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Abstract

In this paper, a rather general method to characterize the statistical models
for which a given statistic has the same distribution is given. First, the semi-
parametric transformation model and non-parametric transformation model
are characterized in term of random transformations, with the independence
in the first model, without the independence in the second one. By apply-
ing these characterizations, the problem of describing all all distributions for
which the distribution of T is the same can be solved by first finding a suitable
group of transformations for which 7" is a maximal invariant and then apply-
ing a random transformation on a suitable random variable. Many statistical
applications are given, including the characterization of the statistical models
for which a Fisher’s or Student’s statistic has the same distribution.

AMS classification : 62E10, 62H05, 62A25
Key words : Group Model, Transformation Model, Distributions Characteri-
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1 Introduction

In the areas of estimation and hypothesis testing problems, the optimal solutions
are easily found if the underlying population has normal distributions. In this case,



the distributions of some important statistics for inferential purposes, such as clas-
sical t- and F- statistics are available. B. Efron (1969) pointed out that the weaker
condition such as some symmetry can successfully replace the normal condition as
far as the classical t-statistics is concerned.

This is not an exceptional case. Many statistical problems exhibit some symme-
tries with respect to a group of transformations. These symmetries not only provide
natural restrictions to impose invariance properties on statistical procedures to be
used, but also give some simple ways to characterize the underlying statistical mod-
els.

More precisely, the group of transformations can generate in different ways some
statistical models which are closed under any transformation of the group. Given
a sample space, given a group of transformation actions on the left of it, a non-
parametric transformation model is defined and studied in comparison with the
more familiar parametric transformation model and semi-parametric one. Some of
their relationships and characterizations are established here.

As applications, we can easily give the characterization of the statistical models
for which a given statistic has the same distribution. For a given statistics T, we try
to find a suitable group of transformations for which 7' is a maximal invariant. Then
the characterization theorem about non-parametric transformation model generated
by this maximal invariant permit us to find the looking class via some random trans-
formations.

First of all, we shall state the basic assumptions used throughout the paper and
introduce some notations.

Let (2, A) be a general measurable space and let G be a group acting on the left
of . We shall assume that

(1) (22, A) is a Hausdorff locally compact measurable space.

(2) G is a Hausdorff locally compact group with a countable topological base
(LCD space), endowed with its Borel field o(G).

(3) The map (g,w) — g o w=gw is o((G) @ A measurable.

In most applications, we shall assume in addition that

(4*) There exists almost surely a maximal invariant 7" from (€, A) to a measur-
able space (12, A) such that there exists a measurable subset g with P(€) = 1 and
that

T(gw) =T(w) for g € G,w € Qg and T(w) = T (&) imply gw = W' w,w’ € O, for some g € G.



Denote by £(Z | P) = Q to mean that the law of the variable 7 is P, that is,
Q(B)=PweQ: Z(w) e B).

Remark:

l. If L(X | P) = P then L(gX | P) = Pg~' where Pg~' denote the distribution
P lifted by g: Pg~*(B) = P(g_l{B}), for every B € A.

2. In practice, we often use maximal invariants introduced by an equivariant,

that is, a measurable S from (2, A) to (G, J(G)) such that

(S(gw)>_1 o (gw) = <S(w)>_1 0w a.s.

From S, a maximal invariant 7' can be introduced by by

It is easy to verify that 7" is a measurable maximal invariant.

3. Maximal invariants and equivariants exist if the action of G on (2 is free, that
is, for all z € Q, if y € Go = {gx,¢9 € G} then there exists only one g € G
such that y = gz. Under this condition, we can choose an orbit representation
: for each orbit Gz of Q, we select one point T'(x) to represent this orbit Ga.
T'(x) is obviously a maximal invariant. Since & € GT'(z) and G acts freely,
then there exists a unique element S(x) € G such that @ = S(z)7T'(z). It is
easy to verify that S(x) is an equivariant.

4. Equivariant estimators are often used in statistics. Suppose that the model
(Q, A, P) is closed under the group actions, that is, Vg € G

Pg™' € P whenever P € P.

Consider §(X) as an estimator of a functional T'(P). Naturally 7'(Pg~") could
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be estimated by d(gX) as well as by gd(X). Equating these two quantities,
we should have

d(gz) = gd(x).

The notion of a maximal invariant enables us to describe the orbits under the
group actions. In general, if T' is a invariant, then for every subset B of (1,

{we|T(w) eT(B)}D g™ (B).

g€eG

This can be showed as this: if w € g7*(B) for some g € G, then gw € B, so
T(w)=T(gw) € T(B).

If in addition, T' is a maximal invariant, then we have

fwe|Tw) e T(B)} = J g™'(B).

9€G
In fact, if T'(w) € T(B), then there is a w’ € B such that T'(w) = T'(w'). Since T

is a maximal invariant, there is a ¢ € G with gw =&’ € B, sow € g7 'B.

Denote by Cap(Y, B) , the class of all probability measures defined on (Y, B).

Let Py be a probability measure defined on (£, A) . The group G generates in a
natural way the following well known model :

(1) Parametric transformation model :

M, (Py) ={P, € Cap(Q, A) : P,(B) = Po(g7*{B}),
VBe A,g€ G}

For a family of measures P = {P}, we can just concentrate our attention on
each orbit : M,(P), P € P, we have then a composite parametric transformation
model.

The parametric transformation model can be mixed by a priori law from the
Bayesian point of view, that is, this model in his turn generates also the following
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model :

(2) Semi-parametric transformation model :

M(Py) ={P,: P,(B) = ng(B)M(dg),
VB e A ue Cap(G,o(G))}

Inspired by the idea of Raschendorf (c.f. [7,1989].), we introduce in this paper:

(3) Non-parametric transformation model :

./Mn(Po) £{P € Cap(Q,A) : PT_l = P()T_l}

where 7' is a maximal invariant.

Roughly speaking, this is the maximal family in which the distribution of T
remains the same. (So T is ancillary). It is this property that permit us to solve
the characterization problems.

In many cases, we shall inverse the path: given a statistics T', we try to find
a group of transformations for which 7" is a maximal invariant. Then the charac-
terization theorem about M, (Fy) permit us to find the class of statistical models
admitting the same distribution for 7.

It is clear that for all P, € M,(P), we have P,7~' = P,T~'. The same holds
for P, € M,(P). Therefore, we have

M, (Po) C My(Fy) C M, (Po)

We shall study in this paper some relationships and the characterization problem
of these three models. Before doing this, let us just consider some examples.

Example 1 (n-dimensional location-scale model)

Let 1 denote the vector of I's in @ = R*, @ = R". Let G = {¢g = (o,u), o €
R*,p € R} with action g(x) = ox+ul = (cz1+ 4, ...,00,+u), for x = (2y,...,x,) €
2; and the group operation being

(02, 12) 0 (01, 1) = (0201, Oaptr + 12).



Denote ©y = R”™ \ span{1}. Since the span{1} is closed for G, so gw € g
whenever w € . let P be a probability measure defined on (Q, B(Q)) with P(Qy) =
1 and dominated by the Lebesgue measure p, with %(X) = f(x),x = (x1,...,2,) €
Q.

The orbits of all the group actions form a partition of {2y and

well defined on .
It is clear that the inverse of S(x) on g is equal to S(x)™' = (s7'(x), —s(x)7),

and that
_ L, (T z(x) &, — T(X)
T'(x)=95(x)""x ST s

is a maximal invariant. It is easy to see that

My(P)={Psy, o€ RY ,u€ R}

Lo () = (o) x) = f (Il e M> '

ith
e du o o

Example 2 (General location-scale model)

Let (H,< -,- >) be a Hilbert space and L C H be a proper linear subspace of
H. Denote by P the orthogonal projection operator on L, and by /d the identity
application. Let G = RT x L operate on £ by the operation

[o,hlt =ocx+h, he L,o>0.

The group operation is

[UQ,hQ] 0 [Ul,hl] = [0'20'1,0'2h1 + hg]

let P be a probability measure defined on (Q,B(Q)) such that P(£y) = 1 with
Qo = H\ L, then S(z) = [s(x), Pr(x)] is an equivariant well defined on g, where
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s(z) = \/ﬁ <x— Pp(x),z — Pp(xz) >. It is clear that the inverse of S(x) is equal
to S(x)~! = (s(z)™!, —s(x)" ' Pr(z)), and that

1 =57 = (3656

is the maximal invariant.
In particular, if H = R™ and L = span{1}, we find again the result of the first
example.

Example 3 (Group model)

Q =G, S=Idis an equivariant,

and , 7T = e is the maximal invariant.

?

PT~! = 4., therefore, M, (Fy) = Cap(G, o({)).

Example 4 (Rank statistics)

Q=R" G ={g: R+ R is strictly increasing . go(z1, -+ ,x,) = (g(x1), - g(z,)).

Equivariant doesn’t exist, but if we define r; = 1437 _| I(z, <z} , then T'(zy, -+ ,2,) =
(ri,--,ry) is a maximal invariant.

Example 5 (n-dimensional normal scale model)
Let Q =R",G={g=0: o€ R"}withaction g(x) = ox = (o021, ...,02,),forx =
(21, ..., &) € Q; and the group operation being

09001 = 0307.
Denote Qg = R™\ {0}. let Py = N(0,1)®" be the normal probability measure
defined on (Q,B(Q)), we have Py(Qo) = 1.
For x = (21,...,x,) € Q, denote f(x), the density %(X) with respect to the
Lebesgue measure .
The orbits of all the group actions form a partition of {2y and

is an equivariant, with




It is clear that on Qg the inverse of S(x) is equal to S(x)~! = ||x||™*, and that

T(x) = 5(x)"'x = <i z, )

is a maximal invariant. It is easy to see that

M, (Py) ={P,, o€ R* } ={N(0,6*)®" c € R'}.

U ) = flo) ) = £ (2.

(2 g

with

Remark:

According to the theorem 2, if I'P = P for all orthogonal transformations I,
then P belongs to M,,(F).

Since the Student’s t statistics 1s a function of T so the distribution of 7' de-
termines the distribution of the Student’s t statistics. therefore the Student’s t
statistics still has the Student’s distribution.

2 Some theorems and proofs

Suppose now that the space (2 is separable metric space. Suppose that all prob-
ability measures P under discussion are tight, that is, for all ¢ > 0, there is a
measurable compact set K, such that P(K.) > 1 — e. This will be the case if in
addition € is complete separable metric space.

Denote T" an invariant with respect to the group G, then we have:

Theorem 1 Suppose T' is an invariant. If there exist two random variables X, Y
defined on a probability space (Q,B,P) such that

LIX|P)=PF, LY |P)=P PTX)=T(Y)) =1,
then P € M, (Fy).

Proof.



PT-Y(B) = P(T(Y) e B)=P(T(X) € B)
= P(X e TY(B)) = RLT '(B).

Theorem 2 Suppose T' is a mazimal invariant. Then P € M, (F) iff there
exist X, Y defined on a probability space (2, B,P) such that

LIX|P)=PF, LY |P)=P PITX)=T()) =1
Proof.

We give two different proofs here.
(1) Let A = {(w,w") € A x Q| Jg € G, =gow}. A consequence of Strassen’s
theorem [8,1965]. is the following :

PA) =1
sup{P(U) —P0<7r1<AO(Q X U))) U CQ isopen } =0

with 71 : @ x Q— being the first projection. Since

m{ANQ xU)}
= Wl{(w,w')EQxQ|E|geG,w’:goweU}
= {we g '(U) for some g € G}
= Ugeag ' (U)
= {we|T(w)eT(U)},

therefore,



(2) Suppose P € M, (Fy). Define a set function P on the set of rectangular sets by

P(Ax B) = [ Py(A|T = s)P(B|T = s)PT~"(ds)
VA B e A

It is clear that P can be extended to (A x A) as a probability measure with :

P(A x B|T = s) = Py(A|T = s)P(B|T = s).

Let X : Q2 x Q—=Q, Y :Q xQ—Q be the first projection and the second projec-
tion respectively, then we have immediately :

L(X)=Fy,and L(Y)=P

due to P,7~' = PT.

We have furthermore :

P(Ax B) = Py(A|T = s)P(B|T = s)PT~"(ds)
P(1(s)Po(A|T = 5)|T = s)PT"(ds)

Ls(s)Po(A|T = s)PT~(ds)

I
— S —

A

= P
= P

(TH(A)NT~(B))
(T(X)e ANT(Y) € B).

The second and third equalities being true because Py7T~' = PT~!. Since the
space is separable, we then have P(T(X) # T(Y)) = 0.

It is clear that if P € M,(F) iff there exist X with £(X | P) = Fy and a
transformation ¢ : @ — G such that if we define Y = go X, then L(Y | P) = P.

Due to the previous theorem, we have
Theorem 3 (Stochastic Transformation Characterization)

Suppose T is an invariant. Then (1) P € M (Py) if there exist X with L(X |
P) = P, and a stochastic transformation U : Q — G independent of X, such that
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LY |P)=P whereY =Uo X.
(2) P € M, (P)) if there exist X with L(X | P) = Py and a stochastic transforma-
tion U : Q — G, such thatC(Y | P) = P where Y =Uo X.

Proof :

(2)
If there exist £(X | P) = P and U : Q=G | such that L(Y | P) = @ for
Y=UoX,thenT(Y)=T(U(X))=T(X) since T is an invariant for G. Applying

the previous theorem gives the conclusion.

Theorem 4 (Stochastic Transformation Characterization)

Suppose T is a mazimal invariant. Then (1) P € M(Fy) iff there exist X with
L(X | P) = Fy and a stochastic transformation U : Q@ — G independent of X, such
that L(Y |P) =P where Y =U o X.

(2) P € M,(R)) iff there exist X with L(X | P) = Py and a stochastic transfor-
mation U : Q — G, such that L(Y | P) = P where Y = U o X.

Proof :

(1) “Only if part : 7

Suppose P € M (Fp), then there exists a probability measure p € Cap(G, (G))
such that P(B) = [ P,(B)u(dg). Define a probability measure P=P ® u on
(Qx G, A®0((G)) , and the projections X : Q@ x G—Q and U : Q x GG, then we
have immediately that £(X | P) = Fy, L(U | P) = p is independent of X, and for
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P(YeB) =

N

(U(X) € B)
P(U(X) € BlU = g)PU"(dg)

P(X € g7/ (B)|U = g)u(d g)
P(X € g7'(B))u(dg)

P(B)u(dg) = P(B).

T—

The forth equality being true because X and U are independent.

(2) “Only if part : 7
By the precedent theorem, there is a measurable set Qg with P(€g) = 1 such
that 7(X) = T(Y) holds on Q. If w € Qg, we have T(X(w)) = T(Y(w)). Since
0 X(w). Define

T is a maximal invariant, there is a g(w) such that Y (w) = g(w)

U:wr— g(w) on O, then Y = U o X on .

It follows from this theorem that the problem of describing all all distributions
for which the distribution of 7" is the same can be solved by first finding a suitable
group of transformations for which 7" is a maximal invariant and then applying a
random transformation on a suitable random variable.

3 Some applications

It follows from Theorem 2 that the problem of describing all all distributions
for which the distribution of 7" is the same can be solved by first finding a suitable
group of transformations for which 7' is a maximal invariant and then applying a
random transformation on a suitable random variable.

In this section, we shall inverse the path: given a statistics T', we try to find
a suitable group of transformations for which 7' is a maximal invariant. Then the
characterization theorem about M., (Fy) permit us to find all distributions admit-
ting the same distribution for 7.

Recall that a random vector X is said to have a spherically symmetric distribu-
tion if for every orthogonal transformation I', we have L(I' X') = L(U). It is well
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known that X has a spherically symmetric distribution if and only if X has a spher-
ical representation, that is, £L(X) = L(RU) where U has the uniform distribution
on on the unit sphere S,,_; C R® , and R > 0 is a non negative random variable
independent of UU. The variable U € S, _; is said ti have the uniform distribution
on the unit sphere S, _; if and only if L(I'U) = L(U) for every orthogonal transfor-
mation I'. The simplest random vector having spherically symmetric distribution is
just normal vector with N'(0, I,,) distribution. In this case, the density of R with
respect to Lebesgue measure is given by:

otherwise

rn—1 2 /¢ .
_ mexp(—r /2) ifr>0.

Example 6
Let Q =R", G={g9g=0: o€ R} with action g(x) = ox = (c21,...,00,),for x =
(21, ..., ) € ©; and the group operation being

09 O 01 = 0901.

let Py = N(0,1)®" be the normal probability measure defined on (£2, B(£2)), we have

Po(Qo) = 1 with Qo = R”\ {0}. It is clear that 7T'(x) = x|
X

Note that if £(x) = Py, and if 7" is a random transformation, then 7'x = T"RU

can again be represented as R'U with R' = T'R and U two random variables not
necessarily independent. Therefore,

is a maximal invariant.

M, (Py) ={L(RU), R>0,U has uniform distribution on S,_}.

We can easily construct random transformations to get all spherically symmetric
distributions from AN(0, I,)) distribution. To see this, note that if £(X) = N (0, 1,,)

then the density function of R in the spherical representation is given by

rnl 2 /¢ :
_ mexp(—r /2) ifr>0.

otherwise

which gives a strictly increasing the cumulated distribution function Fi(¢) on (0, 00).Denote
this distribution by P, = L(R). Now let Y be a random variable having a spherically
symmetric distribution with the spherical representation £(X) = L(RU). Denote
the cumulated distribution function of R by F5(t), define Define 2 = S,,_; x RT and
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P=U(S—1)® P and X : (s,r) —> rs and U : (s,r) — %E:; It is clear
that £(X) = N(0,1), and the distribution of U o X is exactly that of Y. That show
directly that all spherically symmetric distributions belong to M,,(Fp) .

Note that the Student’s statistic g is a function of the maximal invariant
T(x)= ” i hence all the distributions in M,,(Fy) which includes all spherically

symmetric distributions will give the same distribution for the Student’s t statistic
VnzT

Example 7
Let @ = R™, Py = N(0,1)®" be the normal probability measure defined on (£2, B(f2)),
we have FPy(d) = 1 with Qy = R”\ {0}. Consider the t- statistic 7'(x) =

1, o1 T
<” X”> _ Zﬁz:l’r where 1 = (1,---,1), and x = (xy, - ,z,). We look for a
X

suitable group for which 7" will be a maximal invariant. It can be verified that GG
is generated by two subgroups G; and Gy with G; = {g = 0 : o € R'}, and
Gy={g9g=T: I'€0,,with 'l = 1}. By applying the theorem, we have

M, (Py) ={L(RI'U), R>0,I'1 =1,U has uniform distribution on S,_;}.

This is exactly the characterization of all distributions for which the Student’s statis-
tic has the same distribution.

Example 8

Let O = R", P, = N(0,1)®" be the normal probability measure defined on
(Q,B(Q)), we have FPy(Qo) = 1 with Qo = R™\ {0}. Consider the F-statistic
[Ax || /a
F(x) =
| Bx || /b -
rank a and b respectively. Since AB =0, we have a+b <n. SoR"=F| @ F, @ F3
with Fy = Im(A), F; = Im(B), and F3 = Im((A & B)*). Here again, we look for

a suitable group for which F' will be a maximal invariant.

where A and B are two projection matrices with AB = 0, and

Suppose for x € R" and y € R”, we have || Ax ||=| Ay || and || Bx ||=]|| By ||
Write down the orthogonal decomposition of x and y with x = x; + x5 + x3 and

Yy =Yi+ Y2+ Y3, we have
| %1 ||=]l Ax [|=[| y1 ||, and || x2 [[=][ Bx [[=][| y2 ||. Since x5 and ys belong to
F5, we can find two orthogonal transformations I'y , I'; and a non singular linear
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transformation L such that I';x; = y;, for « = 1,2 and Lx3 = y3. Therefore GG is
generated by two subgroups ; and Gy with Gy = {g=0: o € R"}, and
Gy={g=T1@0h2RL: I';€0,,with I'; F; C F;,i =1,2; L F5 C F5, Lnon singular}.

By applying the previous theorem, we have

M,.(P) ={L(RTU), R>0,I' =T11®['2®L,U has uniform distribution on S,_1}.

This is exactly the characterization of all distributions for which the Fisher’s statis-
tic has the same distribution.
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