eξ 4 j,n -m 2 j,n = 1 n 2 n r,s=1 σ 2 r σ 2 s φ 2 j (x r )φ 2 j (x s ) E ξ 2 r ξ 2 s -m 2 j,n = (ξ * -1) 1 n 2 n r=1 σ 4 r φ 4 j (x r ) ≤ 2(ξ * -1)σ 2 * ν n n . (A.6)
Thus, for any fixed τ and τ 1 from A ε ,

E S |N 1,n (τ ) -N 1,n (τ 1 )| ≤ 2(ξ * -1)ν n σ * n √ n (w τ + w τ 1 ) ,
where

w τ = n 1/(2β+1) c τ ≤ c * n 1/3 since β ≥ 1. Therefore sup τ ∈Aε E S |N 1,n (τ ) -N 1,n (τ 1 )| ≤ 2 2(ξ * -1)ν n σ * c * n 7/6 . (A.7)
To estimate the second term in the right-hand part of (A.5), note that

N 2,n (τ ) = 1 n 2 n d=1 σ 2 d n j=1 ρ τ (j)φ j (x d ) - 1 n 2 n d=1 σ 2 d ρ τ (n)(1 - 1 ν n )φ n (x d ) .
Let us show that, for any n ≥ 2,

sup x | n j=1 ρ τ (j)φ j (x)| ≤ 3 • 2 β . (A.8)
Indeed, by definition (3.4), ρ τ (j) = 1 for j ≤ k 0 (τ ). Therefore the inequality (A.8) follows immediately from Lemma 6.2, for n ≤ k 0 (τ ). Let us show (A.8), for n > k 0 (τ ). In this case we can represent the sum in the left-hand part of (A.8) as

n j=1 ρ τ (j)φ j (x) = n j=2 ρ τ (j)φ j (x) = 2≤j≤wτ ∧n φ j (x) - 1 (w τ ) β 2≤j≤wτ ∧n j β φ j (x) + 1 (w τ ) β 2≤j≤k 0 (τ ) j β φ j (x) ,
where a ∧ b = min(a, b). Now it is easy to see that inequality (A.8) follows directly from Lemma 6.2. Therefore by (A.8)

sup τ ∈Aε E |N 2,n (τ ) -N 2,n (τ 1 )| ≤ 6 • 2 β * n 2 n d=1 σ 2 d + 2 n 2 n d=1 σ 2 d (1 - 1 ν n ) ≤ 7 σ * 2 β * n .
For the last addend in (A.5), in view of (3.4), we get

E |N 3,n (τ ) -N 3,n (τ 1 )| ≤ w τ + w τ 1 n E |ς n -ς n | ≤ c * (n 1/(2β+1) + n 1/(2β 1 +1 ) n E |ς n -ς n | ≤ 2 c * n 2/3 E |ς n -ς n | .

Proof of Proposition 3.2

First notice that taking into account (3.13) in (3.11) we obtain that

ςn -ς n = n j=l n +1 1 φ j 2 n θ 2 j,n + 2 √ n n j=l n +1 1 φ j 2 n θ j,n ξ j,n + 1 n n j=l n +1 1 φ j 2 n ξj,n + 1 n n j=l n +1 1 φ j 2 n mj,n - (l n + 1)ν n -1 nν n ς n .
Therefore by applying here (A.6) and Lemma 6.4 we come to the following upper bound

E S |ς n -ς n | ≤ n j=l n +1 1 φ j 2 n θ 2 j,n + 2 √ σ * ν n √ n   n j=l n +1 1 φ j 4 n θ 2 j,n   1/2 + 2(ξ * -1)ν n σ * √ n + (l n + 1)σ * n + 1 n n j=l n +1 1 φ j 2 n mj,n .
Moreover, by Lemma 6.2 we have

n j=l n +1 1 φ j 2 n mj,n = 1 n n d=1 σ 2 d n-1 j=l n +1 φ j (x d ) + 1 ν n mn,n ≤ σ * n d=1 n-1 j=l n +1 φ j (x d ) + 1 ν n | mn,n | ≤ 3 σ * .
This proposition follows now directly from Lemma 6.3

Mean forecast bound

Lemma 6.5. Let α, ξ be two integrable random variables. Let β be a positive real number and {Γ x , x > 0} be a family of events such that, for any x > 0,

P (ξ > α + βx , Γ x ) = 0 .
Assume also that there exists some positive integrable on R + function M (x) for which P(Γ c x ) ≤ M (x), for all x ∈ R + . Then

E ξ ≤ E α + βM * , where M * = ∞ 0 M (x)dx. Proof. Denote η = ξ -α. Then ξ = α + η ≤ α + η + and E ξ ≤ E α + E η + .
Moreover,

E η + = ∞ 0 P(η + > z)dz = β ∞ 0 P(η + > βx)dx = β ∞ 0 (P(η + > βx, Γ x ) + P(η + > βx, Γ c x )) dx = β ∞ 0 (P(η > βx, Γ x ) + P(η + > βx, Γ c x )) dx ≤ β ∞ 0 P(Γ c x )dx ≤ β ∞ 0 M (x)dx ≤ βM * .
6.5 Proof of Lemma 5.1

First notice that, for any S ∈ W q r , one has

Ŝn -S 2 n = 1 n n j=1
( Ŝn (x j ) -S(x j )) 2 = n j=1

x j

x j-1

( Ŝn (x j ) -S(x j )) 2 dx = n j=1

x j

x j-1

( Ŝn (x j ) -S(x)) 2 dx + 2 n j=1

x j

x j-1

( Ŝn (x j ) -S(x))(S(x) -S(x j ))dx

+ n j=1 x j x j-1 (S(x) -S(x j )) 2 dx = T ( Ŝ) n -S 2 + D n + ∆ n ,
where

D n = 2 n j=1
x j

x j-1

( Ŝn (x j ) -S(x))(S(x) -S(x j ))dx ,

∆ n = n j=1
x j

x j-1

(S(x) -S(x j )) 2 dx .

For any 0 < ε < 1, by making use of the elementary inequality 2ab ≤ εa 2 + ε -1 b 2 , one gets

D n ≤ ε T ( Ŝ) n -S 2 + ε -1 ∆ n .
Moreover, for any S ∈ W q r with q ≥ 1, by the Bounyakovskii-Cauchy-Schwartz inequality we obtain that

∆ n = n j=1 x j x j-1 x j x Ṡ(t)dt 2 dx ≤ 1 n n j=1 x j x j-1 ( Ṡ(t)) 2 dt = 1 n 2 Ṡ 2 ≤ r n 2 .
Hence Lemma 5.1.

Construction of the density ρ d

We set

ρ d (t) = 1 ς d f d t ς d , ς 2 d = d -d z 2 f d (z)dz -1 , (A.9)
where f d is a truncated Gaussian density which is defined by the following way. First we need to choose the smooth indicator function. We choose this function for d ≥ 3 as

Λ d (t) = R 1 (|z|≤d-2) G(z -t)dz ,
where

G(t) = G * exp{-1/(1 -t 2 )} I(t) , G * = 1 -1 exp{-1/(1 -t 2 )} dt -1
and I(t) = 1 {|t|≤1} . Notice that this smoothing density G is infinitely times differentiable. Now we set

f d (t) = f (t)Λ d (t) f * d , f (t) = e -t 2 /2 √ 2π and f * d = R f (t)Λ d (t)dt .
The properties of the density ρ d are given in the following Lemma Lemma 6.6. The density ρ d satisfies the following properties:

1. For any d ≥ 3, R tρ d (t)dt = 0, R t 2 ρ d (t)dt = 1 .
2. The Ficher information i d for ρ d goes to 1 as d → ∞.

Proof. Notice that the first part of this Lemma follows immediately from the definition (A.9). Let us shows the second one. Due to properties of Λ d ,

f d (z) = f (z)1 (|z|≤d-3) + f (z)Λ d (z)1 (|z|≥d-3) .
Therefore

f * d = R f (z)1 (|z|≤d-3) dz + R f (z)Λ d (z)1 (|z|≥d-3) dz → R f (z)dz = 1 , since sup x∈R |Λ d (x)| ≤ 1. Similarly ς 2 d → 1 as d → ∞.
Consider the Fisher information i d . We have

i d = d -d ( ρd ) 2 (z) ρ d (z) dz = 1 f * d ς 2 d d/ς d -d/ς d ( ḟd (u)) 2 f d (u) du = 1 f * d ς 2 d d/ς d -d/ς d ( ḟ (u)) 2 f (u) Λ d (u) du + 2 1 f * d ς 2 d d/ς d -d/ς d ḟ (u) Λd (u) du + 1 f * d ς 2 d d/ς d -d/ς d ( Λd (u)) 2 Λ d (u) f (u) du .
From the definition of Λ d it is easy to deduce that, for any integrable on R function f ,

lim d→∞ R f (u) Λ d (u) du = R f (u) du , lim d→∞ R f (u) Λd (u) du = 0
and Λd (u) = 0 for u ≤ d -3. Therefore we obtain the following assymptotic relationship for i d as d → ∞

i d = 1 + o(1) + d/ς d -d/ς d ( Λd (u)) 2 Λ d (u) f (u) 1 {|u|≥d-3} du . (A.10)
To estimate the last integral, notice that by the Bounyakovskii-Caushy-Schwartz inequality

( Λd (u)) 2 = R 1 (|z|≤d-2) Ġ(u -z)dz 2 ≤ R 1 (|z|≤d-2) dz R 1 (|z|≤d-2) Ġ(u -z) 2 dz ≤ 2d R 1 (|z|≤d-2) Ġ(u -z) 2 dz ,
Let now λn be an estimator of λ = λ(ϑ) based on observations (y j ) 1≤j≤n . For any

B(R n × R ι ) -mesurable integrable function ζ = ζ(x, ϑ), x ∈ R n , ϑ ∈ R ι , we set Ẽ ζ(Y, ϑ) = R ι E ϑ ζ(Y, ϑ) Φ(ϑ) dϑ ,
where E ϑ is the expectation with respect to the distribution P ϑ of the vector Y = (y 1 , . . . , y n ). Note that in this case

E ϑ ζ(Y, ϑ) = R n ζ(v, ϑ) f (v, ϑ) dv , where f (v, ϑ) = n j=1 1 √ 2πσ j (ϑ) exp - (v j -S ϑ (x j )) 2 2σ 2 j (ϑ)
.

We prove the following result (cp. [START_REF] Gill | Application of the van Trees inequality: a Bayesian Cramér-Rao bound[END_REF]).

Lemma 6.7. Assume that the function g(•, •) satisfies the condition H 1 ) -H 2 ) and the unknown function S ϑ (•) is differentiable with respect to ϑ l , for any 1 ≤ l ≤ ι, moreover,

∂S ϑ (•) ∂ϑ l ∈ L 1 [0, 1] .
Then for any square integrable estimator λn of λ and any 1 ≤ l ≤ ι,

Ẽ( λn -λ) 2 ≥ Λ 2 l A l + B l + I l ,
where

A l = n j=1 R ι 1 σ 2 j (ϑ) ∂S ϑ (x j ) ∂ϑ l 2 Φ(ϑ) dϑ , B l = 2 n j=1 R ι Ll (x j , S ϑ ) g(x j , S ϑ ) 2 Φ(ϑ) dϑ , Ll (x, S) = L x,S ∂S ϑ ∂ϑ l , the operator L x,S is defined in the condition H 2 ).
Proof. We put

l (v, ϑ) = ∂ ∂ϑ l (f (v, ϑ)Φ(ϑ)) f (v, ϑ)Φ(ϑ) .
Integrating by parts and taking into account that the density Φ l has a finite compact support yields

Ẽ ( λn -λ) l = R n R ι ( λn (v) -λ(ϑ)) ∂ ∂ϑ l (f (v, ϑ)Φ(ϑ)) dϑ dv = R n R ι-1 R ( λn (v) -λ(ϑ)) ∂ ∂ϑ l (f (v, ϑ)Φ(ϑ)) dϑ l ι j =l dϑ j dv = R n R ι-1 R ∂ ∂ϑ l λ(ϑ) f (v, ϑ)Φ(ϑ) dϑ l ι j =l dϑ j dv = R ι ∂ ∂ϑ l λ(ϑ) Φ(ϑ) R n f (v, ϑ) dv dϑ = Λ l .
Therefore by the Bouniakovskii-Cauchy-Schwartz inequality

Ẽ( λn -λ(ϑ)) 2 ≥ Λ 2 l Ẽ 2 l .
To evaluate the denominator in the last ratio, note that

l (v, ϑ) = ∂ ∂ϑ l (f (v, ϑ)) f (v, ϑ) + Φl (ϑ l ) Φ l (ϑ l ) = ∂ ∂ϑ l ln f (v, ϑ) + Φl (ϑ l ) Φ l (ϑ l ) .
By (A.11) we find that

∂ ∂ϑ l ln f (Y, ϑ) = n j=1 (ξ 2 j -1) 1 σ j (ϑ) ∂ ∂ϑ l σ j (ϑ) + n j=1 ξ j 1 σ j (ϑ) ∂ ∂ϑ l S ϑ (x j ) . Thus Ẽ ∂ ∂ϑ l ln f (Y, ϑ) = 0 .
Moreover, the condition H 2 ) implies the relationship

∂ ∂ϑ l σ j (ϑ) = ∂ ∂ϑ l g(x j , S ϑ ) = Ll (x j , S ϑ ) from which it follows Ẽ ∂ ∂ϑ l ln f (Y, ϑ) 2 = A l + B l .
Hence Lemma 6.7.

6.8 Proof of (6.13)

Notice that to prove (6.13) it suffices to show that lim sup η→0 , d→∞ sup N ≥1

|Ω N (η, d) -1| = 0 , (A.12)

where Ω N (η, d) is defined in (6.12). Indeed, by the direct calculation we find that, for any N ≥ 1,

|Ω N (η, d) -1| ≤ max j≥1 (|α j (η) -1| + |β j (η) -1|) + |i d -1| min(β * (η), i d ) ,
where β * (η) = min j≥1 β j (η). Therefore the definitions of α j (η) and β j (η) and the properties (6.2) and (6.7) imply (A.12).

6.9 Proof of (6.10)

In this proof we use the following Lemmas.

Lemma 6.8. Let S ϑ be defined in (6.4) and S

ϑ be its derivative of order l, 1 ≤ l ≤ q. Then, for sufficiently large n and any 0 < ε < 1,

q l=1 S (l) ϑ 2 ≤ (1 -ε/2)r + (1 + µ) q l=1 ζl + (1 + µ -1 ) L -2 n ,
where µ = ε/(2 -2ε) and

ζl = M m=1 g 2 0 (a m ) N j=1 κ 2 j 1 n jπ 2 h 2l ζ m,j , ζ m,j = ξ2 m,j -1 . (A.13)
Proof. From the definition of S ϑ in (6.4) we obtain that

S (l) ϑ (x) = M m=1 N j=1 ϑ m,j D (l) m,j (x) , where 
D (l) m,j (x) = 1 h l Q (l) 0,j (v m (x)) + 1 h l Q (l)
1,j (v m (x)) , Q (l) 0,j (u) = e ϑ m,j Q (l) i,j (u) , i = 0, 1 , we find that

S (l) ϑ 2 = 1 h 2l-1 M m=1 1 -1 Q (l) 0,j (v) + Q (l) 1,j (v) 2 dv = 1 h 2l-1 M m=1 Q (l) m,0 2 + 2(Q (l) m,0 , Q (l) m,1 ) + Q m,1 2 .
Therefore, for any µ > 0, we get that ≤ (1 + o(1)) N 2q+1 π 2l q (q + 1)(2q + 1)n(2h) 2l+1 ς 0 . This yields that

S (l) ϑ 2 ≤ 1 + µ h 2l-1 M m=1 Q (l) m,0 2 + 1 + µ -1 h 2l-1 M m=1 Q (l) m,1 2 . (A.14) Moreover Q (l) m,0 2 = 1 -1 N j=1 ϑ m,j Q 0,j (u) 
H l =    (1 + o(1))(1 -ε)r , if l = q , o n -1/(2q+1) , if l < q .
Let us consider now the second term in the right-hand part of (A. ϑ 2 m,j (πj) 2(q-i)

≤ C 1 (η) N j=1
ϑ 2 m,j j 2(q-1) ,

where C(η) = max 1≤l≤q max -1≤u≤1 l i=1 l i 2 (I (i) η (u)) 2 and C 1 (η) = qC(η) π 2q . From this it follows that

1 h 2l-1 M m=1 Q (l) m,1 2 ≤ C 1 (η) h 2l-1 M m=1 N j=1
ϑ 2 m,j j 2(q-1)

≤ d 2 C 1 (η) nh 2l M m=1
g(a m ) N j=1 κ 2 j j 2(q-1)

≤ C N 2q L 2l+1 n n 2(q-l)/(2q+1) , where C is a constant. Notice that, if l = q then 1 h 2q-1

M m=1 Q (l) m,1 2 ≤ C 1 L 2q+1 n N q N j=1 j q-2 ≤ C N 2q-1 L 2q+1 n ≤ C 1 L 2 n . If l < q then 1 h 2l-1 M m=1 Q (l) m,1 2 = O(L 2q n n -2/(2q+1) ) = O(L -1 n ) .
Therefore, putting in (A.14) µ = ε/2(1ε), we come to the assertion of this Lemma.

Lemma 6.9. Let ζl be defined in (A.13). Then, for any p ≥ 1/2, 

Remark 3 . 1 .

 31 Note that the principal term in the right-hand side of (3.12) is best in the class of estimators ( Ŝτ , τ ∈ A ε ). Usually inequalities of such type are called the Oracle inequalities. Proof of Theorem 3.1. Fisrt, by (3.6)-(3.7) we get the following equality Ŝτ

  )uniformly over all functions bounded by any fixed constant c > 0, i.e. sup f sup -1≤x≤1 |f (x)| ≤ c.We choose the trigonometric basis in L 2 [-1, 1] as follows e 1 (x) = 1/ √ 2, e 2 (x) = cos(π x), e 3 (x) = sin(π x), . . . , e 2i (x) = cos(iπ x), e 2i+1 (x) = sin(iπ x), . . . .(6.3)For any array z = {z m,j , 1 ≤ m ≤ M, 1 ≤ j ≤ N } with M = [1/(2h)] -1 and N a positive integer, we denote

1 0S

 1 ẽ m,j (x)dx and λ m,j (z) = z (x)ẽ m,j (x) dx .

  (πj/2) 2l .Taking into account the definition of ϑ m,j yields the following bound for the first sum in the right-hand term of (A.[START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF]

  I (i) η (u)ψ m,i (u).Applying the Bouniakovskii-Cauchy-Schwartz inequality yields Q

.+ 1 ) 2 π 2q h 2q N 2q+1 ≤ C L 2q+1 n 1 h

 11 , d) L p n n p/(2q+1) , (A.15) where C(p, d) is a constant depending on p and d. Proof. From (A.13) it follows that The process ( ζm , m ≥ 1) is a square-integrable martingale-difference. Applying the Burkholder-Davis-Gundy inequality to the right-hand part of (A.16) yields, for p ≥ 1, p) is a constant depending on p. Moreover, | ζm | ≤ (d + 1) 2q = C L n n 2q/(2q+1) .
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where

From here we estimate the last integral in (A.10) by

Hence we get Lemma 6.6.

The van Trees inequality for regression models

) be a statistical model relative the observations (y j ) 1≤j≤n governed by the regression equation

where ξ 1 , . . . , ξ n are i.i.d. N (0, 1) random variables, ϑ = (ϑ 1 , . . . , ϑ ι ) is an unknown vector parameter and σ j (ϑ) = g(x j , S ϑ ), where the function g(x, S) is defined in the condition H 1 ). Assume that a prior distribution µ of the parameter ϑ in R ι is defined by the density Φ(ϑ) of the following form

where Φ j is a continuous density on R with a compact support such that

Let λ(•) be a real-valued function, λ : R ι → R. We assume that this function is differentiable with respect to ϑ l , for any 1 ≤ l ≤ ι, such that the partial derivatives are integrable with respect to the density Φ(•) and we put

Thus (A.17) implies

n p/(2q+1) and therefore (A.15).

Let us prove now (6.10). To end this, note that

Therefore, for sufficiently large n,

) . To obtain (6.10), it suffices to prove the relationship lim n→∞ ϕ n P q l=1 S (l) ϑ 2 > r = 0 . Indeed, Lemma 6.8 implies that, for sufficiently large n,

where µ = ε 2(1-ε) and ζl is defined by (A.13). Thus, for sufficiently large n,

where r 1 = εr/(2(1 + µ)). By making use of Inequality (A.15) with p > 2q we obtain that Hence (6.10).