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Abstract

Vlasov methods which instead of following the particle trajectories solve the Vlasov equation
on a grid of phase space have proven to be an efficient alternative to the Particle In Cell
method for some specific problems, in particular those where a good precision is needed for the
distribution function in regions of phase space where it is small.

Gridded Vlasov methods have the advantage of being completely free of numerical noise,
however the discrete formulations contain some other numerical artifacts, like damping, which
are necessary for such methods to be stable and deal with filamentation which is inherent to the
Vlasov-Poisson equations. We shall compare in this paper different types of methods solving
the Vlasov equation on a grid in phase space: the semi-Lagrangian method, the finite volume
method, the spectral method, and a method based on a finite difference scheme conserving
exactly several invariants of the system. Moreover for each of those classes of methods, we shall
compare different interpolation or reconstruction procedures in this respect, always keeping in
mind the cost in memory as well as in CPU time is a very important issue because of the size
of the problem which is defined on a grid in phase space which can be up to six-dimensional.

PACS codes: 52.25.Dg, 52.65.-y.

Keywords: Vlasov — Eulerian methods — numerical simulation — comparison.

A model which can be used in many cases for the study of plasma as well as of beam propagation
is the Vlasov equation coupled with the Maxwell equations or some reduced model to compute the
self consistent fields. It describes the evolution of a system of particles under the effects of external
and self-consistent fields. The unknown f(¢,z,v), depending on the time ¢, the position z, and the
velocity v, represents the distribution of particles in phase space for each species. The numerical
resolution of the Vlasov equation is usually performed by particle methods (PIC) which consist
in approximating the plasma by a finite number of particles. Trajectories of these particles are
computed from characteristic curves given by the Vlasov equation, whereas self-consistent fields are
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computed on a mesh of the physical space. This method allows to obtain satisfying results with a
relatively small number of particles. However, it is well known that the numerical noise inherent to
the particle method becomes, in some cases, too important to have an accurate description of the
distribution function in phase space. Moreover, the numerical noise only decreases in 1/ V/N, when
the number of particles N is increased.

To remedy this problem, methods discretizing the Vlasov equation on a mesh of phase space have
been proposed. Among them, the semi-Lagrangian method consists in computing the distribution
function at each grid point by following the characteristic curves ending at this grid point backward
in time for one time step and then interpolate the distribution function at the obtained point
from the neighboring grid points values, knowing that the distribution function is conserved along
characteristic curves. To compute the origin of the characteristic a high order interpolation method
is needed. A special case of this method, based on a time splitting enabling an exact computation of
the characteristics and a cubic spline interpolation, has been first introduced by Cheng and Knorr
[4], and subsequently used in many plasma physics papers, see for example |7, 10| and references
therein. This method has then been cast into the more general framework of semi-Lagrangian
methods by E. Sonnendriicker et al. [14]. This method was also successfully applied to beam
physics problems, namely the simulation of space charge waves on an initially semi-Gaussian beam
and halo development in a uniform focusing channel [15]. Another flavor of the semi-Lagrangian
method was introduced by Nakamura and Yabe and called the Cubic Interpolated Propagation
(CIP) method. It is based on a Hermite interpolation for which the gradients of the distribution
function are also advanced along the characteristics [16]. This method needs the storage of f, V,f,
and V, f, therefore in order not to be to much memory consuming the mesh on which it is applied
should be coarser.

Another type of scheme for the Vlasov equation is the finite volume type method (or flux balance
method), where the discrete unknowns consist of averages of the distribution function on volumes
paving the phase space, and it is updated by considering fluxes entering and leaving each volume
and is thus perfectly conservative. The first scheme of this type was introduced by Boris and Book
[2], and another implementation more recently by [8]. We recently proposed an improved version of
this scheme that we called the Positive and Flux Conservative method (PFC [9], which is designed,
in addition to be conservative, to preserve the positivity and the maximum value of the distribution
function. The scheme was implemented up to third order accuracy.

We shall also consider the Fourier-Fourier spectral method introduced by Klimas and Farell
[5, 6], and based on a splitting between physical space and velocity space transport, using at each
step a backward and forward Fourier transport for the shift. A filtration algorithm to limit small
scale filamentation was also proposed in this scheme.

One of the flaws common to all Vlasov solvers is their smearing of small structures and the
associated non physical increase of entropy. However, this feature is necessary for the stability of
Eulerian Vlasov solvers. Indeed, a finite difference scheme based on a method introduced by Arakawa,
[1] which conserves [ f?dzdv numerically becomes unstable when filamentation phenomena occur.
The method can still be useful when we stabilize it by a collision term which is chosen so as to still
conserve desired moments of the distribution function.

In this paper, we recall the methods introduced above, and propose in particular for the semi-
Lagrangian scheme new interpolation techniques in particular local ones which should be more



efficient for parallel computation as they need less communication between processors. Moreover,
in order to get some insight on the behavior of these methods we compare them for some classical
problems of plasma physics, with respect to numerical dissipation, phase errors and accuracy at
lower resolution as well computational cost for one specific problem.

1 The Vlasov equation.

The evolution of the density of particles f(t,,v)dzdv in the phase space (z,v) € R¢ x IR,
d=1,..,3, is given by the Vlasov equation,

g—{+u-vxf+F(t,:c,v)-VUf=0, (1)

which can also be written in the following conservative form

U ¥ v ) + dve(Flt,2,0) f) = 0. (2)

The force field F(¢,z,v) can consist of an applied external field and a self consistent field which
is coupled with the distribution function f giving a nonlinear system. Typically F' = %(Esel 7+
Eappi + v X (Bseif + Bappi), where the self fields are solution of Maxwell’s equations with sources
induced by the particles, or in simplified cases which we shall consider in this article, the magnetic
field is neglected and the self electric field is computed using the Poisson equation, i.e.

Eself(ta x) = _V$¢(ta '7")’ _50A$¢ =p, (3)

where m represents the mass of one particle, ¢ its charge and p is defined by
plta) = [ Flt,z,0) (@
IRd

2 The Flux Conservative method.

The starting point of our algorithm is the Flux Balance method [8], discretizing the Vlasov equation
in the conservative form: we first observe that using a time splitting scheme the algorithm boils
down to one dimensional problems which have the following form,

8f + 0y (u(t,z) f) =0, Y(t,2) € RY X [Zmin, Tmaz]- (5)

We will assume that u(¢, ) is smooth enough. Then we can define the characteristic curves solution
of the differential system corresponding to the transport equation:

dx
{ E(S) = u(s,x(s)), (6)

x(t) = .



Let us denote by x(s,t,z) the solution of (6) and define the Jacobian J(s,t,z) = 9yx(s,t,z). In
[3], it is proved that J(s,t,x) is positive for all (s,t,z) € RT x IRT x IR, and the solution of the
transport equation (5) reads

ft,z) = f(s,x(s,t, 7)) J (8,1, 7),

which describes the conservation of particles along the characteristic curves

/K £t 2)dz = / o TN (1)

for any interval K, where
x(5,6,K) ={y €R: y=x(s,t,2); »€K}.

Note that this property remains true for dimensions d > 1. Now, let us introduce a finite set of
mesh points (z;4.1/2)icr of the computational domain (Tmin; Tmaz), We will denote the space step
by Az = 2,1/ — Ti_1/2, and C; = [T;_1/2,Ti41/2]- Assume the values of the distribution function
are known at time t” = n At. We find the new values at time ¢"*! by integrating of the distribution
function on each cell. Indeed using the conservation of particles (7) on each interval C; from time

" to time ¢!, we have
Tit1/2 X(t" " w41 /0)
[ reaa - | 1%, 2)dz. (®)
Ti—1/2 x(tmtn e g 0)
Denoting by
Tiy1/2 n
Biprn(t") = / £t 5)da,
x(tm Ty 9)
The flux conservation becomes
Tit+1/2 11 Tit+1/2 n n
Ti—1/2 Ti—1/2

The evaluation of the average of the solution over [z;_; /2:Tit1 /2] smears out neatly fine details of
the exact solution which cannot be computed anyway on a finite size grid for longer times for which
sufficient mesh refinement is way to costly.

In order to get an accurate high order scheme, an essential step is now to choose an efficient method
to reconstruct the distribution function from the values on each cell C;.

2.1 The Flux Balance Method (FBM).

In [8], E. Fijalkow only used a linear interpolation

fu(z) = fi+ (z — wi)%, V€ (zi1/2,Tit1/2)-

This method is very straightforward to implement. However, its drawbacks are that it does not give
a positive approximation and does not control spurious oscillations.



2.2 The Positive and Flux Conservative method (PFC).

This method was introduced recently in [9]. It is based on a reconstruction via primitive function:
let F(t"™,z) be a primitive of the distribution function f(t",x), we will denote by

n 1 Tit+1/2 n
fi= E/m f(t", z)dz,

i—1/2

then we have F/(t", z;11/2) — F(t",7;_1/2) = Azf]', and

i
F(t", z4170) = AﬂUZfl? = wy.
k=0

On the interval [z;_1/9,Ti}1/2], We use the stencil {z;_3/2,%;_1/2,Ti11/2,Ti13/2} to approximate
the primitive by a polynomial of degree three. By differentiation, we define a first approximation
fn(t™, z), which is a third order approximation of the distribution function f(¢",z). Note that
fh(t”, x) is a perfectly valid third order approximation of f. However, it does not verify the property
of the exact solution of the Vlasov equation that 0 < f(¢,z) < foo for all z and ¢, where fo is
the maximum value of the initial distribution function fy. In order to enforce this property, we
introduce slope correctors to obtain for all z € Cj,

€
tha) = I+ i [2 (@ —w) @ —wp5p0) + (0= mi10) (0 = 2412 | (P — £)

€

Y [2 (@ = 2)(z = Tivap) + (2 = 2icapo) o = $i+1/2)] (fi = fit1),

with
[ (2nn - ) i S =17 >0,
C | min (B2 e = /U — ) I S - S <0,
and
[ (20— G ) A >0,

min(L;-2 /(7 f) SR <0

It is easy to verify that the approximation of the distribution function f;(¢",z) previously con-
structed satisfies

e Conservation of the average: for all 7 € I, fj’:l/; fn(t™ z)de = Ax f].
e Maximum principle: for all € (Tmin, Tmaz), 0 < fr(t",z) < foo-

>From this reconstruction, we approximate the quantity ®;, /9 (™), by looking for the cell C; such
that x(¢", "+, Tiy1/2) € Cj and setting ; = ;112 —x(t", tnt Tiy1/2)- Then for a positive u(t, ),



we obtain

Tit+1/2 ¢
bap@) = [ penod=a0 3 g+
Tj+1/2— % k=j+1
+ —
yn G iy Qi _ogny S Y Dy en _ gm
o[£+ L (1= T @ 20 (Fa — )+ L (1= 20) 0+ 50) (] = £-0)],

and when u(t, z) is negative, we set a; = T;_1/p — x(t",t"+1,$i+l/2), then —Az < o; <0 and

Tit1/2 i1
ft", x)dz = Az Z fy +
j-1/2m % k=i+1

DQip1/0(t") = /

Q;

6_-I— . €. . .
o [ = 0= 2 L+ 20) (= ) = 2@+ 1) 1+ 20) (7 = 140

3 The semi-Lagrangian method (SL).

This method is based on the usual advective form of the Vlasov equation, which reads

0
a_{ + 0.V, f4+ F(t,z).V, f =0, VY(t,z,v) € RT x R x RY, (10)
where F' is the force field. As the distribution function solution of the Vlasov equation is constant
along the particle trajectories, assuming it is known at time t” = n At, the solution at time #"*! is
given by

FE" @ 0) = f(°, XA, ¢ 2, 0), V(17 2,0)), (11)

where (X (", t"t1 z,v), V(¢", 1", z,v)) stands for the solution of the differential system defining
the characteristic curves (which are the particle trajectories) and which reads

dX
E = V(t)a
& = X))

The semi-Lagrangian method consists in approximating the distribution function at each grid
point of the computational domain (x;,v;);cr, and updating it at each time step with its value
at the origin of the characteristic (X (", ", x;,v;), V (", "1 x;,v;)), which is computed from
values on the grid using a high order interpolation method. In previous works [4, 14], a cubic spline
interpolation has been used. This gives very good results, but has the drawback of being non local
which causes a higher communication overhead on parallel computers. We want here to compare
its properties with those of local interpolation procedures.

Actually, the semi-Lagrangian method for the Vlasov equation can be simplified a lot when a
splitting procedure is used, because in this case the feet of the characteristics can be computed



explicitly at each split step. The different split steps for advancing from time step " to t"*!

the following:

are

fi(zv) = f(t",z—vAt/2,v),
f**(.’I),’U) = f*(.l‘,’l)—E*(.’L‘) At)a (12)
fE" Lz v) = f*(z—vAt/2,v),

where E*(z) is computed from f*.

For simplicity, we will only consider one dimensional reconstruction, but it can be easily gener-
alized to higher dimensions. In the following discussion, we will assume the distribution function is
known at time ¢" on the grid:

f(tnaxi):fin’ Viel,

and will present two methods of reconstruction based on the Lagrange and Hermite interpolation.

3.1 The Lagrange interpolation method.

We look for a continuous approximation f of f(¢",.) such that
Vi € Ia f(xz) = fzna and Vz € [xiaxﬁ-l]a f(l') = qm(x)a

where g, (z) belongs to Pap41[Xi,X;+1] i.e. the set of polynomial of degree 2m + 1 on the interval
[xi,%i+1]. We only choose polynomials of odd degree to have a centered approximation, indeed the
set of points used to construct the polynomial g, (z) on the interval [x;,x;41] is

{Xi—m’ vy Xy X1y ooy X+ 14m }a
and g, () is in the following form

2m—+1 k

@m(®) = flom + Y FXims oo Xicmik] [ [ (& = Xicm2),
k=1

=0

where f[X;—m, .-, Xi—m+k] 18 given by the divided difference formula

L ity Xigp) — FXiy - Xigp—1]
f[xi7 ""xi+p] - E L L ’ (13)

Xit+p — X4
flxi] = f(xi).

This interpolation method only gives a continuous function, then we have to consider a high degree
polynomial (m greater than 2) to obtain an accurate approximation of the distribution function. It
has been implemented until m = 4.

>From this reconstruction, we define the approximation of the distribution function f(¢t"*!,x;) at
time #"*1 at each grid point as follows:




for simplicity take m = 2, assume X (t",#""! x;) is known and belongs to the interval [x;,x;41],

then let us denote by o; = [ X (t",t"*!,x;) — x; | /Az, with Az = x;j41 — x;,
FE"hx) = @ (X" %)
= el - 1) - qei - )l — 207+ )
—s0i(l = a) (1 +a0)[Tyo 3 S5 + 357 — f1]

1
+ﬂai(1 —a;)(1+a;)(2 — ai)[fgn+2 - 3f]ﬂ+1 + 3fjﬂ - J[l]

1
+mai(1 —ai)(1+@i)(2— )2+ 0)[fflo — 4 +6 ] —4 [+ fiol

In the general situation, the semi-Lagrangian method does not conserve global mass, but for linear
advection with constant coefficients, the use of a centered approximation allows to ensure the
conservation of global mass: for simplicity, assume the propagation velocity u is positive,

f(tn+17x’i) = f(tnax’i - U'At)a

we set § = [“A—Awt], where [.] represents the integer part, and 0 < a = v At — x;_; < Az, then for

the previous scheme, we have

1
DU = YA e I = f) + qe(l=e) Y I = 2F ] s

i

using the divided difference formula, we obtain the result
VRS IR D

3.2 The Hermite interpolation method.

In this section, we will only consider cubic polynomials to construct a C' approximation f(¢",.)
using a Hermite interpolation, which needs to estimate the derivative J,f(z). In [16], authors
treated the case when the propagating velocity is constant and proposed to approximate the profile
of the derivative by differentiating the equation. They finally obtained a transport equation for f,
and 0, f, but the memory cost is increased to treat the Vlasov equation in the (z,v) space. Here,
we propose to approximate the derivative by a fourth order accurate finite difference formula:

1

no—
Oufi 12Az

811 — fital = [fia — fial] -
Then, for all z € [x;,%;11], f(z) is given by the cubic polynomial p3(z) such that

p3(xi) = in, 6$p3(xi) = azfzn
p3(Xiv1) = flh,  Oep3(Xig1) = Oufy-



Then, setting a; = [X(t”,t”“, X;) — Xj] /Az, where X (t", "1, x;) belongs to [x;,%;+1], the value
at time ¢"*! is determined by

FE"hx) = ps (X", ¢ %))
= fi' t o [fﬁu - fzn] + 0%2 [3[f£|—1 — fi'l = Az 205 f]" — 3zfﬁ|.1]]
+af [Az (0o ffyy + 0o fP] = 2[f%0 — £71] -

Let us note that using the centered approximation of the derivative, we also prove the conservation
of global mass for the linear advection with constant coeflicients.

3.3 The CIP method.

This method, which is a variant of the semi-Lagrangian method, was developed by Nakamura and
Yabe [16]. It is based on a splitting procedure into one-dimensional advection equations. The in-
terpolation step in the semi-Lagrangian algorithm is perform using a cubic Hermite interpolation,
i.e. an interpolation using on each interval the values of the functions and its derivatives at the
endpoints of the interval. Its specificity is that the derivatives needed for such an interpolation
procedure are not computed numerically but advanced themselves along the one dimensional char-
acteristics. For example, the first split step of the Vlasov-Poisson approximation consists in solving
the following system,

of _ of

00:f) | 0(0af) _

ot tv ox =9 (15)
0(0f) , 0(voyf) _

o "o 0 (16)

where the unknowns are (f, 0, f, 0y f).

Steps (14) and (15) just consist in a shift which is exact for the part being advanced, but step
(16) requires a numerical procedure which needs to be performed with great care so as not to
ruin the accuracy and conservation properties of the algorithm [16]. Once f and its derivatives
are advanced the reconstruction step of the semi-Lagrangian algorithm can be performed using a
Hermite interpolation.

This scheme has the advantage of being local, which is a nice feature for parallel computations,
as it involves less inter-processor communications, however it has a higher memory cost as it needs
storing all the derivatives as well as the values of distribution function at each grid point.

4 A spectral method.

This method has been proposed by Klimas and Farell to approximate the one dimensional Vlasov-
Poisson and Vlasov-Maxwell system [5, 6].



The distribution function is approximated by a partial sum of a Fourier series

N
fN(t,J,‘,U) = Z fk(tav) exp(—i27rk J’l/L)a Vz € (OaL)a
k=—N

and the Fourier coefficients are given by

N

fk(t,v) = Z f(t,zj,v) exp(i2nk-z;/L); Vke€{-N,..,N}.
k=—N

Then, the first shift of (12) is equivalent to the application of a phase shift to the expansion
coefficients R )
i) = fe(t",v) exp(—i27 k- v At/2 L).

In short, each split step consists in performing a forward FFT, a phase shift, and a backward FFT.

The development of filamentation in the velocity distribution, with its related propagation to
large Fourier modes in v in the Fourier-Fourier transformed distribution, can lead to serious com-
putational difficulty in the transformed space. To remedy to this problem, a filtered solution can
be computed. It consists in eliminating high frequencies of the velocity distribution, which gives a
smoother approximation [5, 6].

5 A Finite Difference Method (FDM).

In 1966 Arakawa [1] introduced a finite difference method for the integration of the Euler equation
for two-dimensional fluid flow which can, in particular, achieve conservation of mean kinetic energy
and mean square vorticity. This scheme can be easily adapted to the Vlasov-Poisson equations. In
1D, it reads in a dimensionless form

or o1, 9pof _ _/ _
at-l—vax 8:0(9@_0 Ap = ]Rfdv 1. (17)

Setting
v? oY aof oYaof
Y=¢p— 9 and  J(, f) = oz ov v oz
the Vlasov equation reads
af _

which is the form used by Arakawa who gives a second and fourth order discretization of J (¢, f),
with the following conservation properties:

e Particle conservation:

/Jh(zp,f)dwdvz(): f(t)d:(;d'u:/ fodz dv.
R? R2

IR2

10



e Energy conservation:
/ T, ) dzdv = 0 = / FYB(E) do dv = / Fou(0) dz dv.
R? R? R2

e Conservation of the mean square of f:

/Jh(w,f)fd:cdfu:0:> f2(t)dxdv:/ fedz dv.
R? R2

]R2

Then, we first compute three approximations of J(, f) on the grid (z;,y;)i ;. Denoting by h =
Tit1 — T = Yj+1 — Y4, We obtain

1
ye] [(¢i+1,j —i—1,5)(fij+1 — fij-1)

— (i j+1 — Yij—1)(fit1,5 — fi—l,j)],

T, f) =

1
T, f) = 12 [l/li+1,j (fir1,+1 = fir1,-1) — Yim1j (fimr,541 — fim1,5-1)

=i j+1 (firr,41 — fimij+1) + ¥ij—1 (firr,j—1 — fi—l,j—l)]a

1

S, f) = 12 [¢i+1,j+1 (fig+1— firrg) —Yi1-1 (fir; — fij1)

—i_1j+1 (fij+1 — fic1j) + Yirr,j—1 (fixr,5 — fi,jq)]-

Finally, the approximation Jp (1, f) is given by computing the average of the above three approxima-
tions, allowing to conserve the total mass, the total energy and the L? norm of f. However, it does
not preserve positivity. Moreover the scheme becomes oscillatory when filaments develop on the
order of the cell size. The previously introduced Vlasov solvers, rely on the interpolation procedures
to numerically smear out the thin filament and thus damp the oscillations. We can here achieve the
same effect by adding to the Vlasov equation a small collision term. Following Robert and Someria
[12], we can compute this term so that it maximizes local entropy and conserves moments up to
any desired order. In the actual code, we have implemented the conservation of moments up to the
second order, i.e. mass, impulsion and kinetic energy. More precisely, we look for a collision model
of the form
of 0J

- v’

where J should be chosen such that at each point in z: collisions maximize entropy

S(t,xz) = /]Rf log fdv,

11



conserve total number of particles, impulsion, kinetic energy:

1
v
9 2
/ 9T | " lay=y
R ov
oK
Moreover, for a given norm
j?
171 = [ o
r [
we require || J|| = «, where the parameter « is linked to the collision frequency which is here of

order to the grid size. Using a Lagrange multiplier technique, these constraints yield

flR fo™ 2dv

K
of k—1 :
= - A h A = 1) =
J a(av +,§:1 kkfv ), with A = (m )flRfvark*?dfu

In particular for K = 2, our model reads

of 0 [of
ot +J(4, f) —a%(%+A1f—A2fv),
with A7 = —%—, and As = —%—, where
e—ug/n e—ug/n

1
nz/fd'u, u():—/fvdfu, GZ/fUQd’U.
R nJR R

6 Numerical tests.

6.1 The linear advection.

We first consider the linear advection problem with constant coefficients to analyze the dissipation
for the different schemes using a Fourier transform.

Let us first consider the amplification factor for the different methods (see Fig. 1). We observe
that methods using a smooth reconstruction (Hermite or spline) are less dissipative than those using
only a continuous interpolation. To obtain a similar amplification factor with the Lagrange inter-
polation as with the spline interpolation, a polynomial of degree nine is required. The dissipation of
the conservative method with a quadratic polynomial is identical to the one using cubic Lagrange
interpolation. The linear reconstruction used in the (FBM) is the most dissipative. Consider now
the phase errors (see Fig. 2). It is the most important for the semi-Lagrangian method using a
Hermite reconstruction with a second or fourth order approximation of the derivative. The spline
reconstruction is also less accurate than the Lagrange interpolation of degree nine.

12



Amplification factor for conservative method Amplification factor for Lagrange interpolation Amplification factor for Hermite and spline interpolations
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Figure 1: The amplification factor with respect to a for a fized mode k. (1) the FBM (cross) and
third order reconstruction without slope corrector (line); (2) the semi-Lagrangian method with a
Lagrange interpolation of degree 3 (box), 5 (diamond), and 9 (cross); (3) and with cubic Hermite
polynomial with a fourth order approzimation of the derivative (box), and cubic spline interpolation

(line).
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Figure 2: The phase error with respect to « for a fized mode k. (1) the conservative method for the
FBM (cross) and third order reconstruction without slope corrector (line); (2) the semi-Lagrangian
method with a Lagrange interpolation of degree 3 (box), 5 (diamond), and 9 (cross); (3) and with

cubic Hermite polynomial with a fourth order approzimation of the derivative (box), and cubic spline
interpolation (line).
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6.2 The one dimensional Vlasov-Poisson system.
6.2.1 The plasma echo.

Following the work by Manfredi et al. [11], we consider an initial data representing an homogeneous
Maxwellian distribution

f(0,z,v) = exp(—v?/2), V (z,v) € (0,L) x IR,

1
V2
with L = 27 /k and k = 0.483. At time ¢ = 0, we excite an external electric field in the plasma, of
the form
Ey(z) = a cos(k z),

where a = 0.1. This field induces a velocity modulation, and right after a density modulation,
which eventually decays by Landau damping. After the first has damped away, we launch a second
wave at time ¢ = 30 w,; ! of the form

Ei(z) = a cos(2k x).

The density modulation induced by this second pulse also fades away. However, after a time much
longer than the inverse Landau damping rate of the first two pulses, a third wave appears (the echo)
as a modulation of the density at the wave number keep, = 2k — kK = k. The echo is due to the
nonlinear interaction between the two pulses and is essentially a phenomenon of beating between
two waves. Fig. 3 shows the electrostatic energy as a function of time. The damping of the two
pulses and the subsequent echo are accurately reproduced with the different schemes. The echo
wave number is indeed kecno, = k as predicted by the theory. The Landau damping rate for the first
pulse is in good agreement with the theoretical value vy, = 0.4 wy 1 and even larger for the second
pulse. The echo time is

techo = %30 wyl = 60w,
which corresponds very well with the numerical value. From time ¢ = 30 w, Lto ¢t ~ 60 wp 1 the
second wave has no effect on the first mode of the electric field, but at time ¢ = 60 w, 1 it is strongly
perturbed by the echo effect.

We report the results of a simulation using a number of cells N, = 32 in the z-direction, and
N, = 64, 128 in the v-direction with vye; = 6.5, and At = 1/8 for conservative, spectral and
semi-Lagrangian methods which are not restricted by a CFL condition, whereas At = 1/40 for
the Finite Difference Method. The numerical solution remains positive for all schemes and the
relative error norms of variations of kinetic entropy, L?-norm, and total energy always stay less
than 10~3 for semi-Lagrangian and conservative schemes. The evolution of the electric field (until
t=30 w, 1) obtained by different schemes is compared with the approximation computed on a fine
grid (512 x 1024 points) in Table 1. The conservative methods seem to be more accurate on a
coarse grid, whereas the semi-Lagrangian method with a cubic spline interpolation gives the best
result with 32 x 128 points. The order of convergence for the different methods agrees very well
with the order of the reconstruction. Finally, let us mention that the approximation obtained by
Finite Difference Method and the Spectral algorithm respectively strongly depend on the numerical
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Figure 3: Time development of (a) the electric energy (b) the first mode of the electric field (in log
scale) (c) the second mode of the electric field (in log scale) for the plasma echo test.

FBM | PFC | FDM | Spectral | CIP | SL Spline | SL Hermite
32 x 32 0.05 0.045 | 0.09 0.056 0.071 0.078 0.070
32 x 128 | 0.0065 | 0.0036 | 0.035 | 0.0035 | 0.0035 0.0014 0.0034

Table 1: Relative error norm for different methods for 32 x 64 and 32 x 128 points for the plasma
echo test.

collision frequency and on the truncature of low frequencies. It is an inconvenient for the robustness
of the methods.

6.2.2 The nonlinear Landau damping.

In this case, the initial data is given by

£(0,2,0) = \/%_W(l + acos(k z)) exp(—v?/2),
with @ = 0.5, and L = 27 /k. We are using a number of cells N; = 32 in the z-direction, and
N, = 64 in the v-direction with v, = 6.5, and At = 1/8 for conservative and semi-Lagrangian
methods which are not restricted by a CFL condition, whereas At = 1/40 for the Finite Difference
Method.

The linear Landau damping theory is valid as long as t < a~'/2; for longer times the problem
is inherently nonlinear. Here, the Landau theory cannot be applied because nonlinear effects are
too important, but this test has been studied numerically by many authors [5, 16, 11]. The electric
energy first decays exponentially and is next periodically oscillating. In Fig. 4, the electrical
energy, obtained by the different methods using 32 x 64 points, is plotted in logarithmic scales.
It can be compared with an accurate approximation (512 x 1024) for which L? norms and kinetic
entropy are well conserved. The evolution obtained by the PFC scheme clearly appears like the

15



Numerical method | 32 x 32 points | 32 x 64 points | 32 x 128 points

FBM 03.33 sec. 05.39 sec. 10.80 sec.

PFC 03.56 sec. 06.28 sec. 11.20 sec.

FDM 17.22 sec. 35.27 sec. 71.20 sec.
SPECTRAL 04.10 sec. 08.25 sec. 16.90 sec.
CIP 13.83 sec. 21.40 sec. 43.24 sec.

SL SPLINE 06.12 sec. 10.55 sec. 20.90 sec.
SL HERMITE 03.60 sec. 06.90 sec. 11.00 sec.

Table 2: Total time of computation for different methods with respect to the number of points points
for the nonlinear Landau damping test.

best approximation. Nonlinear effects are so important that it is necessary to control spurious
oscillations. The evolution of LP norms of fp(t), Y_ |fi(t)|P for p=1,2, are reported in Fig. 5. The
PFC scheme conserves the total mass and also positivity, the L' norm of f;(t) is then conserved
along time, whereas strong spurious oscillations occur for the different semi-Lagrangian methods
and for the spectral method, which do not have as efficient a mechanism to eliminate numerical
instabilities and rely on sampling effects for that. The use of slope correctors in the PFC scheme
enhances the decay of the discrete L? norm, but when oscillations, due to the nonlinearity, are
damped or averaged by the projection on the grid, the L? norm is well stabilized.

For the distribution function in the (z,v) space, small bumps appear around the phase velocity
vy = w/k. These bumps represent particles which are trapped by electrostatic waves (see Fig.6). As
a consequence of the entropy decay, the distribution function is smoothed when filaments become
smaller than the phase space grid size. Nevertheless, this smooth approximation seems to give a
good description of macroscopic values (physics quantities obtained by the integration of moments
of the distribution function with respect to v) since the evolution of the electric energy is more
accurate than one obtained from the semi-Lagrangian method using the cubic spline interpolation.

Computational cost of the different methods implemented. For the test case of the non-
linear Landau Damping, which is characteristic in this respect, we give for each method the total
time of computation, in Table 2 with respect to the number of points. We notice that the numerical
schemes using a local reconstruction are faster than ones using a global interpolation. The FDM
is penalized by a CFL condition on the time step, which increases the computation time on finer
grids. The use of the Fast Fourier Transforms for the spectral algorithm induces an amount of
work of N log(N), where N is the number of unknowns, whereas the computational cost of Flux
Conservative and semi-Lagrangian methods is linear with respect to the number of unknowns.

6.2.3 The two stream instability.

We consider the symmetric two stream instability with initial condition

f(0,z,v) = (1 4 5v%)(1 + a((cos(2kz) + cos(3kz))/1.2 + cos(k z))) exp(—v?/2),

2
7V27
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Figure 4: Time development of the electric energy using 32 x 64 points obtained by (a) the PFC
scheme, (b) the FDM, (c) the spectral algorithm, (d) the CIP method, (e) the semi-Lagrangian
method with a Cubic spline interpolation, (f) the exact solution (512 x 1024) for the nonlinear
Landau damping.
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Figure 5: Time development of L' and L? norms of f(t) for the nonlinear Landau damping test.
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Figure 6: The space integrated distribution function at time t = 30 w, L in space obtained with (a)
the PFC scheme, (b) the FDM, (c) the spectral algorithm, (d) the CIP method for the nonlinear
Landau damping test.
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with a = 0.01, k = 0.5, and L = 27 /k. We are using a number of cells N; = 64 in the z-direction,
and N, = 64, 128 in the v-direction with v,.; = 5, and At = 1/8 for conservative, spectral and
semi-Lagrangian methods which are not restricted by a CFL condition, whereas At = 1/40 for
the Finite Difference Method. From time ¢ ~ 20 w, Lto t ~ 40 wp 1 the instability grows rapidly
and a hole structure appears. After { = 45 w,, I until the end of the simulation, trapped particles
oscillate in the electric field and the vortex rotates. Fig. 7 shows the time development of the
discrete L2 norm and of the kinetic entropy for the different methods. For this test nonlinearities
are less important than for the previous ones and the decay of the kinetic entropy is smaller. The
variations of H(t) = —_ fi(t) In(fi(¢)) for FDM and semi-Lagrangian methods with a Hermite
interpolation are less important than for the other methods, but the £ — v, projection, plotted in
Fig. 8, shows that strong instabilities hold for such methods. The approximation obtained by the
different schemes using 64 x 64 points is compared with the approximation obtained using 512 x 1024
points. Of course, the grid size is too coarse to detail thin filaments developed by the solution. The
Flux Conservative methods seem to give a good approximation of the average of the solution on the
mesh, whereas the semi-Lagrangian method with a cubic spline interpolation follows thin details of
the solution for longer times. Let us mention that in their paper [16], Nakamura and Yabe have
compared the CIP method with the well known PIC method. In this case, Eulerian schemes give a
better approximation than particle methods.
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Figure 7: Time development of numerical L? norm and entropy of f(t) for the two stream instability
test.

6.3 The two dimensional Vlasov-Poisson system.
6.3.1 The nonlinear Landau damping in 2D.

The initial condition is set to

o, 00,) = 5= exp(—(02 +02)/2) (1 + aleos(ky ) + coslly ),
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Figure 8: The x — v, projection of the distribution function (32 x 64 points) at time t = 75 w;l
obtained with (a) the FBM, (b) the PFC scheme, (c) the spectral algorithm, (d) the FDM, (e)
the CIP method, (f) the semi-Lagrangian method with a cubic spline reconstruction, (g) the semi-

Lagrangian method with a Hermite interpolation, (h) an almost “exact” solution (512 x 1024 points)
for the two stream instability test. 20



with a = 0.5, the velocity space is truncated at vy,q;=6, the wave numbers are k;=ky,=0.5, and the
length of the periodic box in the physical space is Ly=Ly=4 7. Finally, the four dimensional grid
contains 32 points per direction and the time step is set to At=1/8. >From the symmetry of the
initial data, the evolution of two components of the electric field are identical.

The numerical simulation of nonlinear Landau damping in the four dimensional phase space is
a difficult problem since the number of grid points is strongly limited by computer memory, and
examples of simulations are not frequent in the literature. Indeed, it is necessary to use a high order
scheme, which kills spurious oscillations in order to obtain accurate results. The Fig. 9 shows the
evolution of the electrical energy obtained by the PFC scheme and the semi-Lagrangian method
using cubic spline interpolation. On the one hand, the local reconstruction highly reduces the
computational cost and on the other hand slope correctors avoid to introduce numerical instabilities.

Figure 9: Time development of the vy — vy projection of the distribution function obtained with the
PFC scheme (32 x 32 x 128 x 128) for the nonlinear Landau damping 2D.

7 Conclusions.

At the beginning of numerical simulation of plasmas where computer power was such that only 1D
models could be simulated, Particle In Cell methods coexisted with direct Vlasov solvers, and many
such solvers can be found in the literature of the 70s. Then in the 80s and 90s as people could
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Figure 10: Time development of the electric energy in logarithm scale obtained with (a) the PFC
scheme (32x32), (b) the SL Spline (32x32) (c¢) PFC scheme (32x128) (d) the SL Spline (32x128)

for the nonlinear Landau damping 2D.

Number of processors | PFC scheme | SL SPLINE method
2 processors 9 h 03 min 12 h 42 min
4 processors 4 h 24 min 6 h 16 min
8 processors 1 h 51 min 3 h 07 min
16 processors 0 h 59 min 1 h 41 min

Table 3: Total computation time for PFC and SL PLINE methods with respect to the number of
processors for a grid size 32 X 32 x 128 x 128 points for the nonlinear Landau damping 2D.
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perform 2 dimensional and sometimes even 3 dimensional simulation with PIC codes and get useful
information out of it direct Vlasov solvers lost their interest for most people. Even though it is
a fact that Monte Carlo methods and in particular PIC simulations become numerically the more
interesting as the dimension increases, there becomes room again for Eulerian Vlasov solvers as very
powerful, as well in CPU speed as in memory size, parallel computers are now available. It is easy
nowadays to perform a realistic 2D kinetic plasma simulation with a direct Vlasov solver and some
toy 3D simulations have also been performed. The numerics on which such methods are based are
very different from those of PIC simulations. This fact alone, makes it interesting to have such a
solver in one’s simulation tool-box in order to benchmark once and again a PIC code against it.
And for some specific problems needing high accuracy and low noise they should be the preferred
method. As we mentioned, statistical noise is absent from direct Vlasov computations, but they
have other flaws which we presented and analyzed here. Among the methods we presented there
is no clear winner, each method having its pros and cons. And depending on the problem being
solved, one might want to use one or another method. We hope that the information given in this
paper will help making this choice.

References

[1] A. Arakawa, Computational Design for Long-Term Numerical Integration of the Equation of
Fluid Motion: Two dimensional Incompressible Flow. Part 1. J. Comput. Phys., 1 (1) (1966)
pp. 119-143. Reprinted in J. Comput. Phys., 135 (1997) pp. 103-114.

[2] J. P. Boris, D. L. Book, Solution of continuity equations by the Method of Flux-Corrected
Transport. J. Comput.. Phys., 20: (1976) pp. 397-431.

[3] F. Bouchut, F. Golse, M. Pulvirenti, Kinetic equations and asymptotic theory, Gauthier-
Villars, Series in applied mathematics, (2000)

[4] Cheng, G. Knorr J. Comput. Phys., 22: (1976) pp. 330-348.

[5] A.J. Klimas, A method for overcoming the velocity space filamentation problem in collision-
less plasma model solutions. J. Comput. Phys., 68: (1987) pp. 202—-226.

[6] A. Klimas, W. M. Farrell, A Splitting Algorithm for Vlasov Simulation with Filamentation
Filtration. J. Comput. Phys., 110: (1994) pp. 150-163.

[7] M. R. Feix, P. Bertrand, A. Ghizzo, Eulerian codes for the Vlasov equation Series on Advances
in Mathematics for Applied Sciences 22, Kinetic Theory and Computing (1994) pp. 45

[8] E. Fijalkow, A numerical solution to the Vlasov equation. Comput. Phys. Communications,
116: (1999) pp. 319-328.

[9] F. Filbet, E. Sonnendriicker, Conservative Numerical schemes for the Vlasov equation to
appear in J. Comput. Phys.

23



[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Ghizzo, P. Bertrand, M. Shoucri, T. W. Johnston, E. Filjakow, M. R. Feix, A Vlasov code
for the numerical simulation of stimulated Raman scattering J. Comput. Phys. 90 (1990) pp
431.

G. Manfredi, Long time behavior of non linear Landau damping. Phys. Rev. Letters., 79 -15:
(1997) pp. 2815-2818.

R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows J. Fluid.
Mech. 229 (1991) pp. 291-310.

M. Shoucri, G. Knorr, Numerical integration of the Vlasov equation. J. Comput. Phys., 14
-1: (1974) pp. 84-92.

E. Sonnendriicker, J. Roche, P. Bertrand, A. Ghizzo, The Semi-Lagrangian Method for the
Numerical Resolution of Vlasov Equations. J. Comput. Phys. , 149: (1998) pp.201-220.

E. Sonnendriicker, J.J. Barnard, A. Friedman, D.P. Grote, S.M. Lund, Simulation of heavy
ion beams with a semi-Lagrangian Vlasov solver, Nuclear Instruments and Methods in Physics
Research, Section A, 464, no. 1-3, (2001) pp. 653-661.

Takashi Nakamura, Takashi Yabe, Cubic interpolated propagation scheme for solving the
hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys. Communications,
120: (1999) pp. 122-154.

24



