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1 Introduction
Consider the autoregressive AR(2) model
Ty =612, 1+ 62, o+e,n=12 ..., (1.1)

where (z,,) is the observation, (¢,) is a sequence of independent identically
distributed (i.i.d.) random variables with Eg; = 0 and 0 < Ee? = 02 < oo,
o2 is known, xg = x_; = 0. The process (1.1 ) is assumed to be unstable,
that is both roots of the characteristic polynomial

P(z) = 2° — 12 — b, (1.2)

lie on or inside the unit circle. The model (1.1 ) is a particular case of unstable
autoregressive process AR(p) which have been studied by many authors due
to their applications in automatic control, identification and in modeling
economic and financial time series (we refer the reader to Anderson (1971),
Ahtola and Tiao (1987), Dickey and Fuller (1979), Chan and Wei (1988),
Rao (1978) for details and futher references).

A commonly used estimate of parameter vector 8 = (6, 65)" is the least
squares estimate (LSE)

O(n) = (61(n),62(n)) = M,' > Xyazp, Mp=> Xp1X;,, (L3)
k=1 k=1

where X = (zy,zy 1)"; the prime denotes the transposition; M, denotes
the inverse of matrix M, if det M,, > 0 and M, * = 0 otherwise.
It is well known that

Vn(B(n) — ) == N(0, F), as n — oo,
for all § € A, where A is the stability region of process (1.1 ), that is
A:{9:(91,92)IZ—1+92<91<1—92, |92| <1}, (14)

F = F(6) is a positive definite matrix (see, e.g. Anderson (1971), Th. 5.5.7),

£, indicates convergence in law. If 6 belongs to the boundary A of the
stability region A, the limiting distribution is no longer normal. Moreover,
there is no one universal limiting distribution for all § € JA and the cor-
responding set of limiting distributions counts 6 different types depending
on the values of roots z; and 2 of polynomial (1.2 ). Each of the limiting
distribution coincides with that of the ratio of certain Brownian functionals



(see Chan and Wei (1988) for general results and details). For example, for
a pair of conjugate complex roots z; = e, z, = e * one has
(WP Q@) —wz(1))sing + (W (1) + WF(1) — 2)cos
1
Jo WE(s) + W3(s)lds

n-(61(n)—2 cos p) =

)

n- (Ba(n) +1) == (2 - W2(1) - W2(1))/ / (W2(s) + W(s)|ds,

where (W1(t),0 <t < 1) and (W5(t),0 < t < 1) are independent standard
Brownian motion processes. It is well-known that a similar situation takes
place in case of AR(1) process

Tn = 9£En_1 + én,

for which the limiting distributions of the least squares estimate are not
normal at the end-points § = +1 of stability interval (-1,1) (see, e.g. White
(1958)).

Lai and Siegmund (1983) for a first order non-explosive autoregressive
process proposed to use a sequential sampling scheme and proved that the
sequential least squares estimate for § with the stopping time based on the
observed Fisher information is asymptotically normal uniformly in 6 € [—1, 1]
in contrast with the usual LSE.

In this paper we apply a sequential sampling scheme for estimating pa-
rameter vector § = (61,6>)" in (1.1 ). The sequential least squares estimate
is defined by replacing sample size n in (1.3 ) with the stopping time

7(h) = inf {n >1: zn:(a:i_l +a2,) > h} , inf{0} = +o0, (1.5)

where h is a positive number (threshold). Our main result (Theorems 2.1)
claims that as A — o0

zmgw@m»-wééNmJ%x1:<ég>, (1.6)

uniformly in § € K, K is any compact set in the stability region (1.4 )
supplemented with the part of its boundary

{9 = (01,92)’ =14+ 92 < 01 <1-— 02, 02 = —1}, (17)

It will be observed that this part of the boundary includes the values of
6 corresponding to the case when roots of polynomial (1.2 ) are e and e~%.
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Note that for stable autoregressive processes of order 1 with two unknown
parameters and of order p,p > 1, the uniform asymptotic normality have
been proved in author’s papers (2003,,2003;).

The remainder of this paper is arranged as follows. Section 2 gives proofs
of (1.6 ) and some properties of stopping time (1.5 ). In Section 3 some
properties of unstable AR(2) process needed to prove the main results are
established. The appendix contains some technical results.

2 Sequential least squares estimate.
Uniform asymptotic normality.

In this section we consider the sequential least squares estimate
7(h)
0(r(h)) = MT_(}L) ZXk—lxk, (2.1)
k=1

7(h) = inf {n >1:) |IXpall® 2 h} , nf{0} = +o0,  (2:2)

k=1
and study its properties. First we will establish the property of uniform
asymptotic normality (1.6).

Theorem 2.1 Let (€,,),>1 be a sequence of independent identically distributed
random variables with Ee,, = 0 and 0 < Ee2 = ¢? < oco. Then for any com-
pact set K C Aq

lim sup sup [Py (M7 (8(r(h)) — 6) < t) — @s(t/0)| =0,
h—o0 9cK tcR2

where ®y(t) = B(t1)P(t2), P is the standard normal distribution function,
Al :{9: (91,92)12 —14+6, <6, < 1—92, -1<6, < 1}
Proof. Substituting (1.1 ) in (2.1 ) yields

7(h)
M3 0(r(h) = 8) = M3l Ximiew = VRM P LY2 (61, 62):,  (2.3)
k=1
where L(6;,0:) is given in Lemma 3.4,
1 7(h) /
== L7%01,05) Xi 164 (2.4)
vhis

To prove Theorem 2.1 it suffices to establish the following Lemmas.

Y,
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Lemma 2.1 Under conditions of Theorem 2.1 for any compact set K C A,
and 6 > 0

hmmmPomv%Mgfyﬂwh@)—bu>5):m

where I is the unit matriz of order 2.

Lemma 2.2 Under conditions of Theorem 2.1 for any compact set K C Ay
and for each constant vector v € R* with ||v]| =1

lim supsup |Py(v'Y, < t) — ®(t)| = 0.
h—o0gcK teR
The proofs of these results are given in the Appendix.
By Lemma 2.2 vector Y}, in (2.4 ) is asymptotically normal uniformly in
6 € K. In view of Lemma 2.1 this completes the proof of Theorem 2.1.
Now we will study the properties of the stopping time 7(h) defined by
(2.2'). Denote

Fl:{0:(01,02)1—91+92:1,—2<01<0},

F2:{9=(91,92)301+92:1,0<01<2},
F3:{0:(01,—1)2—2<01<2},

_ 91 02 . _ 0'2 0
A‘<1 0>’B_<0 0/
Theorem 2.2 Let (¢,)n>1 in (1.1) be a sequence of independent identically
distributed random variables with Ee, = 0, Ee2 = 0 and 7(h) be defined by

(2.2 ). Let z; and zy be roots of polynomial (1.2 ). Then
for each 6 € A

. 7(h) _ 1 I_ n.
for each 6 € T'y
(2.6)

L t
L:cw/l, as h — oo, Vlzinf{tZO:/ Wz(s)ds:l},
(1+Z2) h/2 0

for each 6 € T'y
(2.7)

L t
LZE}V% as h — oo, y2:inf{t20:/ Wf(s)ds=1},
(1 —21)/h/2 0
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for each 8 = (2cosp, —1) €T3
(2.8)
7(h)

V2hsin ¢

where W (t) and Wi(t) are independent standard Brownian motions, A is

defined in (1.4 ).

¢
=£5 1y, as h — 00, v3 = inf {t >0: / (W?2(s) + W(s))ds > 1} ,
0

Proof Assertion (2.5) easily follows from Lemma 3.12 in Galtchouk and
Konev (2003;).
Let 6 € I';. In this case polynomial (1.2) takes the form
P(z) =(2+1)(z — a)

1

where —1 < a < 1. By applying the backshift operator ¢~ one can write

down equation (1.1) as

(2.8) g %(g+1)(g — a)ax = .

Denote
Up = (fl(q —a)Tg, v = qfl(q + 1)y,

that is
Tp — ATp_1 = Uk, Tp + Tp_1 = Vg,

or in the vector form

(29) ax=(w)ie=(1 7).

The processes u; and vy, satisfy the equations
Up = —Up_1 + Ek, Vg = QVg—1 + Eg, Uo = 0,19 = 0.

From here one gets

k k
B . B i
up = — E (—=1)¢ej, v = E a" e
=1 j=1

The identity

n 2
xs_
(2.10) > vk =(1/2) ) 1K | + =
k=1

k=1




and (2.9) imply

(2.11)
1 &, a-—1
Zxk 1= (a+1)2k2_;“k—1 Z“k Wk1t5r e kZ
It is known that (Lai and Wei (1983), Chan and Wei (1988))
no 2
liminf =5 ——"— 2= Yior _ =0%/4 Py—as.,

n—oo 2 /loglogn

Po— lim n™ 3/2Zuk 1Vp— 1—0

n—00
k=1

This and (2.11) yield

noa2
(2.12) Py — lim % =(a+1)?
Further we have
[tbv/R] [tbv/h]
Po<@ ) Z||Xk JE>h| =P (23 a2 —opuma 2 k|,
bvh ~ P

where b = (a + 1)/+/2. Applying herein Lemma 3.2 and (2.10) yields
[tbv/R)]

7(h) 1 2
Pyl —=<t)|=F | — E >1
’ (b\/ﬁ B ) "\ ph k=1 ety =)

where Py — limy,_, o Pitpw/) = 1. From here by Donsker’s Theorem we come
to (2.6). By a similar argument one can show (2.7).
Assume that 6 € T'3. Then in view of (2.10) one has

(2.13)
(h) [tbh! /2]
PO (bh1/2 — ) Po Z ||Xk—1H2 Z h| = Pg (2b2Z[tbh1/2]:ﬂ'[tb\/ﬁ] Z 1) y
k=1
where
[tbh! /2]
tb\/_ b2h Z ‘rk 1

and

Py — lim [i =1.
O oo Hitevhl
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Now we apply Theorem (3.3.4) from the paper of Chan and Wei (1988),

which yields
(W2(s) + W, ds.
T / )+ W(s))

Putting b = 1/2sin ¢ in (2.13) and taking this into account we come to (2.8).
This completes the proof.

N
Z [thv/h] =

3 Auxiliary propositions.

In this section we establish some properties of the process (1.1 ) and the
observed Fisher information matrix M,,.

In the sequel we will need the following two probabilistic results for mar-
tingales from the paper of Lai and Siegmund (1983).

Proposition 3.1 Let x,,c,,n =0,1,... be random variables adapted to the
increasing sequence of o—algebras (Fp)n>0. Let {Pg,0 € O} be a family of
probability measures such that under every Py

Ay : e1,€9,...are iid. with Ege; = 0, Ege? = 1;

Ay : supy Ep{e?;|e1| > a} — 0 as a — oo,

As: g, 18 1ndependent of F,,_1 for each n > 1;

Ay Po(Yo2pzi =00)=1;

As sungg(a: > a) — 0 as a — oo for each n > 0;

Ag : limy, ,oo[supy Po(z? > 6 277 22 for some n > m)] = 0 for each § > 0.

Forc>0letT, =inf{n: Y ; a7 ; > c}, inf{0} = +o0o. Then uniformly
im0 €0 and —oco <t < oo

Tc
Po{c /2 in,lsi <t} — ®(t) as ¢ — 0,

i=1

where ® is the standard normal distribution function.

Lemma 3.1 Suppose that the measurability conditions of Proposition 3.1,
Ay, A; are satisfied. Then for each v > 1/2,6 > 0, and increasing sequence
of positive constants c, — 00,

sup Pg Lr—1€k
{ 2

k=1
as m — Q.

> 0 max(cy, Zwk ) forsomen>m}—>0
k=1



Now we show the following result.

Lemma 3.2 Let (g,)n>1 in (1.1 ) be a sequence of i.i.d. random variables
with Ee,, = 0 and Ee2 = 0% < co and roots of the characteristic polynomial
(1.2 ) lie on or inside the unit circle, i.e. |z1| < 1, |23] < 1. Then, for any
compact set K C Ay and § > 0,

lim sup Py | max(z?, 22 >4 z2_, for some n >m | =0,
k-1

nr»*“n—1
m—r00 9cK 1
where

Ag = [AJ\N{(=2,-1), (2, -1)}, (3.1)

[A] is the closure of the stability region (1.4 ).
Proof. In view of the equality
~ . 2 To
Y @ =172 1IXeal? + 5 (3.2)
k=1 k=1
it suffices to show that, for any compact set K C Ay and 0 > 0,

lim sup Py(B,,(6)) =0, (3.3)

m—00 9cK

where

B, (8) = {||X.|* > JZ | Xx_1]|* for some n > m}.
k=1

By making use of the vector form of equation (1.1 )
Xn=AX, 1+ &n; (34)

where X, = (:Ena xnfl)la §n = (é‘n, O)',

A:(?%),gn:(gg) (3.5)

> XiaXp g > && - XX+ X A+ A Xiib
k=1 k=1 k=1 k=1

one obtains



This implies

S IXeal? 2 Y - Xl =2 < AXus>ial, (36)
k=1 k=1 k=1

where < AX}_q > is the first coordinate of vector AX;_;.
For each 0 < A < 0?/4 and m > 1 we introduce the sets

n
Q= {In7! Zsz —ao?| < AN
k=1

" n 2/3
|Z < AXg_1 >1 €| < max | An, (Z < AXp_4 >f> for allm > m
k=1 k=1

It is easily seen that

s © {Z 1Xea? < 1} M % (37)
k=1

where

r € Nz (Dn UL X]* > An}), (3:8)
D, = { n_lzsi—a2 <)\}ﬂ
k=1

. . 2/3
1) < AXiy >1 6] < max | An, (Z < AXp_, >§> ,

k=1 k=1

1Xall? < A, > || Xpal [ > 1} :

k=1

By (3.6 ), on the set D, one has the inequality

n n 2/3
Z | Xe—1|> > (6 = A\)n — An — 2An — 2 (Z ||AXk_1||2>
k=1

k=1

n 2/3
> (0% — 4\)n — 2|| A (Z IIXk—1II2> :

k=1
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which implies

n 2 2
1+ 2| Al X1 > (& — )an > (& — 9)||1 X, 1%
(1+2[|A] );II -1l 2 (5 = 4)An 2 (- = 4] X
Given ¢ > 0, by choosing A so that
2

g

—1
;) 4) <6

(1+ 2sup | A[|**)(
0cK
one has, on the set D,,, the inequality
n
1Xal” < 52 [ Xp1l?, 7 > m.
k=1

This and (3.8 ) lead to the inclusion

urC () ({||Xn||2 < 5§: ||Xk1||2} UAlI1x117 > ,\n}) - (39

n>m k=1
Now assume that || X,||> > An. By (3.4 ) one gets

k—1
Xn=AXp + > A& (3.10)

j=0

Further we will show that for every compact set K C Ay there exists a
positive number k such that

sup [|[A"| < Kk, n > 1. (3.11)
ek

Without loss of generality we can consider a compact set of the form
Kd = [—2+d,2—d]><[—1, —1+d]U{0 : —1+02 S 01 S 1—02, —1+d S 02 S 1},

where 0 < d < 2. One can verify that if roots z; andz, of the characteristic
polynomial (1.2 ) are real then

n+1 n+1
1 A A C L
n— n—
20— 23 —(17 =25 az

Ar =

)7 _1§Z1<Z2§1a
Z1 — 29

and, if the roots are complex, that is z; = ae’® and 2z, = ae'®, then

An — a™ ! ( sin(n +1)¢ —a?sin(ng) > .

" sing \ sinng —sin(n —1)¢
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By making use of these formulas respectively on the subsets

1
K,y =[-2+d,2—d]x[-1,-1+d]u{f : —2+d < 6; <2—d,-1< 6, < —102},

1
Kg={9:—2+d§9150,—193<92g1+9l}

1
U{e:ogelg2—d,—193<92g1—91},

we establish that (3.9 ) is satisfied with K = K,;. From (3.10 ) in view of
(3.11 ) one obtains

i—1
Al Xnmall 2 1A - 1 Xoill > A X—ill > (1 Xall = D 1A - len—sl.

Jj=0

This implies that for £k < n

k—1
K min (| Xp il > (| Xall = D 1147 - [eny]
§=0

1<i<k

> [|Xall = Gue 2 [1Xall(1 = (An) 2Ga),

where
k-1
Cnk = KZ |en—jl-
=0

Therefore
DXl = D Xl P > 1 XalPR(L = (An)2Cp) /5, k < n.
i=1 i=1

This inequality yields the inclusions

- k
{I1Xal* > An} € D1 Xial® > ||Xn||2;(1—A)2}U{sgp(kn)‘”2cn,k > A}
i=1 n=m
for n > m, where 0 < A < 1. Choosing k so that
E(1—A)?*/k?> 61
we obtain
{I1Xall* > An} D {1 Xall” < 6 ) 1 X’} C {sup(An) %o > A}, n > m.

k=1

12



From here and (3.7 ), (3.9 ) it follows that

Qma € I1Xeal> <1} U{Sl>1p()\n)_1/2§“n,k > A}
k=1 n-m

U lIxal? <5Z”Xk 173

n>m

This implies

mA 2 {Z [ Xkal* > 1} D {Sup(/\n) Y2Gak < A} D By (6).

k=1

Finally we get the inclusion

)2 /\U{Z”Xk 1” <

Hence

sup Po(Bm(d)) < sup Po({27,,) + sup P@{Z [ Xpa* <1}
OcK OcK b1

+ sup Po{sup(An) Y2(, > A}.

OcK n>m

By Lemma 3.1 with z; 1 = (AX; 1); and v = 2/3 the first term in the right-
hand side of this inequality vanishes as m — oo. The last two summands
tend to zero by the law of large numbers.

This completes the proof of Lemma 3.2.

Lemma 3.3 Let (¢,)n>1 in (1.1 ) be a sequence of i.i.d. random variables
with Be, = 0 and Ee2 = 0? < co. Then for any compact set K C A,

lim sup Py <| ka 1€k > 5ka , for some n > m) =0, (3.12)

m—0o0
bcK k=1 k=1
where Ag is given in (3.1 ).

Proof. Let ¢, = n®/*. For the set of interest one has the following inclusions

{ Zxk 16| >5Zxk , for somen>m}

k=1
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B { | ZZ:l mk71€k| (ZZ:l .’17%_1)2/3 \ Cn
(

. > § for some n > m
n 2 n 2 =
Zk:l xk—1)2/3 Ven Ek:l Lp—1 }

i Tk 1E
- {(ggk_z} wk)2/13’i/| > /6 for some n > m} U
k=1Tg—1 Cn

{(Z 2 )TV cn(z 22 )"t > /4 for some n > m}
k=1 k=1

1
n n

C |Zxk_1ak\ ((Z 2 )3V cn> > /6 for some n > m p U
k=1 k=1

U {(Z z2_ )71 > §%/2 for some n > m} U
k=1

U {cn(z 22_,)"t > /5 for some n > m}
k=1
n n -1
C \Zxk71€k| ((Z z2 )3V cn) > v/6 for some n > m
k=1 k=1

U {C“(Z z2_ )7 > V6 A 6%2 for some n > m} :
k=1

From here it follows that

n n
Py (\ Zxk,16k| > 52:1:271 for some n > m)

n n -1
<Py ‘Z%—ﬁk\ ((Z ﬂfi,l)z/3 \Y cn) > /6 for some n > m
k=1 k=1
(3.13)
+Py {n3/4(z z2_ )7t > V6 A 6%2 for some n > m} .
k=1

By making use of (1.1 ) and the elementary inequalities we obtain

n n
2 2
E & = E (SCk — O1Tp—1 — 92$k—2)
k=1

k=1

14



<5 (z Y +e;zxz_2)
< 15(z2 +Zxk1 —15Zxk1(1+ )
Zk 1

Therefore the second summand in the right-hand side of (3. 3 ) can be esti-
mated as

Py {n3/4(2 22 )7t > V6 A 6%? for some n > m}
k=1
Py {30n3/4(26i)_1 > /8 A 62 for some n > m}
k=1

n
+Py {mi/in_l > 1 for some n > m} )

k=1
Combining this and (3.13 ) and applying Lemmas 3.1, 3.2 lead to (3.12 ).
This completes the proof of Lemma 3.3.
Lemma 3.4 Let (¢,)n>1 in (1.1 ) be a sequence of i.i.d. random variables
with Be, = 0 and Ec2 = ¢? < 0o and M,, be given by (1.3 ).
Then, for any compact set K C[O\ and § > 0,

lim sup Py

m—=00 gcK (” Zk 12

where

— L(6y,05)|| > 6 for some n > m> =0, (3.14)

20 = (o T ) A= WVOD(-2-1.2o) (313

1—6-

Proof. Multiplying (1.1) by z;_; and summing yield

n n n n
=0 2 6
Tp 1% = 0 Tyt 0o Tp 1Tk 2+ Tp 1Ek-
k=1 k=1 k=1 k=1

From here it follows that
1 -
Z.Tk 1Tk— 2——1 emnxn 1+1_9 Z Tp 1+ _gzkz_;xklgk.

15



Substituting this in M,, yields

Mn = L(ela 02) Zmi—l + T,
k=1

where

Tn =

1 ( O; TpTp-1+ Zzzl Trp—1Ek )

n . 2
1— 0y \ —ZnTp 1+ Y oy Tk 16k; —Zn—1

By applying Lemmas 3.3, 3.4 to r,/> r_, z3_, we come to (3.14 ). This
completes the proof of Lemma 3.4.

Lemma 3.5 Let M,,7(h) and L(6y,6;) be given by (1.8), (1.5) and (3.15 )
respectively. Assume that {e,} in (1.1) be a sequence of independent iden-
tically distributed random variables with Ee, = 0, Ee,, = 0. Then, for any

compact set K C/O\ and § > 0,

lim sup Py (“ (k) L(01,92)|| > 5) =0, (316)

where A is the same as in (8.15 ).

Proof. By making use of the equality

M, M, . =
et a:k—l Zk:l "L‘k—l
one gets
7(h) 2
My M, M 2t T
6,091 < |0, 00) - L ( )

— L
7(h
h Zk; zk(:l) x%—1 h

From here it follows that

{H L(61,06,)] > 5} {Hzﬁ% — L(61,62)| > 5/2} (3.17)

T(h) .2
M‘r(h) || (Zk:l J?k,1

h)
= > §/2
Zk(hl xi 1 h
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Further we have the inclusions

2
k=1 Tk_1

{nf‘f;% — L(61,62)]] > 6/2} Clri<m}  (318)

{|| — L(64,62)|| > 6/2 for somean},
> k=1 Tkt

T(h)
M, (Ek ! Thot h)
= . > 6/2%  {r(h) < m}
k=1 Tk—1
M, 2
U u |l . nx_"l’12 > §/2 for some n > m ;.
Zk*l L1 Zkzl Ty 4

From here and (3.17 ) one obtains

{n () L(91,02)||>6}§2Pa{f(h)§m} (3.19)

+P0{”Z — L(6y,65)]| > /2 for somean}
k=17

M, e
P, { | M 1
1

5 >5/2forsomen2m}.
k-1

T
ZZ:]. xi—l Z: z
By the definition of 7(h) in (1.5 )

{r(h) < m} = {Zuzl fal) > h}

k=1

22 2
(i 1+ o) > h, 1r<n]a%>7<n( Tty < l}

|
|

1 i

(51 + %) > h, max (z}_ 1+$?2)Zl}

1<j<m
k=1
C {ml >h}UU {(z7_, +27_,) > 1}.
Therefore
PG{T(h’) < m} < I(ml>h) + ZPG{xz_l + 332_2 > l} (320)
k=1
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It remains to estimate the last term in the right-hand side of (3.17 ).
By the inequality

|| M| M,
7 <ll== — L(61,09)[| + [|L(6:, 62) |
Zk:l xi—l Zk:l xi—l

one has

M 2

Py u ”|l . nxnl 12 > §/2 for some n > m

> k=1 T > k=1 Tho1

§P6;{||Z — L(61,05)|| > +/6/4 for somean}
k=17

(3.21)

+Py {L* nnl > 4/6/4 for somen>m}

72
—1—P{ #>5/4forsomen>m
Tp—1

where L} = supyc g ||L(61,62)]|-
Combining (3.19 )—(3.21 ) yields

( M.
sup Py
0cK

< 2> n) +2ZSUII{’P0{$1¢ L+ Thp > 1}
€

— L(64,65)] > 5)

1
+P, {”Z — L(64,05)]| > 5(5 A V/6) for some n > m}
k=1L

k=1 Tk—1

2 1
+Py {L*n+12>§(6/\\/5) forsomenzm}.

Limiting h — o0, | — oo, m — oo and taking into account Lemma 3.3 we
come to (3.16 ). Hence Lemma 3.5.

Lemma 3.6 Let xj and 7(h) be defined by (1.1) and (1.5). Then for any
compact set K C Ag and § > 0

72
lim sup Pg [ —2=X > §| = 0. 3.22
h—)oogegv © (ZZ 15132 . ) ( )



Proof. One has the inclusion

2
Tr_1
—_ C {r(h <m}U{ >5f0rsomen2m}.
-1
{22:1 ‘T%—l } k 1 37 -1

From here and (3.20) it follows that

72
supP@{ZTi>5} < Iimish) +Z(§UEP®{% o, > 1}
-1 €

2
+supP@{ >6forsomen2m}.
> ke 1$k 1

Limiting h — oo, I — 00, m — oo and applying Lemma 3.2 lead to (3.22 ).
This completes the proof of Lemma 3.6.

4 Appendix.

In this Section we prove some results used in the paper.
1. Proof of Lemma 2.1. Denote

Grny = L7Y2(61,02) M,y L72(61, 65).

One can easily verify that

1/2

M
IL7Y2(61,62)— 2 — D)2 = |-=GYa) — L|?
Vh f

M
< |h™ Grny — Ll < trL7H (61, 6,) &)

— L(61,6)|.

From here by Lemma 3.5 we come to the desired result.
Hence Lemma 2.1.
2. Proof of Lemma 2.2. We have

7(h)

1 _
Vh ng—ﬁk, gi1=V'L?(01,65) Xy 1.
k=1

For each h > 0 we define the stopping time as

UIYh =

ro=7o(h) =inf{n >1:> gt , > h}, inf{f} = +o0.
k=1

19



Further we use the representation

’U’Yh = ﬁ kz:; 9k—1€x + n(h) + A(h),

where A(h) = Aq(h) + - + A4(h),
Ay(h) = h P I my=1)goe1, Da(h) =h g, (my-16rm),

As(h) = =B 2 Iirymy=1)goe1, Aa(h) = =B grm)-18mn),

1 T(h)-1 1 To(h)—1
ﬂ(h) = —F= k—1Ek — Z I7'0>1 9k—1Ek-
\/ﬁ k=1 h k=1

Now we show that

To(h)

lim sup sup [Py \/_ Z gr16x <t | —®(t)] =0,

h—ogcKk ter

Jim sup Po(|n(h)| > 8) =0,

—XPeK

lim sup Py(|A(R)| > §) = 0.

h—o0 0ceK

(4.1)

(4.2)

(4.3)

The proof of (4.1 ) is based on Proposition 3.1 in Lai and Siegmund (1983).
To this end we have to verify only the condition Ag, that is for each § > 0

lim sup Py | g2 25ng , for some n >m | =0.
m—)oooeK —1

Conditions A; — As are evidently satisfied.
First we note that

n Mn n
Z g]?:—l = (’l}llzl/2 (2:1172 — L) L71/2/U + ]_> Z .’L’i_l.
k=1 k=1Tk-1 k=1

Therefore we have

n
{gfl >68 gr_y for some n > m}

k=1

n
C {||Xn||2 > 6 Zgifl for some n > m}

k=1

20
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I

n r Mn
{||Xn||2 > o Zmi_l 140 L7Y? <W - L) L_l/zv] for some n > m}
- I k=1 Tk—1

n )
- {||Xn||2 > 01 Zl‘i—l 1—[|L - ||Znina:2
k=1 L k=1"k-1

- L||} for some n > m}

n Mn
- {||Xn||2 > 6 in_l [1 — a*”W - L||} for some n > m}
=1 k=1 Th—1

1
{|| —L|| > —— for somenzm}
Dk ® 2a
2 01 - 2
UL |1 Xnll* > B) Zxk_l for some n >m ; ,
k=1

where §; = §/a*, a* = suppeg |[v'L7/2|?

leads to (4.1 ).
It will be observed that (4.4 ) enables one to prove (by the same argument
as in Lemma 3.6) that, for any compact set K C A; and § > 0,

. This in view of Lemmas 2.5, 3.1

T0—1
lim sup Py (gfo_l/ Z g, > 5> =0. (4.5)
k=1

Now we check (4.2 ). One can easily verify that

T(h)—-1 T0(h)—
1
Eor?(h) = Bou(h), u(h) =2 > gt 1= D gl
k=1 k=1

The random variable u(h) is uniformly bounded from above uniformly in
6 € K because

1" 1 -
u(h) < - Z g 1= V' LV My L0+ 1

« T(h)—1
a 2 *
<o kz_; 1 Xea]2+1<a*+1.

Therefore it suffices to establish that for each § > 0

lim sup Pg(u(h) > 6) = 0. (4.6)

21



To this end one can use the following estimate

u(h) = |v'L VM L0 — Z gl

T(h)—1 2
_ |Zk:1 xk—1U,Lf1/2 (EM T(h)-1 —L) L1y

h 1,2
k Ly
7(h)— T0(h
+Zk(:1) Th 1 _ kO(l) Ik L
h h
\ Mr(h) Trn)1 ()1

e S kv = o) 13
Zk 1 —1 Zk:l Tp—1 k=1 k-1

From here by making use of (3.16 ), (3.22 ) and (4.5 ) we come to (4.6 )
which in its turn implies (4.2 ).

By a similar argument one can check (4.3 ). This completes the proof of
Lemma 2.2.
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