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Two-scale expansion of a singularly perturbed convection
equation

E. Frénod* P.-A. Raviart! E. Sonnendriicker?

February 9, 2001

Abstract. In magnetic fusion, a plasma is constrained by a very large magnetic field, which
introduces a new time scale, namely the period of rotation of the particles around the magnetic field
lines. This new time scale is very restrictive for numerical simulation, which makes it important
to find approximate models of the Vlasov-Poisson equation where it is removed. The gyrokinetic
models aim at exactly this. Such models have been derived in the physics literature for several
decades now, but only in the last few years there have been rigorous mathematical derivations.
Those have only addressed the limit when the magnetic field becomes infinite. We consider here
the Vlasov equation in different physical regimes for which small parameters are identified, and
cast the obtained dimensionless equations into the abstract framework of a singularly perturbed
convection equation. In this framework we derive an asymptotic expansion with respect to the small
parameter of its solution, and characterize the terms of the expansion. The proofs make use of
Allaire’s two-scale convergence.

Keywords. Vlasov equation - singular perturbation - two scale convergence - asymptotic expan-
sion.

Résumé. Lors de la fusion par confinement magnétique, un plasma est confiné par un champ
magnétique trés fort, qui introduit une nouvelle échelle de temps qui est la période de rotation
des particules autour des lignes de champ magnétique. Cette nouvelle échelle de temps est trés
pénalisante pour la simulation numérique ce qui rend essentiel I’utilisation de modeles approchés de
I’équation de Vlasov-Poisson dans lesquels cette échelle n’apparait pas. Les modéles gyrocinétiques
ont été introduits dans ce but. De tels modeles existent dans la littérature de physique depuis
plusieurs décennies, mais des dérivations mathématiquement rigoureuses ont seulement été réalisées
récemment. Celles-ci ont considéré la limite de 1’équation de Vlasov-Poisson quand le champ
magnétique tend vers l'infini. Nous considérons ici ’équation de Vlasov dans différents régimes
physiques pour lesquels nous identifions des parametres petits. Nous replagons les équations adi-
mensionnées obtenues dans le cadre abstrait d’une équation de convection singulierement perturbée.
Dans ce cadre nous dérivons un développement asymptotique par rapport au petit parametre de
la solution, et caractérisons les différents termes du développement. Les preuves sont basées sur la
convergence & deux échelles introduite par Allaire.

Mots clés. Equation de Vlasov - perturbation singuliére - convergence a deux échelles - développement
asymptotique.
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1 Introduction

One of the great challenges in plasma physics is still to obtain energy through the thermonuclear
fusion process. There are essentially two ways which are currently explored to achieve this feat: iner-
tial confinement fusion (ICF) and magnetic confinement fusion (MCF). The magnetic confinement is
performed in large toroidal devices called tokamaks, and, as the name tells us, the plasma is confined
by using an external magnetic field which needs to be very large. One tool which is used for the
understanding of the behavior of plasmas in tokamaks is numerical simulation. The MCF plasma
dynamics can be described by the Vlasov equation coupled to Poisson’s equation. However this
model is very difficult for numerical simulation of tokamaks in particular because the large magnetic
field introduces a very restrictive time step for numerical stability. In the past other models like the
guiding center model or the gyro-kinetic model have been introduced to simulate such plasmas.

In previous papers [3, 5, 2, 4] limits of the Vlasov or the Vlasov-Poisson equations were investi-
gated in different regimes, corresponding to different small parameters but having in common a large
magnetic field which is the situation occurring in tokamaks. Related work has also been presented
by other authors [6, 9, 7, 8]. The next step which we wish to address here is to characterize all
the terms of a two scale asymptotic expansion in the large magnetic field, or equivalently the large
cyclotron frequency, regime of the linear Vlasov equation with a given electric field.

Let us make this discussion more precise by introducing the Vlasov equation, for a given electric
field E(x,t) and magnetic field B(x, t):

of q _

a—l—v-vgcf—l—R(E(x,t)—l—vxB(x,t))-va—O. (1.1)
In order to introduce the small and large quantities, we need to define some characteristic scales:
t stands for a characteristic time, I for a characteristic length, ¥ for a characteristic velocity. We
now define new variables ¢/, x’ and v/, by t = #/, x = Lx', and v = oV, making the characteristic
scales the unities. In the same way, we define the scaling factors for the fields: E for the electric field
and B for the magnetic field and the new fields £ and B are given by: EE(x',t') = E(Lx', ') and
BB(x',t') = b(Lx',#t'). Last, defining a scaling factor f for the distribution function, noticing that
f is a distribution function on the phase-space it is natural to define the new distribution function
by

fr,v,t) = Z3ﬁ3f(fx',ﬁv',ft'). (1.2)

With those new variables and fields we obtain that f' is solution of

of i Et Bi
a—f, + %v’ Vo f' + (qm—ﬁé’(x’,t’) + %v' x B(x',)) - Vo f = 0. (1.3)

Now, we introduce the characteristic cyclotron frequency: @, = % and the characteristic Larmor

v Using those physical quantities, (1.3) becomes

We

6fl ) ' S O 1ot = 1oyt !
——}—twcfv -V f +(twcﬁ€(x,t)+twcv x B(x',t")) - Vy f' =0. (1.4)

radius: ar, =
ot
Assuming the magnetic field is strong consists essentially in setting
- E
tw, = — and — = =¢. 1.5
° ¢ B (1.5)

[y

On the other hand we may assume that the length scale L is large compared to the Larmor radius,
i.e. @ar/L = €. Then the rescaled Vlasov equation writes
of'

7 T vV f' + (EE, 1) + %v x B(x',t)) -V f =0. (1.6)



We may also assume that the length scale L is comparable to the Larmor radius in the direction
orthogonal to the magnetic field, remaining large in the magnetic field direction. In this regime,
called “Finite Larmor Radius Regime”, the Vlasov equation reads

a_fl ! ! 1 ! / 1oyl 1 1ot _
BT + v Vo f + oVi Ve f' + (E ) + SV X Bx',t))-Vuf' =0, (1.7)
where we denote by || and L the directions parallel and perpendicular to the magnetic field.

We notice that the Vlasov equation with a large magnetic field (1.6) or (1.7) can be cast into the
framework of a singularly perturbed convection equation.

So, let us now consider the Initial-Value problem for a convection equation with a small parameter

€
6(,;;E+a-Vug+%b-VuE=0, xERY, >0, (1.8)
ue(%,0) = ug(x). (1.9)
In (1.8), we assume that b = b(x,t) verifies
V-b=0. (1.10)

In order to get existence and uniqueness of the solution of (1.8)-(1.9), we need to make some regularity
assumptions. In particular, we shall assume in the sequel that

(a(.,t),b(., 1)) € WH(R%), (1.11)

As for a, the only requirement is enough smoothness in order to be able to carry out the asymptotic
expansion. We shall not try here to find the minimal required smoothness.
The aim of this paper is to prove that under suitable hypotheses on b, u. admits an asymptotic
expansion of the form
Ue(x,t) = ZskUk(x,t, E), (1.12)
€

k>0

where the functions U*(z, t,6) are periodic in § and will be characterized.
Before stating our results, let us introduce some notations : We shall denote by 8 — X (6;x,1t)

the solution of IX
— =b(X,1),
do (X,1) (1.13)

X(0) =x,

and assume that the solutions of this system are periodic of period 27 in #. Moreover, we shall
denote by

2
a’(x,t) = % VX(6;x,t) a(X(6;x,t),t)db, (1.14)
0
and
0 1 2
a’(x,t) = ﬁ/o a(x,t,6)do, (1.15)
with ax
OL(X, t: 0) = VX(H, X, t)il (a(X(H7 X, t): t) - W (97 X, t))7 (116)

where VX (0;x,t) stands for the Jacobian matrix of x — X (0;x,t).
Notice that a° = a® when b = b(x) does not depend on ¢. Indeed X (6;x,t) = X(#;x) does not
depend on t either.

The main results of the paper are the following : First we have theorems characterizing the terms
of the expansion :



THEOREM 1.1 The first term of the expansion (1.12) is given by
U%x,t,0) = VO(X(=8;x,1),t) (1.17)
where the function VO is the solution of the initial value problem

ove

W+::1°-VV°:0, xeRY, t>0, (1.18)

VO(x,0) = ug(x). (1.19)

THEOREM 1.2 The function U verifies the equation

0

%(x, t,0) +a’(x,t) - VU°(x,t,6) = 0. (1.20)

THEOREM 1.3 For k > 1 the function U is given by
Uk (X, t; 0) = Vk (X(—H; X, t)7 t) + Wk (X(_a; X, t)7 t: 0)7 (121)
with

[ aUk—l
Wk(x,t,e):—/( s VU (X (03, 1), t,0) do, (1.22)
0

and where the function V¥ is the solution of the initial value problem
i 27r[aWk
27T 0 6t
V*(x,0) = 0. (1.24)

ovt
ot

+a%. . vvk=— (x,t,0) + a(x,t,0) - VIWF(x,t,0)]df, xe€ R, >0, (1.23)

Our first approximation result, justifying the first term of the two-scale expansion is the following:

THEOREM 1.4 We assume that ug € LP(R?), 1 < p < oo. Then, for any T > 0, the solution
ue of (1.8), (1.9) stays bounded in L>=(0,T; LP(R?)) and two-scale converges to the function U° €
L*°(0, T; Lg°(R; LP (R?)) characterized by Theorem 1.1.

Moreover, if ug € L?(R%) N L29(RY), for some q¢ > 1, we have

lim lue (x,t) — U%(x,t, E)|2 dx dt = 0. (1.25)
e—0 Qr g

In this theorem, LB’O(R) stands for the space of 27-periodic functions being in L*°(R) and @ for
[0,T) x R

For the justification of the following terms of the expansion, we study the k*" order approximation
U%(x,t, L) +eUt(x,t, L) +---+*U¥(x,t, L) of u.. For this purpose, setting u2(x,t) = u(x,t), and
v2(x,1) = ve(x,t) = uc (X (;%,¢),t), we introduce the functions u* and v¥ defined respectively by

1
Wt = (bt - UF (k8 2)
g 13
1
= b6 ) = U006 8, 5) = U (et 1) = o = RO, D)), (1.26)
and 1 ;
Uf = E(vf_l - Vk_l) - Waka ng(x, t) = Wk(xata 5)7 (1'27)

where the function W* is defined by (1.22). We have



THEOREM 1.5 We assume that ug € LP(R?), 1 < p < co. Then, for k > 1, if the function W*
is “smooth enough”, for example T,VT/V’C € L>®((0,T) x (0,27); LP(R?)), u¥ two-scale converges
to the function U* € L*°(0,T; s Lo (R LP(RY)) characterized by Theorem 1.3, whereas vF converges
two-scale and in L*>(0,T; L”(]Rd)) weak-* to the associated function V*. If moreover, ug € L*(R?),
we have
lim luk(x,t) — U¥(x,t, E)|2 dxdt =0, (1.28)
e—0 Qr £
and vF converges to V¥ in L2(Qr) strong.

The paper is organized as follows: in the first part we formally characterize the different terms of
the expansion (1.12) and prove Theorems 1.1 to 1.3 and in the second part we prove approximation
results given by the different terms in Theorems 1.4 and 1.5. In the third part, we briefly present
two simple applications of the previously built framework to the Vlasov equation.

2 Characterization of the terms of the expansion

Plugging expansion (1.12) into equation (1.8), we obtain

1 0 k-1
—(86%+b VU + ) e O b.wUt + aUa +a-VU*!) =0.
k>1

Identifying the terms of the same order in &, this yields at the order —1

0
86% +b-VU° =0, (2.1)
and at the order k-1, k> 1
ou* ouk-1
25 P VU* = —( o +a- VU, (2.2)

On the other hand, the initial condition (1.9), yields

U°%(x,0,0) = uo(x), (2.3)
U*(x,0,0) =0, k>1. (2.4)
Equations (2.1) and (2.2) are of the form
oU
—~ 1b- = 2.
20 +b-VU =5, (2.5)

where the variable ¢ only appears as a parameter and where
0 — S(6;x) is periodic of period 2. (2.6)

Thanks to the regularity assumption (1.11), equation (2.5) can be solved by the method of charac-
teristics. As b does not depend on 6, the solution of

dX
90 =b(X),

X(o) =x,



is given by 6 — X (0 — 0;x). Hence any solution of (2.5) is of the form
0
U(x,0) = V(X (=6 %)) + / S(X (0 — 6: %), 0) do, 2.7)
0
where

V(x) =U(x,6 =0).

Remember that we assume that the vector field b is such that
0 — X (x,0) is periodic of period 2. (2.8)

In the case of the Vlasov equation this is the magnetic field, and the periodic orbits are the tra-
jectories in the magnetic field. We now express a condition under which U defined by (2.7) is also
periodic in 6 of period 27:

LEMMA 2.1 Under assumptions (2.6) and (2.8), Equation (2.5) is solvable in the class of 2w-periodic
functions in 0 if and only if
27
S(X(6;x),0)d8 =0 Vx e Re. (2.9)
0

Proof. Due to assumption (2.6), the function U defined by (2.7) is 2n-periodic in 8 if and only if
042w /]
/ S(X(U—H—Zw;x),a)d(f:/ S(X (o —0;%),0) do,
0 0

or equivalently

6+2m
/ S(X (o —0;x),0)do =0.
(4

Using assumption (2.8), this condition becomes
27
S(X (o —6;x),0)do = 0.
0

Noticing that
X(o —6;%x) = X(0; X(-0;x%)),
and setting y = X (—0;x), we get
2w
S(X(o;y),0)doc =0 VyeR?,
0

which proves our lemma. [
Let us now recall the dependence on ¢t and write X (6;x,t) instead of X (6;x). Then the solution
(2.7) of (2.5) reads
0
U, t,0) = V(X (=0 %, 1), 1) + / S(X (0 — 6:%,8),t,0) do, (2.10)
0

and the solvability condition (2.9) becomes

2w
S(X(6;x,t),t,0)d0 =0 VxR (2.11)
0



Let us now characterize the functions U*, k > 0. Using (2.10), we deduce on the one hand from
(2.1) that U° is of the form
U%(x,t,0) = V(X (=;%,1),1), (2.12)

i.e. (1.17) and, on the other hand from (2.2) that U*, k > 1, is of the form (1.21) where W* is
defined by (1.22). At this stage, we have proved the first part of Theorems 1.1 and 1.3.

We now need to determine the equations satisfied by the functions V* = V*(x,t), k > 0. To
this purpose, we shall write the solvability condition for Equation (2.2) corresponding to k + 1 in
the class of functions that are 2m-periodic in 6:

2w 6Uk
/ (7+3.VUk)(X(6;x,t),t,0) df = 0. (2.13)
0

The next step is to express condition (2.13) for U* of the form (1.21). More generally, let us first
evaluate the expression

2w
/ (66_(15] +a-VU)(X(8;x,1),t,0)do
0

when
U(x,t,0) = W(X(-6;x,t),t,0). (2.14)

For this purpose, we need to verify some useful identities:

LEMMA 2.2 Forf,0 € R, x € R¢, t > 0, we have

VX(0; X(=0;x,t),t) = VX (0 — 6;x,t) VX (—0;x,t) L, (2.15)
and
%—f(a; X (=%, 1)) = %—f(a —0:x,1) — VX(0 — 0%, ) VX (—0; %, t)_l(;—f(—e; x1).  (2.16)

Proof. We start from the identity
X(o—0;%x,t) = X(0,X(-0;%,1),1).
Taking the derivative with respect to x, we find
VX(o—0;x,t) = VX(0; X(—0;%,t),t)VX(—0;x,1),

i.e. (2.15). Taking the derivative with respect to ¢, we get

190.4 o0X 0X
E(U - 07 X, t) - E(a” X(—O, X, t)a t) + VX(O', X(_e) X, t)a t)a(_ea X, t)
which together with (2.15) yields (2.16). [ |

In the case when o = 6, (2.15) and (2.16) become respectively
VX(0; X (=0;x,t),t) = VX (=0;x,t) (2.17)

and

—(0; X(—6;x,t),t) = —=VX(-0;x,t)~

oxX 0X,

We can then prove



LEMMA 2.3 If the function U is of the form (2.14), we have

2
/ [a—U+a-VU](X(0;x,t),t,0)d0
o Lot

27
= [ et 0) + VX @k, @(XOx,0,0) - S Oix.0) - VWG t,0)] 8 (219)
0
Proof. Taking the derivative of (2.14) with respect to ¢, we first obtain
oUu ow 0X
E(Xa t7 0) - W(X(_aa X, t)7 t7 0) + E(_ey X, t) : VW(X(_H: X, t)7 t; 0)
whence oU oW ax
E((X(aa X, t)7 ta 0) = W(Xj t7 0) + E(_e; X(oy X, t)a t) : VW(XJ t7 6)
and due to (2.18)
O (X (Os%,1),1,0) = TV (x,1,0) — (VX (85, 0) 2 (0:%,0) - YW (x,1,0).

Then, taking the derivative of (2.14) with respect to x, we find
VU(x,t,0) = VX (=0;%,t) T VW (X (=6;x,1),t,0)
hence, using (2.17)
(a-VU)(X(6;x,1),t,0) = (VX (-6; X(6;x,t),t)a(X (0;x,1),t)) - VIV(x,t,6)
= (VX(;x,t) ta(X(¥;x,1),t) - VIW(x,t,0).
So we get

197 +a- VUIX(05%,0),1,0) =

ow . _ 0X
W (X, t7 0) + (VX(07 X, t) (a(X(07 X, t)7 t) - E (9, X, t))) : VW(X, t7 0)

and in particular (2.19). Thus the lemma is proved. [

We also have

COROLLARY 2.4 If the function U is of the form
Ux,t,0) =V (X(-6;x,t),t) (2.20)

for a function V =V (x,t), we have

27
/ [88—2] +a-VU](X(6;x,1),t,0) db = 2@%—‘{ +a° VV](x,t). (2.21)
0

We then verify

LEMMA 2.5 We have

1 27

Vol =Val= [V a)(X(Ox,1),0) b (2.22)
0



Proof. Let ¢ € C®°(R?). We can write
1 2m
/ a®(x,£) - Vp(x) dx = — VX (0%, 8) " a(X (0;, 1), 1) - Vip(x) dx db.
Rd 21 0 R4
Making the change of variable
y= X(eaxat) < X= X(_07Y7t)5

we have
[ (X .0 a(X0x.0).6) - V() dx
= [ Ay (VXX (~8:5.0,0) TVl X (~6:.) dy.

Thanks to (2.17), this last integral is equal to

/Rd a(y,t) - (VX (0; X(=6;y,t),t) " Vo(X (=6;y,1))) dy = /Rd a(y,t) - Vy(p(X(=6;y,1))) dy

=~ [ V- ap(X(~8;y,1)dy = - /R (V- a)(X (0%, ) p(x) dx.

Rd

Hence we get

1 27
0 . x)dx = —— -a X x) dx.
/Rda(x,t) Vo(x)d 2W/Rd/o (V- a) (X (6%, 1)) db o(x) d

i.e.
27
V-a’ ! (V-a)(X(8;x,t)) db

:% )

In the same way, we can write

[ (X305 0x,0) - V() dx
R4 t
= [ (VXX (53,007 GG X (<8350, - TelX (815, 0) dy 0.

Thanks to (2.18) and (2.17) this last integral is equal to

- /Rd(VX(H;X(—G;y,t),t)_1VX(—0;y,t)_la—X(—ﬁ;y,t)) V(X (—8;y,t)) dy

ot
0X 0
= [ S8yt VeX(-8y.0)dy =~ [ p(X(-tiy.0) dy
R4 Rd
d
= —E/Rdcp(x)dx =0.
It follows that V -a% = V - a°. [ ]

We can now prove Theorem 1.1.
Proof. (Theorem 1.1) As already noticed (1.17) is a consequence of formula (2.10), and the
solvability condition for equation (2.2) corresponding to k = 1 reads, due to Corollary 2.4,

ove

—+a’-v'=o.
o @



On the other hand, we deduce from (2.3) and (2.12) that V°(x,0) = U°(x,0,0) = ug(x). [ ]

As a consequence of Theorem 1.1, we can now deduce Theorem 1.2 follows
Proof. (Theorem 1.2) We deduce from (2.12) that

au° avo aX .
W(’gtao) - W(X(_&X:t)at) + E(_vaat) -VV (X(_aaxat)at)a

and
VU(X(-6,x,t)) = VX(=6;x,t)TVV (X (-0;x,1),1)

hence thanks to equation (1.18) satisfied by U, we have

0
O (. 1,6) 4 VX (033, )7 (B(X (03, 0), 1) = o (~53%,1) - VU (x,1,6)) = 0.
We then need to evaluate
X
VX (—6;x,t) 1% X (-0;x,1),t) — 6(9—t(—0;x,t))
27
= o [ VX (8, VX (0, X (8%, 0), 1) (alo, X (8 ,), 1)
T Jo
0X : . -19X .
- E(U,X(—G,x,t),t)] da—VX(—H,x,t) ot ( 07X7t)'
Using (2.15) and (2.16), we find
VX (05, (X (053,80, 1) — o (5,1)
27
-1 VX(o—0;x,t)" (a(X (0 — 8;x,1),t) — a—X(a —0;x,t)+
27 0 6t
L, 0X
+VX(o—-0;x,t)VX(—6;x,t) ﬁ(—(); x,t))do—
27
C VX (=%, 2 (<%, 1)) = = / VX (0 = 0;%,)~'a(o — 6,x,) do.
6t 27 0

We then deduce from the 27 periodicity of 8 — X (—6;x,t) that

VX(—0;x,t) (2% X (—8;x,t),t) — %—)t((—o;x,t)) =

1 27

=5 VX (0;x,t) 'a(X (0;%,t),t)do = a°(x,t)
T Jo

which proves the result. ]

Let us now come to the determination of the functions V* and U* for k > 1. Assuming U*~!
and consequently W* are known, we obtain V¥ and U* thanks to Theorem 1.3 which we are now
able to prove:

Proof. (Theorem 1.3) Formula (1.21) has already been obtained from (2.10) In order to determine
the function V¥, we write the solvability condition (2.13) of equation (1.23) corresponding to k + 1.
We deduce from Lemma 2.3 and from Corollary 2.4 that

2w k i
[ - VU -0x 1,08 = 2 G+ TVR)
0

[ )+ (X ,0) 0K 0%, 0,8) — o 05%,)) - VI, 1,0))
0 t ot

10



whence the first equation (1.23). On the other hand, we have
Vk(x,0) = U¥(x,0,0) — Wk(x,0,0) =0
due to (2.4) and the definition (1.22) of W*. [ |

Notice that a result analogous to Theorem 1.2 can also be proved.

Let us now explicit the case &k = 1, where it is easy to find a more explicit equation. We shall
compute the source term of the initial-value problem explicitely in function of V°. We start by
computing

[4 6U0
Wl(x,t,0) = —/ (W +a-VU)(X(0;x,t),t,0) do.
0
Setting
- 1 [?
Apt6) = / a(x,t,0) do, (2.23)
0
we obtain
THEOREM 2.6 We have
Wh(x,t,0) = 68(a°(x,t) — A(x,t,0)) - VVO(x,1), (2.24)
and
1 [ ow! L L[> 0A 9a°
o [0 +aten0) - VI 00 = 2| [T 0GR ) - G0

+0(VA(x,t,0) — Va’ (x, 1)) a(x, t,0) — Va°(x,t) (0(A(x,t,0) — a%(x,t))) de] -VVOx,t). (2.25)

Proof. Starting from (2.12), we obtain as in the proof of Theorem 1.2

0 0
O 4 - VUO) 6, 1,6) = S (X (~0:3,1),1) + (VX (0, Dalx, )
X
+ (0, 1)) - VYO X (03,10, 1),
that is
ou° 0 ove
(W +a-VU )(X(Ua X, t); t, U) = W(X(_U7 X(Ua X, t)at)+
+ (VX (=05 X(05%, 1), Da(X(033,1),8) + - (=03 X (033,1),1)) - VV (=03 X (03,11, )
and due to (2.17)-(2.18)
ou° 0 ove
(W +a-VU )(X(O',X,t),t,o') = W(X,t)"'
+VX(o;x,t) " H(a(X(0;x,1),t) — %—f(a;x, 1) - VVO(x,1).
It follows, using (2.23)
1 ov° i 0
w (X7t> 0) = _Q(W(Xa t) + A(X, t, 6) -VV (X7 t))a

11



that is (2.24) using (1.18).
Concerning (2.25), we first compute

oWt r OA 0a° 0
~ | a (x,t,0)do = ; (E(x,tﬂ) — W(x,t)) -VVP(x,t)d
2m B avo
+ 0(A(x,t,0) —a%(x,t)) - V——(x, 1) df.
0 ot
Using (1.18), we have
0
Vaalt(xat) = —V(ﬁo(x,t) : VVO(X, t)) = _(Véo(xat))Tvvo(x7 t) - (VVVO(X7 t))éo (X, t)a
and then
2 oWt mOA 9a° 0
~) o (x,t,0)do = ; (E(x,tﬂ) — W(x,t)) - VVP(x,t)d
27
— [ 0(A(x,t,6) - &%(x,1)) - (V& (x,1))" VVO(x,1)) df
0
27
- / B(A(x,t,0) — a%(x, 1)) - (VVVO(x,1))a0(x, ) db. (2.26)
0
Secondly,

_ / (. 1.6) - VI (. ,60) df = / T (. 1.0) - [B(VA(x,£.8) — V& (x, )TVVO (x. 1)] dB
0 0

+ /27T a(x,t,0) - [(VVVO(x,1) (G(A(x,t, 6) —a%(x,t)))]do
0

= O(VA(x,t,0) — Va'(x,t))a(x,t,0) - VVO(x,t) db
0

+ /h(VVVO(x,t))a(x,t, 0) - (G(A(x,tﬁ) — éo(x,t))) de. (2.27)
0
Summing (2.26) and (2.27), we get

oWt . o OA 0a°
- [ w0+t v ol = [ [ oGk o0 - G o)

+0(VA(x,t,0) — Va’ (x,t)) a(x,t,0) — Va°(x,t) (0(A(x,t,0) — a°(x,t))) d| - VVO(x,1)
- /0 2W(VVVO(X, t))(a(x,t,0) — a°(x,1)) - (0(A(x,1,60) — &°(x, 1)) db.

In this equality, the last integral is of the form fozﬂ(S d%{) -£ df where S is symmetric and independent
on 8 and ¢ is 2w-periodic, hence it gives 0. Then we obtain (2.25). [ |

3 Approximation results

After having formally derived a two-scale expansion of the initial value problem (1.8)-(1.9), we now
want to to justify it rigorously, i.e. study the approximation properties of the partial sums

t t t
UO(Xata E) + EUI(Xata E) +ot EkUk(x7t7 E)
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Let us start by presenting a straightforward generalization of the results of N’Guetseng [10] and
Allaire [1]. Let X be a Banach space and let ¢ € [1,00); we denote by X' the dual space of X,
< .,. > the duality bracket between X' and X and ¢’ the conjugate exponent of ¢, such that
% + % = 1. We denote by Cy(R; X) the space of continuous 27-periodic functions on R, with values
in X. Then given a sequence (u.) of functions of L4 (0,7; X') and a function U° = U°(¢,6) in
L7 ((0,T) x (0,27); X') = LI ((0,T); LY (0, 27; X)), we shall say that

ue = U two scale when € — 0,

if, for any function ¢ € L(0,T; Cy(R; X)), we have

T t 1 T 2
im [ <u(t),ot L) > dt = —/ / <UL, 0),v(t,60) > didt.
& 27r 0 0

e—0 0

In particular, it follows that

27

]. I
ue = ul = 5 U%.,0)df in LY (0,T; X")weak-*.
0

Then, can prove

THEOREM 3.1 Given a sequence (u:) bounded in Lfl’ (0,T; X"), there exists an extracted subsequence
(denoted in the same way) and a function U° € LY ((0,T) x (0,27); X') such that

ue = U° two-scale.

Moreover, if X is a Hilbert space, ¢ = 2 and U° € L*(0,T; Cy(R; X")) and if in addition

lim el L20,75x) = W U 2((0,7) x (0,27); ) »

we have
T

im [ (Juc(t) — U, g)n?x dt = 0.

e—=0 /o

The two scale convergence notions being precised, we can now prove our first approximation result,
Theorem 1.4: Proof. (Theorem 1.4) We first prove that u. remains bounded. Multiplying (1.8) by
puP~!, we obtain, as V - b = 0 the energy estimate

d
— / uP dx = / (V-a)ul dx < [|V - a||pe(0,1;100 (R ) / uP dx. (3.1)
dt R4 N R4

Rd

Then using the Gronwall lemma we get

wPdx < [ ufdxellVal)
R4 R4

so that u. remains bounded in L*(0,T; LP(R?)). As p > 1, we can apply Theorem 3.1: there
exists an extracted subsequence of the sequence (u.), still denoted by (u.), and a function U° €
L>(0,T; L®(R; L (R%)) such that

ue = U° two-scale.

Let then ¢ = 1(x, t,0) be a function of class C!, 27-periodic in 6 such that ¢(., .,8) € CL(R? x[0,T)).
We set 1he(x,t) = 1h(x,t, L), so that ¢. € CF(R? x [0,T)). We then write that u. is a weak solution
of (1.8),(1.9). Setting Q7 = R? x [0,T), we obtain in particular that

/T ug(aa‘fj V- (ha) + %b V) dxdt + /R wot-(.,0) dx = 0. (3.2)

13



We have
0.

ey, ot 10y,
~ o e )

=g h )T gt

(x,1)

that is, shorthanded,
e _ (aw) 1(31#)
ot ot 00’7

so that, multiplying (3.2) by &, we get

| uGe b oy axar el | (G4 V- @idxdr+ [ uovi(,0)dx] =o.

T

Using that u. two-scale converges to U® and the fact that the last two integrals remain bounded,
we obtain when passing to the limit in €

27 0 6,¢
U%(== +b - V¢)dxdtdd = 0.
o Jor 00

We thus find that (x,0) — U°(x,t,6) is the solution of (2.1) so that U° is of the form (2.12) and is
2n-periodic in 6 due to hypothesis (2.6).

We now need to verify that the function V° so introduced is indeed well characterized by (1.18).
For this we choose in (3.2)

Y(x,1,0) = p(X (=0;x,1),), ¢ € C(R? x[0,T)),

so that

o _
%—Fb-V’(b—O.

This time we obtain
oY
us((=)e + V- (aye) dx dt + uo(.,0,0)dx =0,
, ot Rd

and using the two scale convergence of u. to U° once more

27
1 UG+ V- @y dxded+ [ uop(,0,0)dx =0,
2w 0 QT ot R4

Noticing, as previously, that

Chid
ot

_o 0x

(X7t7 6) - ot (X(—G;X,t),t) + E(_a;)g t)at) ) V(,D(X(—H;X,t),t),

le(X, t: H) = VX(_07 X, t)TV(p(X(_07 X, t): t)7
and replacing U by its expression (2.12), we find

1 27

o V(X (—6;x,t),1) [%—f(X(—O; x,t),t) + (VX (—6;x,t)a(x,t)
0 QT

X
+6a—t(—t9;x,t),t))-ch(X(—G;x, t),t)+V-(a(x,t)w(X(—H;x,t),t))] dx dt d0+/ uop(.,0)dx = 0.
R4
Setting y = X (—#6;x,t) and using (2.17) and (2.18) with x replaced by y and 8 by —6, and using
Lemma, 2.5, we obtain

14



1 P

o VO 02 (v,0) + VX(0,y,0)7 (a(X (0;,1)1)
T Jo Qr

0X

- E(G;YJ))-Vw(y,t)JrV-(VX(G,y,t)’la(X(G;y,t)J)cp(y,t))) dy dtd0+/Rd uop(-,0) dx =0,

which is also, using the definition of ag

0 .
Vo) ) + V- (Gop)dy di+ [ uop(.,0)dx = 0.
Qr ot Rd
In other words, V° is a weak solution of (1.18). This proves the first part of the theorem.

Assume now that ug € L?(R?) N L2¢(R%). We notice that U° € C°([0,T]; Cy(R; L? (R?))). On
the other hand, Equation (1.8) being linear in u., we get, multiplying it by u. that u? also verifies
(1.8) with the initial condition u2(x,0) = u2(x). Then as u2(x) € LY(R?) with ¢ > 1, we can apply
the same technique as previously to show that u? two scale converges to a limit which is necessarily
UZ. Tt follows that

. 1
lim [Juc || 2(@r) = \/—2—7T||U0||L2(QT><(0,2W))-

We can then apply the second part of Theorem 3.1 which gives here

/ lu. (x,4) — U°(x, 1, £)|2 dx dt — 0,

T

which completes the proof of the theorem. ]

We can reformulate the previous results with the function v. defined by

0.0, ) = w(X(2%,),0) e, 8) = 0 (X (= 53%,), ) (33)
Setting
ae(xat) - a(x,t, _) = VX(—,x,t)_l(a(X(g,x,t),t) - %_i((é;xat))L (3 4)

we first have

LEMMA 3.2 The function v is the solution of the initial value problem

at (3.5)

e 4 Vo, =0, x€R:, >0,
Ve (%,0) = ugp(x).

Proof. We infer from (3.3)

O Ous it OX b\ LOX b ot
E(xat) - ot (X(nyat)at) +( ot (nyat) + c 90 (E;xat)) VUE(X(E,X,t),t),
that is
Ov. _ Oue 1 t 6_X t. t.
E(Xat) _(E_ng VUE)(X(E,X,t),t)—}— ot (Eaxat) VUE(X(67X7t)7t)-

On the other hand y ‘
Vo (x,1) = VX (Z5%,8) Vu (X (5%, 1), 1),
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@0, = % (e t) - Tux(Eix 0,0

ot
= (VX @ (Gix 0,0 - 2 (Lix 1) - Ve (1) = (@ - Vo) (6 8).
15 € ot ‘e
We infer that
ov, Ou,
( ot ot

whence the result. n

1
V)0, t) = (G +a- Vue + 2h- Vu) (X (5ix,8),0) =0,

Theorem 1.4 then yields

COROLLARY 3.3 We assume that ug € LP(R?), 1 < p < co. Then v. two scale converges to V° and
in L°°(0,T; LP(R?)) weak-*. Moreover, if ug € L?(R? N L24(R?)) for ¢ > 1, v. converges to V° in
L?(Qr) strong.

Proof. Let again ¢ = 1(x,t,6) be a, 2r-periodic in #, C! function such that 9(.,.,6) € C}(R? x
[0,T)) and let 9. (x,t) = ¥(x,1, L); we compute

t t
/ Vethe dx dt = / ue (X (=;%x,1), )¥(x,t, —) dx dt.
. - € €
With the change of variable y = X (£;x,1), we obtain

| vvedxdt= [ wyoux-Sy.o.n Dy

T T

and using the two scale convergence of u. to U°, we find that

27
/ vetbe dx dt —>2i / U (y, t,0)b(X (—0; y., 1), 1, 6) dy dt dB
T T Jo QT

1 27

27 0 Qr

1 27

=5 VO(x, 1) (x,t,0) dy dt db.
2 Jo Qr

In other words, v, two-scale converges to V° and also in L>®(0,T; LP(R?)) weak-*, as V° does not
depend on 6.

Finally, if ug € L2(R?) N L2¢(R?), the strong convergence of v. to V0 in L2(Q7) is nothing else
than property (1.25). [ |

Let us now move to the higher order approximations. Before proving Theorem 1.5, let us prove
a few technical lemmas:

LEMMA 3.4 When
U(Xata 6) = W(X(—Q;X, t)ata 6),

we have

P) [
[ & v a v xosxn), 0o = [ [ (x1,0)
0 3t 0 3t

+ (VX (05%,1) 7 (a(X (05 %, 1), 1) — %—f(a;xa 1)) - VW(x,t,0)] do
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The proof can be adapted from the proof of Lemma 2.3. In particular, if
Ux,t,0) =V (X(—6;x,t),t),

we get

[/
/ Ui t) +a- VU)X (0:%,0),£,0) do = 02+
. Uor ot

(4
+ ([ (VX (@x,0) @K (0x,8).0) — Gy (03,8 do) - TV (x,).

LEMMA 3.5 For k > 1 the function vF defined by (1.27) is the solution of the initial value problem

oWk
ot

vk
S+ 8. - Yok = —((

v¥(x,0) =0,

)s + 55 : (VWk)s)v (3.6)

where W is defined by (1.22) and a. is defined by (3.4) .

Proof. Let us prove this lemma by induction. the result for k£ = 0 is Lemma 3.2. Then for k > 1,
we have 1
o= S - VA - WE,

Hence
ok l(é)vf_l B 6V’“‘1) 3 (BW’“) B 1(6W’“)
ot e ot ot ot ° e 08 %
and 1
Vol = E(va_l — VvV —(VWF)..
It follows that
ok | g LovEt po1 OVETL k—1
5t +a. - Vol _E( ot +a.-Vui = o —a. -V
owk - k 1, 0wk
- [( ot )E+aa' (VW )E] - g( 90 )E
owk ~
=—[( ot )e + & - (VWk)E]
1 ,0Vk1  gwk-t . h1 b1 1,0Wk
- (G e T A VYV R (VR - () (B)
On the other hand
0 6Uk—1
Wh(x,v,0) = —/ ( +a- VU1 (X(0:x,1), £, 0) do,
0
and using the definition of U*~! and Lemma 3.4 yields
oWk ovk-1 X
gg % 10) = ——5—(x,1) = VX(6;x,6) " (a(X (6%, 1), 1) — %—t(e;x,t)) VVE(x,1)
k—1 X
O x,1,6) — VX (8%, 0)7 (a(X (05, 1), 1) — o (053, 1)) - VIWE (x,1,0),
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from which we get

oWk v awh!

( a6 )e = ot
Hence the last line in (3.7) vanishes, which yields the result. [ |

—a, -VVk1_ —a. - VWk1,

We are now ready to prove Theorem 1.5:
Proof. (Theorem 1.5) The proof consists of three stages.
First Stage: A priori estimates. We need to prove that

v* and u remain bounded in L*(0, T; LP(R?)). (3.8)

Let us denote by

k
7= A0 ae (W) (39

and let us notice that, proceeding as in the proof of Lemma, 2.5, we get V-a.(x,t) = V-a(X(ﬁ; X,t),1).
With this notation, multiplying the first equation in (3.6) by p(v*)P~! and integrating in space, we
get

d

— (vf)p dx = / (V- 55)(1;5)" dx +p/ fsk(vf)”_1 dx
dt Jga R4 Rd

1 -1
< IV -allu / (o) dx + - / (fopax+ 21 / (oh)? dx, (3.10)
R4 D Jr4 p R4

using the Young inequality |f||v[P~! < %| fIP+ %h}lp . Then applying the Gronwall lemma we get

1 p
/ (,Uk)p dx < p SUP¢ ”f“P T (sup, HV'alloo_i_P’%l)‘
RE ~ sup, ||V - al|eo + p’%l

Hence, if W is a ”smooth enough” function, for example %, VW e L°((0,T) x (0, 27); LP(RY)),
we find that v* is bounded in L°(0, T'; LP(R?)). On the other hand it easily follows from (1.26), (1.27)
using (1.21) that uf(x,t) = v¥(X(%;x,1),t) + WH(X(%;x,1),t). Then, as W} remains bounded in
L>(0,T; LP(R?)) provided W* € L>((0,T) x (0, 27); LP(R?)), we infer that u* also remains bounded
in L>(0,T; LP(R?)). Property (3.8) follows.

Thanks to (3.8) and Theorem 3.1, there exists a subsequence extracted from the sequence (u*),
still denoted by (uf), and a function U* € L>(0,T; Lg°(R; L” (R%))) such that

uf — U* two scale,

and, in the same way, there exists a subsequence (v¥), still denoted by (v¥), and a function V¥ €
L>(0,T; Lg°(R; LP (R?))) such that

v* — V¥ two scale.

Second stage: Characterization of U* and V*. We start by the characterization of V*. Let ¢ =
¥(x,t,60) a test function; we infer from (3.6)

k
| A4V @) dxd = | T(@Z Je e - (VIWR). )b dxdt,
that is
k
[ oG+ 2 G+ 9 G dxdi = [ (Fg) 4 d - (T dxat
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If we multiply by ¢ and let € tend to 0 and take into account the two scale convergence of v to V¥,

we obtain X
/ / V’“&pd dtdf =0,
that is
ovk —0
08

Thus V¥ = V¥(x,t) is independent of 6.
Let now ¢ = ¢(x,t) € CL(R? x [0,T)) be a test function independent of §. We then find

k
[ oty + 9 G ixae= [ (T4 (YW pdxat

and passing to the limit in the standard manner

27 k
vk(%f V- (@) dxdt = /QT(% | 1% xt.0)
0X
ot
This means that V* is a weak solution of (1.23) for k = 1. We have thus characterized V*.

It remains to characterize U*. We infer from (1.26) and (1.27), using (1.21), that

+ (VX (6;%,t) Ha(X(8;x,1),t) — (0;x,1))) - VIW*(x,t,0)]d6) ¢ dx dt.

ut (1) = (oF + WE)(X(—23%,8),0),

that is ; ; ;
uel:c(x7t) = U::(X(—E,X,t),t) + Wk(X(—E;X,t),t, g)

Let then ¢ = 1(x,t,6) be the usual test function; we have
t
[ wbvaxdi= [ @500+ Wy (X sy, D dyar

Using the two scale convergence of u¥ and v* to U* and V* respectively, we obtain

2 27
/ Uk dx dt d = / / (VE(y, 8) + WE(y, 1, 0)0(X (6;y, 1), t,0) dy di db,
0 Qr 0 T

hence
Uk(x,t,0) = VF(X(=6;y,1),t) + WF(X(=6;y,1),1,6),
which is the wanted characterization of U*. Moreover, since the solution of (1.22) is unique, we can
deduce that the whole sequences u¥ and v¥ converge two scale and not only subsequences.
Third stage: Strong convergence. We assume now that ug € L?(R?). We start by verifying that

lim v Iz20z) = IVFlIr2(00)- (3.11)

Multiplying the first equation of (3.6) by 4(v¥)? and integrating by parts, we get
G [obrax= [ @ ajehtaxed [ gray?
dt Jra R Rd
< [ (7-aehytaxsa [ (R ax [ bt
R R4 R4
I

(Va4 et [ (Pt [ @b
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We already know from the first stage of the proof (applied for p = 2) that v¥ is bounded in
L>(0,T; L2(R?)). This, in addition to the smoothness of f¥ which comes from the smoothness
of W implies that the right-hand side of the previous inequality is bounded. Hence we get here in
the same way as in the first stage of this proof, using the Gronwall lemma that (v¥)? is bounded
in L*°(0,T; L?(R?)), which implies that it two scale converges. It is then an easy game to show, as
we have done previously that its two scale limit is nothing else than (V¥)2. Property (3.11) then
follows. Hence we have

vk = V¥ in L2(Qr) weak,
lim [0 ]| 22(0r) = IV*Ilz2(@x)-

This implies that
v* = VFin L*(Qr) strong.

As a consequence of this result, we obtain that

t
lim luf(x,t) — U*(x,t, -)|* dx dt = 0.
e—0 Qr £

Indeed, we can write due to (1.26) and (1.27)
k k ¢ k ¢ ¢ k k ¢
UE(X,t)—V (X(—g,X,t),t)—W (X(_E;xat)ata g):(vs -V )(X(—E,X,t)),

and the conclusion follows. [ |

4 Application to the Vlasov equation

The results presented here can be applied to the following dimensionless Vlasov equations introduced
at the beginning of the paper. In addition, we decompose here the electric and magnetic fields into
a large part which tends to infinity and part which does not depend on &

ofe
ot

v Vgt (B0 + TN 0) 4 v x (Bl O+ M) ) Tt =0, ()
fra=do  @2)

and

€

AV Va4 Ty Vo f (B )+ N6 ) +¥ x (Bl t) + M(x,0) ) - Tuf” =0,
(4.3)

ff:o = f07
(4.4)

the latter corresponding to the Finite Larmor Radius Regime, in the case when M and N are
smoothly varying fields satisfying

||M(X,t)” =1, M(X,t) J-N(Xat)a

for every x € R® , and ¢ > 0. In equation (4.3) we denote v = (v-M)M and v, =v — vj.
I l
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However, the computations being particularly tedious, we just give partial results with very few
details concerning

of¢

ot

1 1
+v-Vof*+ (E(x, t) + 22 + JV X e1) -V, f¢ =0, (4.5)

ftgzo = f07 (46)

i.e. the case of large and constant electric and magnetic fields having the same norm and being
orthogonal to each other, we assume here without loss of generality that the magnetic field is along
e; and the electric field is along es.

Our second application concerns the following dimensionless Vlasov equation

€

1 1
6(;; +v) - Vo fe + oViL -Vaff + (E(x,t) + VX e1) -Voff =0, (4.7
fi=o = fo, (4.8)

which is the case of a large and constant magnetic field in the other scaling we proposed in the
introduction. In the above equations (e, ez, e3) is the frame of R® and where for any vector v we
denote V|| = vier and v = vses + vzes.

In both cases, the solution f¢ can be expanded as

t t
fE(X,V,t) = FO(X,V,t, g) +6F1(X,V,t, g) +... ) (49)

this expansion being justified, using two scale convergence, as soon as enough regularity is assumed
on fo and E.

In our first application, equation (4.5) is of the form (1.8) with variable (x, v) in place of x and
with

0
a(x,v,t) = v and b(x,v) =
E(x,1) e+ vxe
Then X does not depend on ¢ and
X . I 0
X(0;x,v,t) = , VX(0;x,v,t)" =
R(O)(v +e3) —e3 0 R(-9)
with
1 0 0
R@)=|[0 cosf sind | - (4.10)
0 —sinf cosé
Hence,
R(O)(v + - -
a(x,v,t,0) = @) +es) —es ) aO(X, v) = ﬁo(xa v) = YImes ’ (4.11)
R(-6)E(x,1) E”(X, t)

and we have the following Theorem.

THEOREM 4.1 The first term F° of the expansion of the solution of equation (4.5) is given by

FO(x,v,t,0) = G°(x, R(—6)(v + e3) — es, 1), (4.12)
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where the function G°(x,v,t) is solution to

— + (v —e3)-V,G"+E|-V,G" =0, (4.13)

ot
Gy = fo- (4.14)

Notice, by the way, that the term —e3 appearing in the kinetic velocity in (4.13) is nothing but the
well known and so called (E x B/|B|?)—drift.
In order to deduce the equation for F! we turn to Theorems 1.3 and 2.6. Noticing

1 00
]
/ R(~6)d8 = 6P + R(E —6) = R(3), with P= |0 0 0 (4.15)
0
0 00
we get
wt (x,v,t,G) = (R(g + 0) - R(g))(v + e3) ’ VwLGO(X,R(—g)(V + e3) - e3at)

~(R(Z - 9) - R(

5 INE(x 1) - Vo, GO(x, R(=0)(v + €5) — 3, ).

Now, applying formula (2.25), we get

L[ ow! L 0
— % 0 W(X;t; 0) + a(XJVJtJ 0) : VWl(X,V,t; 0) da - [2_ ‘/0' ((R( 5 aE

( 0 —~(R(5 +9) —R(%)))
+ ™
(R(5 = 6) = R(3))(VE) 0

) ( 0 p) (—(R(g‘;@)—R(g)zr(V'*'%)) dg]‘(vwa(’)’
PV,E 0 (R(= — ) — R(2))E v,G°

which, after a straightforward (and quite long) computation, gives

OE OE OE
. 0 L 1L ok
(e1 X E) VwG + (e1 X ( ot + v 6(61 81’3
1, OE, OFs OB, OF; 0 dG°
+ 2((_8x3 + 2 Wi+ (é)x2 + 6373)(“ X el))> -V,G° +e; x v, 'V“Ela—vl'

Hence we proved the following Theorem
THEOREM 4.2 The second term F of the expansion of the solution of equation (4.5) is given by

F'(x,v,t,0) = G'(x, R(—0)(v + e3) —e3, 1)

— (R(§ =) = R(3)(v +e3) - Vo, G (x, R(~)(v + e5) — 3, 1)

— (B(5 —6) = R(5)B(x,) - Vi, G°(x, R(~6)(v + e3) — e5,1), (4.16)
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where G (x, v, t) is solution to

oGt 0E O0E, OE,
W + (V” —e3)- val + E” . Vle =(e; XE) - VwGO + (61 x ( ot + v 071 - 975
1 OFE OFE OFE OFE
F G+ Gvs (G 4 GL X en) + (en X V- Ve, Eider ) - NG,
Gi_o =0. (4.17)

In our second application, namely equation (4.7), we have

THEOREM 4.3 Denoting by R(0) = —(R(5 + 6) — R(3)), the first and the second term of the
expansion of the solution of equation (4.7) are given by

F(x,v,t,0) = G°(x + R(=0)v, R(—0)v,1), (4.18)

F'(x,v,t,0) = G (x + R(—0)v, R(—0)v,1)

B [/9 R(—0)E(x + R(c — 0)v,t) o — 6 2 [R(—0)E(x + R(o — 8)v,t) da]-
0 \R(-0)E(x + R(c - 0)v,1)

where G° is solution to

27

1
dG° v+ %2 ; R(—0)E(x + R(8)v,t)db ‘ (VwG()) 0 (420
ot L [ RCOEx+ ROV, 1) db V,G°
271’ 0
GY_o = fo, (4.21)
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and where G is solution to

27

ot (Vita [ REOBG+RE)Y, 00 (Vw@)

o T A _
; 2i R(—0)E(x + R(6)v,t)db v,G!
T Jo
1 g [ /9 R(—a)a—z(x FROVO\ 4 / (o) ;_P]Z -
2r Jo Lo R(—G)E(x + R(o)v,1) 21 Jo R(—a)a(x +R(0)v,t)

. ( /9 (R(—U)V LE(x +R(0)v,t) R(—0)V,E(x + R(0)v, )R(0) + P) .
0 \R(-0)VzE(x+ R(0)v,t) R(—-0)V,E(x + R(0)v,t)R(0)

(@)v,t) R(=0)VeE(x +R(0)v,t)R(0) + P da)
(0)v,t)  R(=0)VzE(x +R(0)v,t)R(0)

V|| + R(=0)E(x + R(6)v,t)
R(-0)E(x + R(0)v,1)
1 ( /9 R(—0)VzE(x + R(0)v,t) R(-0)VE(x +R(0)v,t)R(0) + P da)
0 \ R(—0)VLE(x+ R(o)v,t) R(-0)V,E(x+ R(o)v,t)R(0)
(
(

o)V, 1) o 9 /27r R(—0)E(x + R(o)v,t) da)] - v, G°
o)V, t) 21 Jo  \ R(=0)E(x + R(0)v,1) V,G°
Gi_o =0. (4.22)

The proof of this Theorem is straightforward (but tedious) once we notice that equation (4.7) is of

the form (1.8) with
Vi V]
a(x,v,t) = and b(x,v) = .
E(t,x) v X e

Hence, since foa R(0)do = 6P + R(6), we have

X(0;x,v,t) = X+ RO , VX(0;%,v, 1) = fRE6) ;
R(6)v 0 R(-9)

a(x,v,t,6) = Vi + R(—0)E(x + R(0)v,1)
o R(—0)E(x + R(0)v,t) '

and then
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