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1IRMA, Université Louis Pasteur, Strasbourg, France

The numerical resolution of the Vlasov equation is usually performed by particle methods (PIC)
which consist in approximating the plasma by a finite number of particles. The trajectories of these
particles are computed from the characteristic curves given by the Vlasov equation, whereas self-
consistent fields are computed on a mesh of the physical space. This method allows to obtain
satisfying results with a relatively small number of particles. However, it is well known that, in
some cases, the numerical noise inherent to the particle method becomes too important to have
an accurate description of the distribution function in phase space. To remedy to this problem,
methods discretizing the Vlasov equation on a mesh of phase space have been proposed [2, 5, 6].

The major drawback of Vlasov methods using a uniform and fixed mesh is that their numer-
ical cost is high, which makes them rather inefficient when the dimension of phase-space grows.
For this reason we are investigating a method using an adaptive mesh. The adaptive method is
overlayed to a classical semi-Lagrangian method which is based on the conservation of the distri-
bution function along particle trajectories. The phase-space grid is updated using a multiresolution
technique.

The model we consider throughout this paper is the nonrelativistic Vlasov equation coupled
self-consistently with Poisson’s equation. It reads

∂f

∂t
+ v · ∇xf +

q

m
(E + v × B) · ∇vf = 0, (1)

the self electric field E is computed from Poisson’s equations

−ε0∇2φ = ρ(x, t) = q

∫

f(x,v, t) dv, E = −∇φ.

The magnetic field is external and considered to be known.
In the present work, we have chosen to introduce a phase-space mesh which can be refined

or derefined adaptively in time. For this purpose, we use a technique based on multiresolution
analysis which is in the same spirit as the methods developed in particular by S. Bertoluzza [1],
A. Cohen et al. [3] and M. Griebel and F. Koster [4]. We represent the distribution function on
a wavelet basis at different scales. We can then compress it by eliminating coefficients which are
small and accordingly remove the associated mesh points. Another specific feature of our method
is that we use an advection in physical and velocity space forward in time to predict the useful grid
points for the next time step, rather than restrict ourselves to the neighboring points. This enables
us to use a much larger time step, as in the semi-Lagrangian method the time step is not limited
by a Courant condition. Once the new mesh is predicted, the semi-Lagrangian methodology is
used to compute the new values of the distribution function at the predicted mesh points, using
an interpolation based on the wavelet decomposition of the old distribution function. The mesh
is then refined again by performing a wavelet transform, and eliminating the points associated to
small coefficients.

This paper is organized as follows : we shall first present the context of multiresolution analy-
sis for adaptive simulations, then describe the adaptive semi-Lagrangian method and validate our
method on typical simulation in beam physics.



1 Multiresolution analysis

The semi-Lagrangian method consists mainly of two steps, an advection step and an interpolation
step. The interpolation part is performed using for example a Lagrange interpolating polynomial
on a uniform grid. Thus interpolating wavelets provide a natural way to extend this procedure to
an adaptive grid in the way we shall now shortly describe.

For simplicity, we shall restrict our description to the 1D case of the whole real line. It is
straightforward to extend it to periodic boundary conditions and it can also be extended to an
interval with Dirichlet boundary conditions. The extension to higher dimension is performed using
a tensor product of wavelets and will be addressed at the end of the section.

For any value of j ∈ Z, we consider a uniform grid Gj of step 2−j. The grid points are located
at xj

k = k2−j . This defines an infinite sequence of grids that we denote by (Gj)j∈Z, and j will be
called the level of the grid.

In order to map a function defined on the grid from one level to the next or the previous, we
define a projection operator and a prediction operator. Consider two grid levels Gj and Gj+1 and
discrete values (of a function) denoted by (cj

k)k∈Z and (cj+1
k )k∈Z. Even though we use the same

index k for the grid points in the two cases, there are of course twice as many points in any given
interval on Gj+1 as on Gj . Using the terminology in [3], we then define the projection operator

P j
j+1 : Gj+1 → Gj,

cj+1
2k 7→ cjk,

which is merely a restriction operator, as well as the prediction operator

P j+1
j : Gj → Gj+1,

such that cj+1
2k = cjk,

cj+1
2k+1 = P2N−1(x

j+1
2k+1),

where P2N−1 stands for the Lagrange interpolation polynomial of odd degree 2N − 1 centered at
the point (xj+1

2k+1).
Using the just defined prediction operator, we can construct on Gj a subspace of L2(R) that we

shall denote by Vj , a basis of which being given by (ϕj
k)k∈Z such that ϕj

k(x
j
k′) = δkk′ where δkk′is

the Kronecker symbol. The value of ϕj
k at any point of the real line is then obtained by applying,

possibly an infinite number of times, the prediction operator.
In the wavelets terminology the ϕj

k are called scaling functions. Let us denote by ϕ = ϕ0
0.

Notice that [−N + 1, N − 1],
ϕj

k(x) = ϕ(2jx− k).

The scaling functions have the following noteworthy properties: 1) they have compact support, ϕ
vanishes outside, 2) they are interpolating as by construction ϕ(0) = 1 and ϕ(k) = 0 if k 6= 0, 3)
All polynomials of degree less than N − 1 can be obtained exactly as linear combinations of the
ϕ0

k, 4) Change of scale: ϕ can be expressed using the half scale:

ϕ(x) =
N−1
∑

−N+1

hlϕ(2x− l),



the hl are linked to the projection operator P j+1
j , as cj+1

k =
∑

hl−2k c
j
l .

As Vj ⊂ Vj+1, there exists a supplementary of Vj in Vj+1 that we shall call the detail space and
denote by Wj :

Vj+1 = Vj ⊕Wj.

The construction of Wj can be made in the following way: an element of Vj+1 is characterized by
the sequence(cj+1

k )k∈Z and by construction we have

cjk = cj+1
2k .

Thus, if we define
dj

k = cj+1
2k+1 − P2N+1(x

j+1
2k+1),

where P2N+1 is the Lagrange interpolation polynomial by which the value of an element of Vj at the
point (xj+1

2k+1) can be computed, dj
k represents exactly the difference between the value in Vj+1 and

the value predicted in Vj. Finally, any element of Vj+1 can be characterized by the two sequences
(cjk)k of values in Vj and (dj

k)k of details in Wj . Moreover this strategy for constructing Wj is
particularly interesting for adaptive refinement as dj

k will be small at places where the prediction
from Vj is good and large elsewhere, which gives us a natural refinement criterion. Besides, there
exists a function ψ, called wavelet such that {ψj

k = 2j/2ψ(2j x− k)}k∈Z is a basis of Wj .
In practise, for adaptive refinement we set the coarsest level j0 and the finest level j1, j0 < j1,

and we decompose the space corresponding to the finest level on all the levels in between:

Vj1 = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕Wj1−1.

A function f ∈ Vj1 can then be decomposed as follows

f(x) =

+∞
∑

l=−∞

cj0l ϕ
j0
l (x) +

j1−1
∑

j=j0

+∞
∑

l=−∞

dj
l ψ

j
l (x),

where the (cj0l )l are the coefficients on the coarse mesh and the (dj
l )l the details at the different

level in between.

2D generalisation: In two dimensions, the prediction operator which is the base of the mul-
tiresolution analysis can be defined as a tensor product of 1D operators. In practice, one needs to
consider three distinct cases. (see figure 1 for notations):

1. Refinement in x (corresponds to the points cj+1
2k1+1,2k2

and cj+1
2k1+1,2k2+2): we use the 1D pre-

diction operator in x for fixed k2.

2. Refinement in v (corresponds to the points cj+1
2k1,2k2+1 and cj+1

2k1+2,2k2+1): we use the 1D pre-
diction operator in v for fixed k1.

3. Refinement in x and v (corresponds to the point cj+1
2k1+1,2k2+1): we first use the 1D prediction

operator in v for fixed k1 to construct the necessary points to apply the 1D prediction operator
in x for fixed k2 that is the applied.



The corresponding wavelet bases are respectively of type ψ(x)ϕ(v), ϕ(x)ψ(v) et ψ(x)ψ(v) where
ϕ and ψ are respectively the 1D scaling function and wavelet. Indeed if we have a decomposition
like

Vj+1 × Vj+1 = Vj × Vj + Vj ×Wj +Wj × Vj +Wj ×Wj.

we obtain a 2D wavelet decomposition of the following type

f(x, v) =
∑

k1,k2

(

cj0k1,k2
ϕj0

k1
(x)ϕj0

k2
(v) +

j1−1
∑

j0

(

drow,j
k1,k2

ψj
k1

(x)ϕj
k2

(v)

+ dcol,j
k1,k2

ϕj
k1

(x)ψj
k2

(v) + dmid,j
k1,k2

ψj
k1

(x)ψj
k2

(v)
)

)

. (2)

nD generalization : This will be useful for three, four, five or six dimensional phase space as is
necessary for Vlasov simulation. A nD multiresolution analysis can also be constructed from the
1D multiresolution analysis by tensor products

Vj = Vj × Vj · · · × Vj.

Defining Ibin = {I = (i1, i2, .., in) ∈ Z
n, I 6= 0, ik ∈ {0, 1} ∀k}, we obtain the formula

Vj = Vj−1 +
∑

I∈Ibin

WI
j−1,

where WI
j−1 = U i1

j−1 × · · · × U in
j−1 with U i

j−1 =

{

Vj−1 if i = 0,

Wj−1 if i = 1.
The decomposition of a function f at the scale j1 can be expressed as

f(X) =
∑

K

Cj0
K Φ0,j0

K (X) +

j1−1
∑

j=j0

∑

I∈Ibin

∑

K

DI,j
K ΦI,j

K (X),

where ΦI,j
K (X) = φi1,j

k1
(x1) · φi2,j

k2
(x2) . . . φ

in,j
kn

(xn) with φi,j
k =

{

ϕj
k if i = 0,

ψj
k if i = 1.

2 The adaptive algorithm

In the initialization phase, we first compute the wavelet decomposition of the initial condition f0

which is known analytically, and then proceed by compressing it, i.e. eliminating the details which
are smaller than a threshold that we set. We then construct an adaptive mesh which, from all the
possible points at all the levels between our coarsest and finest, contains only those of the coarsest
and those corresponding to details which are above the threshold. We denote by G̃ this mesh.

• Prediction in x: We predict the positions of points where the details should be important
at the next time split step by advancing in x the characteristics originating from the points
of the mesh G̃. Then we retain the grid points, at one level finer as the starting point, the
support of which contains the end point the characteristic.



• Construction of mesh Ĝ: From the predicted mesh G̃, we construct the mesh Ĝ where the
values of the distribution at the next time step shall be computed. This mesh Ĝ contains
exactly the points necessary for computing the wavelet transform of f ∗ at the points of G̃.

• Advection in x: We compute the origin of the characteristics for each point of Ĝ and inter-
polate its value at the level where it arrives.

• Wavelet transform of f ∗: We compute the ck and dk coefficients at the points of G̃ from the
values of f ∗ at the points of Ĝ.

• Compression: We eliminate the points of G̃ where the details dk are lower than the fixed
threshold.

• Computation of the electric field: We compute ρ on the finest grid and solve Poisson.

• Same steps for the v part of the splitting method.

3 Numerical results

In order to assess the benefits of the adaptive solver we computed the transverse evolution of a
semi-Gaussian beam in a uniform and periodic focusing channel. For such a beam the initial
distribution function reads

f(r, v) =
I

πa2
√

2πb
e−

1

2
(v2/b2) if r < a,

and f(r, v) = 0 else.

3.1 Semi-Gaussian beam in uniform focusing channel

We first consider the evolution of a semi-Gaussian beam in a uniform focusing channel. The tune
depression σ/σ0 is 0,25.

Moreover, here, in dimensionless units ω = 2, ω0 = 1. a = 4/
√

15, b = 1/(2 ∗
√

15) et n0 =

2π. The tests have been performed with a time step of 1/32th of period, that is ∆t = 2π/(32ω0) =
π/16 for a coarse mesh of 8 × 8 points with 5 refinement levels, that is 256 × 256 points on the
finest grid, and a refinement threshold of 10−3. This means that details such that |dj

k| < 10−3 are
considered to be 0 and the corresponding grid point is removed. Figure 2 represents snapshots of
the evolution along with the grid points kept by the adaptive algorithm for the computation. We
notice that the adaptive grid follows very well the evolution of the fine structures.

3.2 Semi-Gaussian beam in periodic focusing channel

We now consider the transverse evolution of a semi-Gaussian beam in a periodic focusing field of
the form α(1 + cos 2πz/S) for a tune depression σ/σ0 of 0.17. Figure 3 represents snapshots of
the evolution along with the grid points kept by the adaptive algorithm for the computation. As in
the previous case, the adaptive grid follows very well the evolution of the fine structures.



4 Conclusion

We have introduced in this paper the concept of an adaptive semi-Lagrangian Vlasov solver and
proved the feasability of the method for 1D model problems. The method we proposed can be
generalized to higher dimensions. Adaptivity is defined through a multiresolution analysis based
on interpolating wavelets which is coupled very naturally to the semi-Lagrangian method as fine
grid points are added where interpolation on the coarser grid does not do a good enough job.

Adaptive methods enable semi-Lagrangian methods not to waste computing time in regions
where nothing is happening and thus make them a lot more efficient. On the other hand, an im-
portant overhead is introduced, and programming such a method in an optimal way is a lot more
challenging. We are still working on it.
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Figure 1: Raffinement du maillage en 2D.

Figure 2: Snapshots of the evolution of a semi-Gaussian beam and the associated adatptive grid in
a uniform focusing channel



Figure 3: Snapshots of the evolution of a semi-Gaussian beam and the associated adatptive grid in
a periodic focusing channel


