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ABSTRACT

We present a probabilistic seminumerical algorithm that
computes the differential Hilbert function associated to a
differential rational mapping. This algorithm explicitly de-
termines the set of variables and derivatives which can be
arbitrarily fixed in order to locally invert the differential
mapping under consideration. The arithmetic complexity of
this algorithm is polynomial in the input size.

Keywords
Differential algebra, differential Hilbert function, seminu-
merical algorithm.

1. INTRODUCTION

In this paper, we consider systems of ordinary algebraic dif-
ferential equations

fl(:cl(e>,...,mn(e),...,xl,...,xn) = i,
: (1)
fn(:vl(e),...,mn(e),...,m,...,mn) = Yn,

with generic second members i.e. the y;’s are differentially
algebraically independent. Here e and n denote two positive
integers and the f;’s denote rational fractions.

When the jacobian matrix of (fi,..., fn) w.r.t. the higher
order indeterminates (its symbol) has full rank, the sys-
tem (1) can be locally rewritten as an equivalent ezplicit sys-
tem using the Implicit Function Theorem. In fact, each z®
may be locally expressed as a function of the y;’s and of some
lower order derivatives of the x;’s. Hence, if the y;’s and
enough initial conditions are given, one can obtain numeri-
cal approximations for the x;’s as a consequence of Cauchy
Theorem. Hence, the mapping (1) is numerically invertible.

Alexandre Sedoglavic
Projet Algorithmes
INRIA —Rocquencourt
F-78153 Le Chesnay Cedex, France

Alexandre.Sedoglavic@inria.fr

If the symbol of the system (1) is singular, the solution of
such a Cauchy problem is not straightforward. A formal
process which involves differentiation and elimination is usu-
ally applied in order to obtain an explicit system equivalent
to (1) in this case. This process can be done using rewriting
techniques such as the Rosenfeld — Grobner algorithm [3, §]
or the algorithm presented in [13]. The complexity of these
procedures is not precisely known but it is likely to be ex-
ponential in the input size.

Here we adopt a different point of view and propose an al-
gorithm which determines only some specific information
concerning the prime ordinary differential ideal associated
to the system (1). This information does not include the
computation of an explicit system equivalent to (1). Never-
theless, our algorithm determines

e the highest order v of derivatives of the equations in (1)
which must be computed in order to (locally) obtain
an equivalent explicit form of system (1). This—non
intrinsic—number v is usually called the differentia-
tion index of the system (1) (see [4] for more details
about this notion);

e for each order of derivation i, the number of indepen-
dent initial conditions which can be arbitrarily fixed in
the set of derivatives {xl(i), o ,a:n(“}’s. This number
is given by the differential Hilbert function associated
to the rational mapping defined by the system (1).

e more precisely, our algorithm explicitly determines a
maximal set of variables whose initial conditions can
be arbitrarily fixed and therefore, a set of variables
which are algebraic w.r.t. them (see Example 1 below).

Our algorithm is based on the computation of formal deriva-
tives and ranks of generically specialized matrices. It avoids

the computation of characteristic sets and its arithmetic
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of the x;’s, given the values of the y;’s and enough initial
conditions. Furthermore, its complexity is precisely known
(see Section 4 in [16] for more details); this result will be the
subject of a forthcoming work.

We finish this introduction by presenting three simple ex-
amples of differential rational mappings which illustrate the
notions introduced above.

Ezxample 1. Our first example is the following linear sys-
tem introduced by M. Fliess and col.

1 = Y1,
1 + T2 =y,
: 2)
j:n—Z + Tn—1 = Yn—-1,
Tn + Tn_1 = Yn,

When the y;’s are specialized into arbitrary functions of the
time variable ¢, this system describes a vector field

-'tn :ynf'yn—l‘i""‘i‘(71)71’:!J1(’n'71)7 (3)

on the constraint variety defined by the following relations

1 = Y1,
T2 = Y2 — U1,

(4)
Tn—-1 = Yn—-1—Yn—2+ "+ (—1)”_2y1("_2).

This example shows that it is necessary to compute deriva-
tives of the original equations—and thus, some higher order
derivatives of the variables y;’s—to obtain an equivalent ex-
plicit form of our original system.

The differentiation index of system (3)—(4) is n — 1, the
initial condition of variable x, can be arbitrarily fixed and
the variables z1,...,xn—1 and &, are algebraic w.r.t. the
field extension generated by the y;’s and their derivatives.
Our algorithm provides this information without computing
the equivalent explicit system (3)—(4).

Ezxample 2. The following system is an involutive differ-
ential transformation originally introduced by P. Rouchon.

{ T2/ = y1,

(2/%1) ®1 — T1d2 /%1 + 22 = V2.

Our algorithm indicates that the differentiation index is 3,
and determines that x; and x2 are algebraic over the ex-
tension field generated by the y;’s and their derivatives. In
fact, using differentiation and elimination, one can retrieve
the following relations:

r1 = Y2/91, w2 = (Y2/ih)'y1 — $132/ii + ye.

Hence, if we suppose that ¢ is different from 0, the z;’s
are—non differential—rational functions of the y;’s and their
derivatives. Hence, there is no need of fixing initial condi-
tions for the x;’s in this example.

Ezample 3. Let us consider a curve C in a three dimen-
sional space with coordinates 1, z2 and x3. The following

classical system expresses—the square of—the speed y1, the
curvature y2 and the torsion ys of the curve C in terms of
its parametrization.

L2 a2 a2
T1" + 2" + a3 = Y1,
2
+

2 . .
Tr3 X1
T3z a1

Ta I3
To I3

(5612 +9-c22 +5c32)3

‘jm T N

T1 2

a1 T2 T3
T Xo T3
2@ 5@

pi . . z . . 7z = Y3
i) X3 r3 X1

T2 3 T3 @1

T1 T2
T Zo

Unlike Example 2, the explicit form of the system (5) can not
be easily determined by hand computations. Our method
allows us to retrieve the following well-known property of a
space curve: a smooth curve is locally uniquely determined
by this system if the speed, the curvature, the torsion and six
initial conditions are given. There are also similar systems
which describe the same situation in higher dimensional am-
bient spaces.

Although the solution of the above examples does not re-
quire any sophisticated algorithm, it is easy to see that a
slightly different situation may become intractable for real—
world computers. In fact, from the above examples it is pos-
sible to construct implicit systems whose equivalent explicit
forms cannot be computed by the available computer alge-
bra software packages, based on rewriting techniques. This
is the reason why our algorithm, whose complexity is poly-
nomial in the input size, avoids rewriting techniques. In the
next sections we give a precise statement of our assertions
and the outline of the paper.

1.1 Differential-Algebraic Setting

Let us recall some conventions and introduce some nota-
tion. Hereafter, considering t = y: as an equation of our
original problem, we may restrict ourselves to study the au-
tonomous case. We denote by e the order of our system
and by n the dimension of its configuration space. Capi-
tal letters stand for vector-valued objects; thus, X () stands
for the i-th derivatives (azlm, L. ,xn(i)) of the configuration
variables.

Differential algebra can be seen as a generalization to the
setting of differential equations of the concepts of commu-
tative algebra and algebraic geometry. We refer to [14]
and [10] for a thorough presentation of differential algebra,
and briefly recall here some notions which we are going to
use in the sequel. Let k denote a field containing the field
of rational numbers. The differential algebra k{X} is the k-
algebra of polynomials defined by an infinite set of inde-
terminates (X (i))ieN, equipped with a derivation § defined
by 6z = £+ for any ¢ > 0. Its differential fraction field
is denoted by k(X). For a given finite set P := {p1,...,pn}
of polynomials of k{X}, we denote by [P] the differential
ideal generated by P in k{X}, i.e. the minimal ideal of k{ X }
containing the set P and closed under derivation.

In Section 2, we associate a prime differential ideal Z to the



system (1). In this situation, one can define the differential
transcendence function Hj associated to 7 w.r.t. to k as
follows: Hy(2) is the Krull dimension of the non-differential
prime ideal Z N k[X(i), e X} in the algebra k[X(i), . ,X].

The following theorem shows that this function has a sim-
ilar behavior as the standard Hilbert function of algebraic
geometry (compare [10, Chapter II, Theorem 6]).

THEOREM 1. For any integer i large enough, the differen-
tial transcendence function Hy (i) of a differential ideal T
w.r.t. the field k, is equal to the differential dimension poly-
nomial (¢ + 1) dimg Z+ordg Z, where dimg Z denotes the dif-
ferential dimension of the ideal Z over k and ordyx Z denotes
its order.

The function Hy, is also called the differential Hilbert func-
tion of the ideal Z w.r.t. k. Notice that the number dimg Z is
an invariant of Z over k. Indeed, any solution of Z depends
on dimy Z arbitrary functions and, when they are selected,
on ordg Z arbitrary constants. If Z is a zero-dimensional
ideal over k, the number ordg Z is an invariant of Z and it is
an upper bound for the sum of the order of the elements in
any characteristic set of Z. In [15], the author shows that
the complexity of the computation of a characteristic set of
a given ideal Z requires single exponential time (we refer
to [3, 8] for more details on these computations).

In our framework, the least integer v such that the value of
the Hilbert function Hy(v) equals the differential dimension
polynomial (v 4 1) dimg Z + ordy Z is called the differentia-
tion index of the ideal Z (see Proposition 2 for more details).
In the case of system (1), our assumptions on the genericity
of the variables y1,...,y, imply that dimy Z is n. Further-
more, taking into account that any equivalent explicit form
of a given system F' is a characteristic set of the ideal defined
by the system F for a suitable ranking of the variables, the
computation of the number ordy Z provides an upper bound
for the order of any explicit form equivalent to system (1).

1.2 Main Result and Outline of the Paper
Hereafter, we use intensively a common encoding of multi-
variate polynomials in numerical analysis (see [11, 6, 7, 17]
for other applications in computer algebra). A polynomial f
in k[z1,...,x,] may be represented by the vector of its coef-
ficients or by the polynomial function it defines. A straight-
line program representing f is a program which evaluates f
at any point z in k". Its complerity is measured by its
length (i.e. number of arithmetic operations) Ly. For ex-
ample, the polynomial f := (z + 1) may be represented by
the following sequence of instructions:

2

ti:=x+1, ta:=t1", t3:=1t2", f = t3t1.

In this case, the length Ly is 4 (see Section 4.1). The fol-
lowing theorem summarizes the contribution of this paper.

THEOREM 2. Let be given the system of ordinary algebraic
differential equations with generic second members repre-
sented by system (1). Suppose that the rational functions
defining this system are represented by a straight-line pro-
gram of length L. There exists a probabilistic algorithm
which computes the differentiation index and the differen-
tial Hilbert function associated to system (1). Furthermore,

this algorithm finds a maximal set of variables whose initial
conditions can be arbitrarily fived. The arithmetic complex-
ity of this algorithm is

O (L + e M(ne) + eN(ne))),

where M(i) (resp. N'(i)) denotes the complegity of the mul-
tiplication of two univariate power series in k[[t]] up to or-
der i+ 1 (resp. of (i X i)-matriz multiplication).

Outline of the paper. In the next Section, we introduce
a prime differential ideal associated to system (1) which has
an evident generic solution. Then, in Section 3, we restate
our problems in terms of a suitable module of Kahler differ-
entials, showing thus that the differential Hilbert function
and the information we want to compute can be determined
by rank computations. Finally, in Section 4 we exhibit an
algorithm, based on specialization techniques, which proves
the statement of Theorem 2.

2. DIFFERENTIAL IDEALS ASSOCIATED
TO ADIFFERENTIAL RATIONAL MAP-
PING

In the next section, we introduce a differential ideal I" which
represents the Zariski closure of the graph associated to the
rational mapping induced by system (1). Then, we define
an ideal A which has the same differential Hilbert function
as I and an evident generic solution.

2.1 Zariski Closure of a Graph

Let Z be a differential ideal of k{X }, let S be a finite subset
of k{X} and let S°° denote the multiplicative semigroup
generated by the elements in S. We define the satura-
tion (Z : S°°) of the ideal Z by the set S as

(Z:5%)={pek{X}|3Ise S, spel}.

We observe that (Z : S°°) is a differential ideal which con-
tains Z (see [10] for more details).

We now associate a saturation to system (1). For any i
with 1 <4 < n, let us denote the numerator and denomina-
tor of the rational function f; of system (1) by p; and g¢;
respectively. System (1) is equivalent to the following sys-
tem of polynomial equations and inequations:

pl(X<6>,...7X)_ql(X(E)a"'vX)yl - Oa
pn(X(e),...,X)—qn(X(e),...,X)yn - 0,
ql(X(E),...7X) 7é 07
qn(X(e),...,X) £ 0.

Let Z be the differential ideal generated by the differen-
tial polynomials p; — y;q; for 1 <i < n,let S:={q1,...,qn}
and let I' denote the saturation of the ideal Z by the set S
in k{X,Y}. The solutions of this differential ideal consti-
tute the Zariski closure of the graph associated to the ra-
tional mapping defined by system (1). Taking into account



that this graph is an irreducible variety, we deduce that the
differential ideal I" := (Z : S°°) is a prime ideal of k{X}.

We consider now another ideal that provides the same infor-
mation as I', having nevertheless an evident generic solution.

2.2 Generic Section of a Graph

Let Z1,...,Zn be new indeterminates and let 1) be the mor-
phism defined from k(Y) into k(X) that maps the frac-
tion ¥ (y:) to fi()Z'(e), .. ,)Z') for 1 <i<n. Let K denote
the image of this morphism. Then we have:

K =k(pi(X©,....X)/a:(X9,...,X), 1<i<n).

Let us denote by A the differential field K(X) and let us
consider the following morphism of differential algebras:

v Y, X} — K{X}
T (g Ti,
Yi = i (X9,,X) /q; (X9, ).

We denote by A the image of I under the morphism . The
following proposition gives the main properties of A that we
will need in the sequel.

PROPOSITION 1. A is a nontrivial prime differential ideal
of K{X}. The differential Hilbert function of A w.r.t. K
is equal to the differential Hilbert function of T' w.r.t. k(Y).

Furthermore, the element X of k<)?> is a generic solution
of the differential ideal A.

PROOF. Since we have supposed that k{Y} NT' = {0}, the
localization k(Y) @g(y} I is a nontrivial differential ideal of
the k(Y)-algebra k(Y){X}. From the primality of I', we
deduce that k(Y) ®x(y}T is a prime ideal. Since the mor-
phism v is identity on S and its maps isomorphically the
field £(Y) into the field K, we conclude that the ideal ¥ (T")
denoted by A is a prime differential ideal of K{X}. This
proves the first two assertions. In order to prove the last as-
sertion, we consider the morphism ¢ : K{X} — k(X) that
maps z; to T; for 1 <i<n. We remark that Ker(p) = A
and the image of ¢ contains the k-algebra k{)? }. This im-
plies that the fraction field of the quotient ring K{X}/A is

isomorphic to k()?) This shows the last assertion. [

Remark 1. In what follows, we are going to assume with-
out loss of generality that system (1) has order e = 1. In-
deed, adding new variables to represent higher order deriva-
tives (and the corresponding new relations) we can easily
obtain a first-order system equivalent to the original system
under consideration. Let us also remark that if the origi-
nal has singular symbol then the first-order system obtained
by the procedure explained above has also singular symbol.
Furthermore, this observation allows us to be more precise in
our definition of an explicit system. We remark that the dif-
ferential mapping defined by ©1 = y1 and x2 = y» is explicit
even if its symbol—defined in introduction—is always sin-
gular. Hence, a system is implicit if it is not a characteristic
set for an elimination ordering such that the x;’s are greater
than the y;’s. Last, we need a technical hypothesis, namely
that differential ideal under consideration is supposed to be
reqular (see [3] for more details).

3. LINEARIZATION OF A COMPLETION
PROCESS

The Kahler differentials constitute an algebraic analogue of
the linearization process of differential geometry. In this
section, we are going to show how the differential Hilbert
function of the prime differential ideal A defined in the pre-
vious section can be computed working in a suitable module
of Kéhler differentials. Furthermore, as shown by Exam-
ple 1, in order to determine this differential Hilbert function
it may be necessary to compute derivatives of the original
equations up to order v, the differentiation index associated
to the system defined by the ideal A. We also show how
this index v can be effectively determined.

3.1 Module of Kahler differentials

Let F denote the fraction field of the quotient ring {X}/A,
which is a finitely generated extension of the field K. Let us
consider the following two F-vector spaces:

e the space Derx (F, F) is the set of all K-linear deriva-
tions 0 : F — F;

e the space 5/ of Kahler differentials may be de-
fined by the following universal property: for any F-
vector space G we have an isomorphism Derx (F,G) =
Homz(Qz/k,G). In fact, let df be the image of an
element f of the field F by the universal derivation d
from F into Q. For any 0 in Derx(F,G), there ex-
ist a unique linear homomorphism ¢ from Qx/x into G
such that d(dz) is equal to Oz.

We refer to [5, Chapter 16] for standard definitions and
properties of these vector spaces, and to [9] for analogous
constructions in differential algebra. In the setting of effec-
tive differential algebra this approach was already applied
in [2, 17]. We observe that the space Qz/x of Kéhler dif-
ferentials possesses a canonical structure of F-differential
vector space, defined in the following way: for any f in F,
we define (df)" := df. Our computations are mainly based
on the following result (see [5, Theorem 16.14]):

THEOREM 3. Let KK C F be a finitely generated extension
of fields of characteristic zero. For any collection of ele-
ments {xx} in F, the collection {dxzx} is a basis of Qr/x
as F-vector space if, and only if, {xA} is a transcendence
basis of F over K.

Now we explain the relationship between the differential
Hilbert function of the ideal A and the F-vector space Q£ k.
First, we define the order of an element of {X} as its or-
der w.r.t. the X variables (for example, the element zz
has order 0 for any h > 0). Next, we define the order of an
equivalence class f in K{X}/A as the minimal order of the
elements belonging to the equivalence class f. Finally we de-
fine a sequence (F;);en of (non-differential) subfields of the
field F in the following way: F; = {f € F | ord f < i} for
any integer . It can be easily shown that F; is isomorphic
to the fraction field of K[X,...,X®W]/ANK[X,...,X"].

Remark 2. On one hand, the value Hi (i) of the differ-
ential Hilbert function is equal to the (algebraic) transcen-
dence degree of F; over K. Therefore, from Theorem 3 we



deduce that the computation of H (7) can be reduced to the
computation of the dimension of {1z, as F;-vector space.
On the other hand, we remark that the initial condition
satisfied by any element z in F can be arbitrarily fixed if
and only if the element z is transcendental over K i.e. if
the transcendence degrees of F over K and of F over K(z)
are different. This shows that our problems can be reduced
to linear algebra computations in the F-vector space Qr/x.
These computations are described in the next section.

3.2 Representation of2 £/

We introduce some notations. We denote by A and A the K-
algebra A := K{X} and its fraction field by A:=Fr(K{X}).
We are going to study the transcendence degree of some field
extensions associated to the prime differential ideal A C A
of Section2.2. Using the notations,

gi ::pi(X,X) ffl()?,)?) qi(X,X) for 1<i<n,

and S :={q1,...,qn}, it is easy to see that the ideal A
equals the saturation of the differential ideal [g1, ..., gn] by
the multiplicative set S in A. Furthermore, using the univer-
sal property of localizations (see e.g. [5, Chapter 2]) it can be
shown the fraction field of the quotient rings Fr(K{X}/A)
and Fr(K{X}/[g1,...,9n]) are isomorphic. For the sake of
simplicity of notations we shall assume in the sequel that A
is the differential ideal generated by ¢1,...,gn. Finally, we
recall that F := Fr(A/A) denotes the fraction field of the
quotient algebra A/A.

In our next argumentation we will deal with the F-vector
space F ®a{la/k, obtained from the A-module 4, by
tensorization by the field 7. We observe that this vector
space is not isomorphic to the vector space Qr/xc. In fact,
we have the following conormal sequence of F-vector spaces
(see [5, Chapter 16]):

FRa(A/A?Y) — F@4Qa/c — Qe — 0. (6)

In order to effectively study the F-vector space 2z, for
any integer ¢ > 1 we are going to consider the K-algebra de-
fined as A; :=K [X, ey X“)] and the non-differential ideal
A;, generated by the polynomials G,...,G0™Y in A;. We
also denote by A; := Fr(A;/A;) the fraction field of the
quotient algebra A;/A;. We observe that the ideals A; are
prime as a consequence of the genericity of second members
of system (1). Similarly to (6), the relation between the F-
vector spaces 24, /x and {2 4, /x is explained by the following
associated conormal sequence of F-vector spaces:

F@4,(Ai/AP) = F @404, /6 — F@4,Q4,/c — 0. (7)
Our computations will rely on the following two key points:
e We have an explicit representation of F ®.a4,4,/k-

Let h, i and j be integers such that j < h <i—1, and
let J(h,1,j) denote the following Jacobian (block) ma-

trix:
FYeltd) o Yeltd) aag(h)
ax()  gxCG-1) T Hx
: : : ’
le oG e,

ax (1) ax(i—1) 0x ()

where the submatrix GG(h>/8X(i> is given by

8g:(M 8g:(M
dx (D T Az (V)
6gn(h) 6gn(h)
dx (D T Az p(P)

Then the F-vector space F @4, 4,/ is represented
by the cokernel of the Jacobian matrix J(i — 1,4,0)
(see [5, §16.1]). In fact, this space is isomorphic to the
quotient of the F-vector space Q 4,k by the subspace
generated by dG, ...,dG® i.e. by the image of the F-
morphism encoded by J(i,7 4+ 1,0);

e The field F; = {f eFlordf < z} of the previous sec-
tion and the field A; may not coincide (see Exam-
ple 1). This is due to the fact that the non-differential
ideals AN A; and A; of the K-algebra A;, which de-
fine the fields F; and A;, may differ for 1 <i <n — 1.
Hence, the dimension of the vector space F®a4, 4, /k
arising in the conormal sequence (7) may differ from
the dimension of Q#, /x and therefore, may differ from
the value of the differential Hilbert function Hx (7).

Nevertheless, for any sufficiently large integer i, the—non-
differential—ideals AN A; and A; coincide. We are now
going to show how we can determine the least integer v such
that for any ¢ > v this property holds, and how to compute
the dimension of F ®a4,Q4,/x for i <wv.

For this purpose, instead of analyzing the behavior of the se-
quence of ideals (A;);en, we are going to study the sequence
of matrices (J(i,i +1, 0))2,EN. First, let us consider the se-
quence of fraction fields (7;);en associated to the prime ide-
als A; N K[X] i.e. for any i we define m; = {fE.Ai| ordf:()}.
Since the ideals A; N K[X] form an ascending chain of prime
ideals in a Noetherian ring, there exists an integer v (v < n)
such that the sequence (7;)ien becomes stationary. More
precisely, we have the following proposition.

PROPOSITION 2. Let ¢ : N — N be the function s.t. ¢(i) is
equal to the transcendence degree of the field m; over KC for
any v > 0. Then ¢ is strictly decreasing for 1 <i¢ < v and
is stationary for i > v. Furthermore, v is the differentiation
index of the ideal A.

PROOF. We just give a sketch of the proof, which is based on
the analysis of the properties of the matrices J(i,7 + 1,0).
These properties remain generically valid after the special-
ization of the matrix J(i,7+ 1,0) at generic solution of A.
Since Proposition 1 shows that the variables X define a

generic solution in k()?) of A, this field is isomorphic to F
(see also Example 4 in Section 4.2). We conclude that
it suffices to consider that, for any integer ¢, the matri-
ces J(i,i+ 1,0) encode k()?)—linear mappings.

We are going to argue by induction, starting with the
analysis of the matrix J(0,1,0). This is an n X 2n-matrix
whose i-th row is defined by the coordinates of the Kéhler
differential
dgi = %dx1 +---+ gizn den + 55
with respect to the basis defined by {dX ,dX } In order
to determine the dimension of the cokernel of J(0,1,0), we

dgi .
I Qi 4+
1




consider the vector space Span(dG) generated by the dg;’s.
Let us now fix an orderly admissible ordering on deriva-
tives, i.e. an ordering of the variables such that o < 8 im-
plies dxh(a) < dccj(m and dzj, < dz; implies dxh(a) < dacj("‘>.
Using a simplified version of differential standard basis al-
gorithm (see [12] for details), we obtain a basis {eo,0,r}
of the vector space Fo o := Span(dG) N Span(dX) (observe
that the differentials eg,0,n are of the form > a;dx;). By
construction, the dimension of Epo is equal to n — ¢(0)
and the dimension of Span(dG) is equal to 2n — dim € 4, /x.
Now we complete the basis {eg0,n} of Ep,o, adding ele-
ments eg,1,, of Span(dG), to a basis of Span(dG). Let us
denote by Ey,1 the space generated by the {eg,1,n}. Then
we have Eo,0 @ Ep,1 = Span(dG).

Now we analyze the matrix J(1,2,0), which is associated
to the vector space Span(dG,dG’) in Span(dX,dX’,dX").
From the identity (dg)’ = dg’ we conclude that the set
of differentials {e0,0,n,€0,0,n,€0,1,h, €0,1,n} defines a basis of
the space Span(dG,dG’). Now we obtain a reduced ba-
sis {e1,0,n} of F1,0 = Span(dG,dG’) N Span(dX), and com-
plete this basis to bases of Span(dG,dG’) N Span(dX,dX")
and Span(dG,dG’), adding elements {e1,1,,} and {e12n}
of the vector space Span(dG,dG’). Let us denote by Fi 1
and F 2 the vector spaces defined by these elements respec-
tively. Then we have E1o ® E11 ® E1,2 = Span(dG, dG’).
By construction, the dimension of Span(dG,dG’) is equal
to 3n —dimQ 4, /¢ and the dimension of E1 is n — ¢(1).
Inductively we define for any ¢ > 0 and any j < i+ 1 vec-
tor spaces E; ; with analogous properties, associated to the
matrices J(i,7 + 1,0).

We claim that we have the following properties:

e for any positive integer 4, the dimension of E; ¢ is equal
to n — ¢(i) and the dimension of the space Q 4,/ is
equal to n(i +1) — Z;E) dim F; ;;

e for any integers ¢ >0 and j > 1, the dimension of E; 11 ;
is equal to the dimension of F; j_1;

e The sequence (dim F;)ien is strictly increasing for
any integer 7 s.t. 1 < ¢ < v and for i > v.

Our first claim is a direct consequence of the definition of
the E; ; and sequence (7). In fact, the field 7; is the fraction
field of the quotient algebra Ag/(A; N Ap) and the e;.5’s
form a basis of the associated Kéhler differentials. Similar
results hold for the E; ;.

Let us consider the subset Ld E; ; of {dX(i)} of leading
monomials of the elements in {e;;n}. For any j > i+ 2,
the spaces F;; are reduced to {0} and for any ¢ > 0 we
have Ld E; ;41 = Ld {eo,1,A” }. We remark that Ld E 1 is
equal to Ld Eo,;; ULd {éo,0,n} and thus, the set Ld {é1,1,5}
contains the set Ld{éop1,n}. Since LdFEi2 is Ld{éo1,n}
and Ld E272 =Ld El,QULd {é171’h} hOld7 we see that Ld EQ,Q
is Ld{é1,1,n}. A similar argument allows us to prove the
identity Ld Es41,:41 = Ld {61,17}1(0} and, more generally, we
have Ld Eitji1; = Ld {e;1,,"”}. Since the cardinal of the
set Ld E41,i+1 is the dimension of E;11 41, we have proved
that dim F;4 ;45 = dim Ej 1, that is our second claim.

In order to prove our last claim, we observe that the
sequence of vector spaces (Fj;o)ien is an ascending chain
of vector spaces in the finite dimensional space Span (dX).
Hence, this sequence is stationary and there exists an in-
teger v such that Ld E, o is equal to Ld E,41,0. There

is no new eliminations between the elements of {é,41,0,n}
and the elements of {e,41,1,,}. Therefore, for any j > 0 we
have E, 0 = Ev4j0 and E, 1 = E,4j,1. This proves our last
claim and the proposition. []

Let us observe that the differentiation index v introduced
above is bounded by ne, where e is the order of the original
system (1). The following proposition gives the formulae
which permits the computation of the differential Hilbert
function.

ProprosITION 3. For any integer ¢ > 0, we have the rela-
tion: ¢(i) =n —rankrJ (4,7 4+ 1,0) + ranksJ (4,7 + 1,1).
Furthermore, for any 1 < i < v, the value of the differential
Hilbert function Hic(i) is given by

Hi (i) = n(i+1) — rankrJ(v,v+1,0) + ranksJ (v, v+1,1).

The order of the differential ideal A over K is Hx(v).
PRrOOF. From Theorem 3 we easily deduce that the num-
ber ¢(i) = tr-degy(m;) equals the codimension of the F-
vector subspace E; ¢ := Span (dG, e ,dG(i)) N Span(dX) in
the F-vector space Span(dX). Let us observe that the ma-
trix J(4,7 + 1,0) describes the space Span (dG, cee dG(i)).
Therefore, we have the identity

dimg E; 0 = rankxJ(¢,% + 1,0) — ranksJ(¢,¢ + 1,1).

For our second assertion, from the definition of the differ-
entiation index v we deduce the identity AN A, = A,. As
above, we deduce that the number

rankrsJ (v, v + 1,0) — ranksJ (v, v + 1,14)
equals the codimension of the subspace
Span(dG,...,dG") N Span(dX,...,dX™).

Therefore from this remark and Theorem 3 we deduce as
above the identity

Hi (1) = n(i+1) — ranksJ (v, v+1,0) + rankrsJ (v, v+1,1).
O

Observe that, as the matrix J(i,7 4+ 1,0) encodes the vector
space {4,/k, the submatrix obtained by suppressing the
column associated to dX in J(4,7 4 1,0) encode the vector
space 4, /x(z)- This shows that the transcendence degree
presented in Remark 2 can all be computed using rank com-
putations presented above. But, let us recall that all the
matrices introduced in this section encode linear mappings
over the field 7 = Fr({{X}/A). Unfortunately, elementary
arithmetic operations in F cannot be performed at unit cost.
In the next section we show how we can reduce this cost by
using a specialization in a generic solution of the ideal A.

4. COMPUTATIONAL ASPECTS

In the next section we describe the data encoding of mul-
tivariate polynomials and rational functions used in our al-
gorithm. We also show how all mathematical entities in-
troduced in the previous sections can be represented by a
straight-line program. Then, we show how we can compute
the differential Hilbert function Hx using a specialization
in a generic solution. Finally, we give an estimate of the
complexity of the evaluation of the specialized Jacobian ma-
trix J(h, h + 1,0) arising in our computations.



4.1 Data Encoding and Complexity Model
All the results presented up to now can be expressed in the
dense complexity model, i.e. representing any multivariate
polynomial by the vector of its coefficients. Instead of this,
we are going to adopt the straight-line program model, in
which polynomials are represented by the polynomial func-
tions they define. This is the classical point of view of nu-
merical analysis, and it has been also applied in computer
algebra for complexity issues or the development of practical
algorithms (see [11, 6, 7] and the references therein). More
precisely, we have the following definition:

Definition 1. Let V be a finite set of variables over a
field k. A straight-line program over k[V] is a finite se-
quence of assignments b; « b’ o; b, where o; € {+, —, x, =}
and {b', 0"} € U;:l{bj} UV Uk. Its complexity is measured
by its length (number of arithmetic operations o;). Here-
after, we use the abbreviation SLP for straight-line program.

We say that a SLP (3 represents a rational function f in k(X)
if, on input 7 in k", 8 computes the value f(n) whenever this
value is well-defined. Hereafter, we are going to represent
some Jacobian matrices by means of division-free sLp. For
this purpose, we must be able to compute the numerator,
denominator and the gradient V f of a given rational func-
tion f. The following constructive results allows us to handle
these questions.

THEOREM 4  ([1],[11]). Let be given a SLP (3 of length L
computing a rational function f. Then, there exists a SLP 1
of length 5L which computes the gradient V f and there exists
a SLP (B2 of length 4L which computes polynomials f1 and fa

such that f = f1/fa.

The next section presents the computational strategy that
allows us to compute the differential Hilbert function and
the related information we want to compute with complexity
polynomial in the input size.

4.2 Specialization on a Generic Solution

Up to now, all the mathematical entities introduced in the
previous sections may be computed by any standard com-
puter algebra system. Indeed, Proposition 3 shows how we
can reduce the computation of the differential Hilbert func-
tion Hx and the related information we want to compute to
some rank computations involving the matrices J(v,v + 1,0)
in a suitable field. Now, we are going to prove that these
rank computations can be performed in polynomial time in
the input size. Unfortunately, as showed in [18], the arith-
metic complexity of computing multiple partial derivatives
is likely to be exponential in the order of derivation i. If
the equations defining system (1) are represented by a SLP
of length L, Theorem 4 shows that the computation of the
matrix J(v, v + 1,0) requires at least (5n)’L arithmetic op-
erations. Hence, applying purely symbolic techniques can-
not lead to a polynomial time algorithm. Furthermore, the
computation of the rank of the matrices J(v,v + 1,0) intro-
duced in the previous sections are also cumbersome because
they are performed working in the field F. Nevertheless, the
variables X can be specialized into a generic solution of the
ideal A and the desired ranks can be computed numerically

Symbolic computation
A .

J(v,v+1,0)

Specialization

Seminumerical computation
» J(v,v+1,0)

Specialized

with high probability of success. This strategy is represented
in the above figure by the thin arrows. In Proposition 4,
we propose an alternative strategy based on the same idea
which avoids the computation of the entries 6gT(h)/8:c5<i)
in F of the matrix J(v,v 4+ 1,0). It is represented in the
above figure by the thick arrow. In order to describe this
strategy we show in an example how we can simplify the
computations in F by specialization in a generic solution of
the ideal A.

Ezample 4. Let us consider the prime differential ideal
generated by # + 2 in k{x}. The solution 0 is not generic
while the formal power series n =3, (—=1)"zo"T't" is a
generic solution of this differential ideal. Hence, the differ-
ential field k(n) and the fraction field F associated to the
quotient algebra k{z}/[# + 2°]k{z} are isomorphic. Arith-
metic operations and derivation in F can be done using
rewriting techniques, while these operations can be easily
in k(n) manipulating formal power series as usual. The com-
putations presented below are based on this remark.

Let us recall that our rank computations are done in the
field Fr(K{X}/A) and that we have proved that the vari-

ables X form a generic solution of A in k(X). Hence,

replacing the variables X by a vector of formal power se-
ries 7 = 3 ¢; t'/i! defined by generic sequences (c;)ien with
coefficients in k we also obtain a generic solution of A. The
following proposition shows how we can compute the ma-
trix J(h, h 4+ 1,0) specialized in such formal power series.

PROPOSITION 4. Let us assume that the set {g1,...,gn} of
differential polynomials in k{X,X} is represented by a SLP
of length L. Then there exists a SLP (3 that takes the first h
coefficients of n formal power series n as input and returns
the constant coefficient of the power series obtained by spe-
cialization of the matrixz J(h,h + 1,0) in the power series 1.
The arithmetic complezity of the SLP 3 is

(’)(n(L + nhQ)M(h)),

where M(i) denotes the complezity of multiplication of two
power series with coefficients in k up to order i + 1.

PROOF. Since the set of polynomials {g1,...,gn} is repre-
sented by a SLP of complexity L, Theorem 4 shows that
there exists a SLP of length 3nL which evaluates the Jaco-
bian matrix whose rows are the coordinates of the differen-
tials d(g:(X, X)) in the basis {dX,dX}, namely

99i 4y + - - + 29 dg,, +

99 . 99
B B, poy Azt 4 -+ Fr-dwn.

Furthermore, from the identity d(f’) = (df)’, we deduce the



following expression of the differential dg;’:

dgil — gill di’l + -+ gi; di:‘n +
’ !
() Bz am v or ((320) 4 ) i+

(c’?gi)/dxl R (%)/dwn.

o1 Oy,

Analogously, one can express the coordinates of the differ-
entials dgim as sums of of dg/dx;, Og/d1; and their deriva-
tives. We now estimate the evaluation complexity of dg.").
First, we observe that the first h — j coefficients of the power
series (9g/0z:)Y) (n) and (9g/4:)% () can be obtained in
linear time from the first h coefficients of the power se-
ries (0g/0x;)(n) and (0g/0%;)(n). We also observe that,
if the first h — j coefficients of the coordinates of the dif-
ferential dgi(j ) are known, the Leibniz rule shows that the
first h — j — 1 coefficients of the coordinates of the differen-
tial dp;U*Y can be computed with jn additional operations
on formal power series. Each such operation requires M (h)
arithmetic operations in the base field k. Hence, by a recur-
rence argument, we conclude that the constant term of the
coordinates of the differentials dg<j ) for 0 < j < h can be
computed with O((L 4+ nh®)M(h)) arithmetic operations.
Since there are n such expressions to compute, we deduce
the complexity result of Proposition 4. [J

The above proposition gives an estimate of the complexity of
computing the constant term of a specialization of the ma-
trix J(v,v + 1,0). We have reduced the determination of the
differentiation index v, the differential Hilbert function Hx
and of a—maximal—set of initial conditions to the compu-
tation of the rank of some suitably specialized submatrices
of the matrix J(v,v + 1,0) (see Section 3.2 and the remarks
before Proposition 4). We observe that, in order to deter-
mine these ranks, it suffices to compute the constant term of
the specialization of some suitably chosen minors of the ma-
trices J(v,v + 1,0). Therefore, Proposition 4 immediately
implies the complexity result of Theorem 2.
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