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A DISCRETE APPROACH
TO THE CHAOTIC REPRESENTATION PROPERTY

M. Emery

Abstract. — In continuous time, let (X¢),-, be a normal martingale (i.e. a process such
that both X, and Xf — t are martingales). One says that X has the chaotic representation

property if 17 (O'(X)) is the (direct) Hilbert sum @) Xp(X), where x,,(X) is the space of all
p-fold iterated stochastic integrals p€EN

/ f(tl,...,tp) dth ...dti
0<t] <...<tp

with f square-integrable (x,(X) is called the p'™ chaotic space; by convention, Xo(X) is the
one-dimensional space of deterministic random variables). An open problem is to characterize
those processes X.

Instead of working in continuous time, we shall address an analogue of this problem where
the time-axis is the set Z of signed integers; in this setting, we shall give a sufficient (but
probably far from necessary) condition for the chaotic representation property to hold.

Notation and preliminaries

We shall use the set Z of all signed integers as our time-axis; the set of all finite
subsets of Z will be denoted by P. For m and n in Z, we shall have to do with the
following “intervals”:

Im,n]={k€Z : m<k<n},;
Inyoo[ ={k€Z : n<k};
|—oo,n] ={k€Z : k<n}.
J]—oo,n[={k€Z : k<n}.
Given a filtration F = (3,,),, o4, a process X = (Xy,), ¢, is adapted (respectively
predictable) if for each n the random variable X, is J,-measurable (respectively
3,,_1-measurable); a stopping time is an F,_-measurable random variable 7" with
values in Z U {400}, such that for each n € Z the event {T'=n} (or, for that matter,

{T'<n}) belongs to F,; notice that the value —oo is not allowed to stopping times.

An empty sum Y x; is always null, an empty product [] z; is always 1.
i€@ i€o
With Z as the time-axis, the analogue of a normal martingale is no longer a
martingale, but a sort of normalized martingale increment:

DEFINITION. — On a probability space (Q2,A,P), let T = (F,,),c, be a filtration.
A process X = (Xy,), ¢z i a novation (more precisely: an F-novation) if, for each
time n € Z, X, belongs to 12(3,)) and verifies

n

(N1) E[X,[%-1]1=0;
(N2) E[X71%, 4] =1.
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The name ‘novation’ aims at suggesting that X plays the role of an innovation,
but the prefix ‘in’ has been dropped to stress that no independence is required.’
Condition (N1) says that X,, should be understood as a martingale increment; and
(N2) is a normalization hypothesis. The simplest example of a novation is a sequence
of independent random variables with mean 0 and variance 1.

PROPOSITION 1 AND DEFINITIONS. — Let X be a novation on (2, A,P,F); for each
A € P, denote by X, the product [[ X,,. The set of random variables {X,, A € P}
is orthonormal in 12(Q, A,P). n€A

So this set is the orthonormal basis of some closed subset of 17(2,A,P), called
the chaotic space associated to X, and denoted by x(X).

If {X,, Ae P} is total in 12(Q,F,P), or equivalently if the chaotic space is

bl o<

equal to 12(Q,F._,P), one says that X has the chaotic representation property.

9 o0
The simplest example of a novation with the chaotic representation property is
the fair coin-tossing: the X,, are independent and uniformly distributed on {—1, 1},
and F is the filtration generated by X.

PrOOF OF PROPOSITION 1. — Fix A and B in P. For n € Z, the formula
0 it AN]n,oo[ # BN]n,o0(;
E[XAXB|?H} - { XAﬂ]—oo,n]XBﬂ]—oo,n] if Aﬂ%n, OO% = Bﬂ%n, OO%
is true if n is large enough for |—oo, n] to contain A and Bj; and if it holds for some
n, it holds for n — 1 too because X is a novation. So it holds for every n € Z, and
in particular when n is small enough for A and B to be included in |n,oo[. Thus,
for such an n,

0 fA#B
and the proposition is proved by taking expectations on both sides. ]

Here are five necessary conditions for a novation X to have the chaotic represen-
tation property.

PROPOSITION 2 AND DEFINITION. — Let X be a novation defined on some filtered
probability space (2, A,P,F). If X has the chaotic representation property, then

(i) for each n € Z, the set {XA, AeP AC ]—oo,n]} s an orthonormal basis of
12(Q,3,,P);

(i) the filtration F is generated by X;

(iii) the o-field F_o (=), F,) is degenerate;

(iv) for all n € Z and U € 13(3,)), there exist Q and R in 12(F,_) such that
U=Q+ RX,;

(v) for each U € 1#(F,,), there exists an F-predictable process H = (Hy), ., such
that

E[Y H <co and U=E[U]+> H,X,.
nez

When (v) holds, one says that the novation X has the predictable representation
property (with respect to the filtration F).

1. « Ne crains doncques, Poéte futur, d’innover quelques termes. » (J. du Bellay, La deffence et
illustration de la langue frangoyse.)
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The analogy between this definition and the predictable representation property
in continuous time (see for instance [3]) is plain: X, replaces dX; and Y replaces |.

PROOF. — (i) Fix n € Z. For each A € P, one has X, L [*(F,) if A meets ]n, co[ and
X, € I?(3,) if A is included in ]—o0,n]. Thus {X,, A€ P; AC ]—oo,n]} is an
orthonormal basis of I?(%,) (and {X,, A € P; A meets |n,oc0[} is an orthonormal
basis of its orthogonal supplement).

(ii) is a consequence of (i).

(iii) For A € P and A # @, X, is orthogonal to [*(J,) for every n < sup A,
and a fortiori to I?(F__.). So [*(F__,) is included in the orthogonal supplement to
{X,, A€ P, A+# o}; asthis supplement consists of deterministic random variables,
J_ o is degenerate.

(iv) We know from (i) that every random variable U € I*(5

) admits an
[?-expansion as

AC]—o0,n]
with Y u? < co. Setting
= Z UAXA and R = Z U’AU{n}XA y

Ae?P Ae?P
AC]—oo,n[ AC]—oo,n[

one has

AcP
sup A=n

(approximate both sides by finite sums and take limits in I?), whence (iv).
(v) By the chaotic representation property, each U € I?(J,_) has an expansion

U= wXy=ug+> > ity XX

Ac?P n€?Z  AeP
AC]—oo,n[

Now, the random variable
Hy= ) wpmXa= ), tXa_(n

Ae? Ae?
AC]—oo,n[ sup A=n
belongs to [*(F,_;) by (i), with squared norm E[H?] = Y w«3; summing in n
i AeP
gives sup A=n

ZHQ Z UA < (O N
Ae?P
A#£D

and, as uy = E[UXg] = E[U], the formula for U becomes E[U] + >  H,X,,. 1

The well-known equivalence between extremality and the predictable representa-
tion property (see Theorem (V.4.6) of [3]) becomes completely elementary in our
discrete setting; it is recalled in the next proposition. We shall call L the set of all
probability laws on the real line that are carried by two points, and have mean 0 and
variance 1. In other words, an element of L is a probability of the form pd, + qbs,
withp >0,¢>0,p+q=1, pa+gb=0, and pa® + qb*® = 1.
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LEMMA 1. — For each h € R, there is a unique law ¢(h) € L supported by the two
roots of the quadratic equation x? =1+ hx; it gives mass 1/(1+x2) to each root x
of the equation. Moreover, this map £ : R — L is a bijection.

PROOF. — The roots of 2? = 1 4+ hx are two real numbers y and z with product
—1, so one is strictly positive and the other strictly negative. There is a unique
probability law A\ carried by y and z and having mean 0; it weights y with mass
z/(z—y) = 1/(14+4?) and z with y/(y—z) = 1/(14+22%). And any random variable X
with law X verifies X2 = 1+ hX and E[X] = 0, whence E[X?] = 1,50 A € L.
Conversely, any A € L is supported by two points, so a random variable X with
law ) verifies a quadratic equation X2 = hX + k; taking expectations gives k = 1,
so £ is surjective. ]
The elements of L can also be characterized as the centered laws with unit variance that
are extremal in the set of all centered laws. They are a fortiori extremal in the smaller set
of all centered laws with unit variance, but this is no longer a characterization: the extreme

points of the set of all centered laws with unit variance are the centered laws with unit
variance carried by two or three points.

PROPOSITION 3. — Let X be a novation on a filtered probability space (2, A,P,F).
a) The following three conditions are equivalent:
(i) there exists a predictable process H such that X2 =1+ HX;

(ii) there exists a predictable process L with values in L such that, for all Borel f

and all n € Z, E[ f(Xn+1)|F,] = Lns1(f);

(iii) there exists a predictable process L with values in L such that, for all Borel f
and all stopping times T, E[f(X141)|F] = Lry1(f) on the event {T < oco}.

If X has the predictable representation property, then I__ s degenerate, and
the three conditions (i) — (iii) hold.

b) If F__ is degenerate, the following five conditions are equivalent:
(iv) X has the predictable representation property;
(v) for each n € Z, there exists an event I' such that 3, = o(3,,T);

(vi) for all n € Z and all random variables U € 1*(F,,, ), one has

U - E[U|?nJ +E[UXH+1|3;7J:| Xn+1 .

(vii) for all n € Z and all 3, -measurable random variables U, there are two
3,,-measurable random variables ) and R such that U = Q + RX,11;

(viii) for all stopping times T and all I -measurable random variables U, there
are two J-measurable random variables Q and R such that U = Q + RX741 on
the event {T < oo}.

c) If F__ is degenerate and if F is the filtration generated by X, all eight
conditions (1) — (viil) are equivalent to each other, and to the following further
two conditions:

(ix) for all n € Z and all U € 12(5,

oo

), one has U= > E[UX4|5,]X4;
Ae?
AC]n,00[

(x) for all stopping times S and T such that S < T and all U € 12(3;), one has
€
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Condition (i) is called a structure equation; its analogue in continuous time has
the form d[ X, X], = dt+H; dX,. Conditions (i) to (iii) say that the natural filtration
of X is dyadic. Conditions (iv) to (viii) say that the filtration J itself is dyadic (given
the past J,,_;, the innovation consists in choosing among two possible values only for
X, or equivalently in choosing the sign of X,,). But these conditions (iv) to (viii) do
not imply that F is generated by X; they do not even imply that F is generated by
any novation whatsoever (see Vershik’s Example 2 in [5]). Conditions (ix) and (x)
are the conditional chaotic representation property at times n and .S; it is essential
here that n and S are not allowed to take the value —oo: when n and S are —oo,
these conditions become the (unconditional) chaotic representation property, which
is in general strictly stronger than the predictable representation property. The rest
of this work will precisely be concerned with the gap between these properties: which
hypothesis should be added to the predictable representation property to imply the
chaotic representation property? We shall only give a very partial answer.

PROOF OF PROPOSITION 3. — (i) = (ii). Assuming (i), define an L-valued
predictable process L by L, = ¢(H,), where ¢ is the map defined in Lemma 1.
As X5,+1 =1+ H,,1X,.1, Xny1 is as. one of the two points of the support of
((Hp41); as E[X,, 41]9,] = 0 and E[X?2_,]5,] = 1, the conditional law of X, 41
given 3, must be L, 1. This gives (ii).

(ii) = (iii). Assuming (ii), for each n € Z the conclusion holds on the event
{T' =n}, so it holds on {T < oo}.

(iii) = (ii) is trivial, and to obtain (ii) = (i) it suffices to define the predictable
process H by ¢(H) = L.

Assuming X has the predictable representation property, for every U € I2(F.),
there is a predictable H such that > E[H?2] < co and U = E[U] + Y., H,Xy;
this implies that the (square-integrable) martingale M, = E[U|J,,] is given by
M, =E[U] + 3, < HnXm. For U € I?(F__,), one has U = E[U], showing that

J_, is degenerate.

We now pass to the equivalence of (iv) — (viii); the end of a), that is, (iv) = (i),
will be established later.

(iv) = (vi). We suppose X has the predictable representation property. The
martingale argument a few lines above implies that, for every U € 1*(F, 41), one
has U = E[U|,] + Hot1Xn+1. As U and E[U|F,,] are in 12, so is Hy11 X, 41 too.
Multiplying both sides by X,, 11 and conditioning by &, gives H,, 11 = E[UX,+1|9,],
whence (vi).

(vi) = (v). Choosing U = 1;x, =0y in (vi) yields Iyx, ., —0} = P[X,41=01F,],
and shows that {X,4; =0} is in ;. Using (N2), this implies X,,11 # 0 a.s., and,
using (N1), E[X,,,]5,] =E[X,,]F,] >0 as.

Choosing now U = lyx . >0y in (vi) gives Nyx, . ,>01 = Q@+ RXy 11, with Q and
R measurable for &, and R = E[ X, ,]F,] > 0. So X,,41 = (I{x,,,>01 — Q)/R, and

(vi) becomes
VU € L2(?n—|—1) U= E[Ul‘f}‘n] + E[UXN+1|?n] (H{Xn+120} - Q)/R ’

showing that J,,, is generated by J,, and the event {X,,; > 0}.
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(v) = (vii). Hypothesis (v) implies for each n the existence of two J, -measurable
random variables F' and G such that X,;; = F1lp 4+ G lpc. Observing that
X2, - (F+G)X,,, + FG = 0 and conditioning on J,, one obtains FG = —1.
Consequently, F' # G a.s. and Ip = (X,4+1—G)/(F—G). Using (v) again, every
3, 1-measurable U has the form VIp + W, with V and W measurable for 3, ;
replacing Ip by (X,,+1—G)/(F—G) shows (vii).

(vii) < (viii). Given an J. -measurable U, apply (vii) to each U,, = U lyp_p;.

(vii) and (F___ degenerate) = (iv). Let U be any random variable in I?(F_)
and M be the martingale M, = E[U|J,]. When applied to M, 11 — M, (vii)
gives M1 — M, = H,11X,4+1 for some J -measurable H, i (@ vanishes by
conditioning on ¥,); so one has M,, — M,, = Hy,, 11 Xpmy1 + ...+ H, X, for m < n.
Since F_ is degenerate, M,, tends to E[U] a.s. and in [? when n — —oc; it also
tends to Mo, = U when n — 400, so U =E[U] + >  H,X,,. Writing

neL
E[H; ] =E[H;  E[X; |9,]] = E[H; X7 ] = E[(Man1—M,)"]

one obtains E[HZ2 ., + ...+ H2] = E[(Mn—Mm)ﬂ for m < n, giving in the limit

E[Y H?] = E[U?] —E[U]? < .

Proposition 3 b) is completely proved; to end proving a), that is, proving
(iv) = (i), it suffices to establish (vii) = (i). That is quite easy: Hypothesis (vii)
gives X2 | = Q + RX,,41, and Q = 1 is obtained by conditioning on F,.

We now start showing c¢); from here on, we assume JF to be generated by X and
J_ o, to be degenerate.

(i) = (v). From X2 = 1+ H,X, it follows that X,, = f(H,, l{x, >0}), where
f(h,0) = 2(h — Vh? 4+ 4) and f(h,1) = 1(h + Vh? +4). This formula shows that
J.,, which we know is generated by J,_; and X, is also generated by J,,_; and the
event {X,, >0}.

(vi) = (ix). Iterating (vi), one obtains for all m and n in Z such that m < n

VU eT?(F,) E[UIF,]= ) E[UX,TF,]X,.
AC]m,n]
Indeed, fixing n, it is true when m = n (for the right-hand side consists in
one term only, E[UXy|3,]Xz); and if it holds for some m < n, one sees
that it also holds for m — 1 by applying (vi) to replace each E[UX,|5,,] by
E[UX,4[%,,_1] +E[UXy X5, y] X

To obtain (ix), it suffices to let n tend to infinity in this formula; convergence

takes place in I? owing to the following estimate:

Y EUX,F,1° = ) E[UX\T,])E[UXp|%,]E[X,Xsl,]
AC]m,n] A,BC]m,n]
=E[E[U|F,]"|%,.] <E[U*|3,] .
(ix) = (x). For m < n and U € 14(F,), E[UX,4]F,] = 0 if supA > n, so (ix)

implies U = Y. E[UX,4|9,,]X,. Thus,
AC]m,n]

VU eI¥(%,) E[UIF,]= > E[UXF,]X,.
AC]m,n]
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If S is a stopping time and if m < n,
]I{Szm} E[U|gn1 = ]I{S:m} Z E[UXA|?m]XA

AC]m,n]
=D _Macismy Ys=my E[UX,|Fs] X, ;
summing in m gives Ae?
(x)  E[UF,]=>_ Lacisn) E[UX4|F5]X,  on the event {S<n}.
Ae?P

On the complementary event {S >n}, the right-hand side is just E[U|F4]; taken
together, these two results can be rewritten
E[U|Fsvn] = Y Lacisn)y E[UX,[Fs] Xy -
Ae?P
Letting now n tend to oo, this yields, for all U € 12(F,_),

U= Maciseol} E[UX4|F] X, .
Ae?
Given a stopping time T' > S and a U € I?(J;), we have to show that

U= Z Tiac)s )y E[UXA|Fs] Xy 5
Ae?P
it suffices to verify that the difference between the right-hand sides of these two
formulas vanishes:
A Z ]I{AC]S,OO[} ]I{A meets ]T,oo[}]E[UXA“{TS}XA =0 ?
Aec?P

Saying that A meets |7, co[ amounts to saying that sup A > T' (with the convention
sup @ = —o0). This sum can be rewritten

> Nrcnr Y. Laciseor EIUXAFs] X,y

nez Ae?P
sup A=n+1

= Z H{Tén} Z ]]{BC]Sm]}E[UXBU{n-i-l}‘?S}XBU{n+1}
nez Be?P

= Urcny Xns1 Y Upcisny E[(U X)X Fs] X5
nez Be?®
Now, on the event {T'< n}, one has a fortiori S < n, so we may use (*) to transform
the sum over B into E[U X, 1|5, ], yielding > N¢r<p) Xng1 E[UX,41]3,]. Taking
into account that {T'<n} belongs to J,, and that Ully7<,,} is J,-measurable (because
U is Fp-measurable), the conclusion is obtained by writing

]l{Tgn} EI:UXn+1’3‘~n:| — E[U]l{Tgn}Xn-i-ﬂ?njl — U]l{Tgn} E[Xn+1|gjn] - O .
(x) = (vi) is trivial by taking S =n and T'=n + 1. [

From now on, we suppose given a novation X and its natural filtration F, and we
assume that X enjoys the predictable representation property with respect to F; so
all ten conditions (i) — (x) of Proposition 3 hold. They do not imply the chaotic
representation property (see [2] for a counterexample); the question is to find
additional conditions that are sufficient for the chaotic representation property to
hold. Observe that the problem depends only on the law of the process X; so the
conditions we are looking for are conditions on the law of X.
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Two simple instances of chaotic representation property

The simplest case is when the X,, are independent; by Proposition 3 (ii), the
law of each X, belongs to L, and an easy dimension argument gives the chaotic
representation property:

PROPOSITION 4. — If the novation X consists of independent random wvariables
X, each with law in L, the chaotic representation property holds.

PROOF. — Let (4,) oy be an increasing sequence in P with limit (J, A, = Z. By
martingale convergence, any random variable in I?(J, ) can be approximated by
its projection on I? (G(Xn, ne Ap)); so it suffices to establish that for fixed A € P,
the space S; = I?(0(Xn,n€A)) is included in the chaotic space x(X). Each X,
takes two values, hence the random vector (X,), ., takes 2141 values, and S, has
dimension 214!, But the subspace S; of S, with orthonormal basis { Xz, B C A} also

has dimension 2!4l; thus S, = S}, whence S, C x(X). [

Another case is when the novation X is deterministic in some neighbourhood
of —oo; before giving a precise statement (Proposition 5), we prove an auxiliary
lemma saying that the chaotic representation property needs to be checked near
—oo only. Recall that stopping times are not allowed to assume the value —oo.

LEMMA 2. — Let T be a stopping time. If 12(F;) C x(X), the chaotic representation
property holds.

PrRoOOF. — By replacing T' with T' A 0, we may suppose T’ < 400 a.s. To prove the
lemma, it suffices to show

(%) L(97) C x(X) = () Cx(X);
for this implies first [7(%, ) C x(X) for each p € N, and then I?(F,) C x(X)
since U, cn 1?(F, 1p) is dense in [?(9,,) by martingale convergence.

To show (x), take any U € I?(%,,,) and apply Condition (viii) of Proposition 3
to U —E[U|F,]; this yields U = E[U|%] + KXy for some F-measurable K. As
E[U%|F7] = E[U|F7]" + K°E[X7.,|97] = E[U|9)° + K*

K belongs to I?(F). Observing that U = E[U|F.] + >, Kl{7—,3 X,,4+1 and that
E[U|3;] € x(X), it suffices to verify that Klp_,3 X, 1 is in x(X). But we know

Klr_,y to be in I2(F;)NIA(F,) C x(X)NIA(F,); so it has an expansion of the form

>, uyX,, and its product with X,,4; is in x(X) too, with chaotic expansion
AeP

AC]—o0o,n] Z uA\{n+1}XA . |
Ae?P
sup A=n+1
PROPOSITION 5. — The following five conditions are equivalent:

(i) there exist a random wvariable S with values in Z U {+oo} and a predictable
process Y = (Yy), oz such that X =Y on the random interval ] —oo, S[;

(ii) there exist a stopping time T such that P[T>n] > 0 for all n € Z and a
deterministic process Y = (Yn), ey Such that X =y on J—o00,T[, X7 = —1/y, on
{T <0}, and

Yn .
1+y2’

P[Xn=yn|T>n] = P[X,= —1/y,|T>n] =

1+y2
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1
1+ H?

(iii) the predictable process H of Proposition 3 (i) verifies Z
n<0

< 0 a.8.y
(iv) the series > X2 converges a.s.;
n<0

(v) with probability 1, |X,| <1 for all n small enough.

When these conditions are met, the o-field F is generated by T', and the chaotic
representation property holds.

For an analogue of this statement in continuous time, see Théoreme 5 of [1] and
Théoréme 5.3.6 of Taviot [4].
Convergence of the series in (iv) holds a.s. but not in I, for E[X?2] = 1.

PROOF OF PROPOSITION 5. — (i) = (ii). Fix n such that P[.S >n] > 0. We shall first
see by induction that for every m < n there exists an J,,-measurable random variable
Zm such that X,, = Z,,, on the event {S >n}. This is true for m = n with Z,, = X,,.
Supposing it to hold for some m < n, there exists a Borel function f such that
Zm = f( 0, Xm—2, X1, Xm);soon {S>n}, X, = f(..., Xon—2, X;m—1,Ym), and
it holds for m—1 too, with Z,,—1 = f(..., X;m—2, X;n—1, Yim) being &, _;-measurable
because Y is predictable.
Consequently, E[ X, 115>, |9,,] = E[Zn {550} |9,,] = Zn P[S >n|T,,], and

]]{S>n} E[Xn]l{s>n} |5tm:| = ]1{S>n} X, ]P)[S >n ‘f}dm] .

Letting m tend to —oo, we get Iygspn) E[Xplig5ny] = Iigsny Xn P[S > n], showing
that X,, is the constant z,, = E[X,|S >n] on the event {S >n}. Unfixing n, we
obtain that X agrees with some deterministic process x on the interval ]|—oo, S|.

By Condition (i) of Proposition 3, there is a predictable process H such that
X?=14+HX;s0® = 1(H+vVH?+4) and ¥ = 1(H — vVH?+4) are two predictable
processes such that ¥ = —1 and that for each m, X,, is a.s. equal to ®,, or ¥,,.
There are two Borel functions ¢,, and 1, such that ®,, = ¢, (..., Xin—2, Xin_1)
and \I/m = ’L/Jm( .. ,Xm_Q,Xm_l).

Fix again n such that P[S >n] > 0. Define a deterministic process y = (¥m),,cz
by Ym = Xy if m < n and (inductively) by vm = éml(- - Ym—2,Ym—1) if m > n.
For m < n, P[ Xy =y VE<m] > P[S>n] > 0; putting E,, = {Xr =y Vk<m},
one has P[X,,=Ym|Emn] > 0. But the conditional law of X,, given E,, is the law
in L supported by the two points ¢, (- - -, Ym—2, Ym—1) and ¥, (. . ., Ym—2, Ym—1). SO
Ym is one of these two points and —1/y,, is the other one; this holds for m > n too
by the very definition of ,,.

Put T = inf{m : X,, #ym}. As T is minorated by S A n, it does not take the
value —oo, and 7T is a stopping time. On the event {T'>m}, X and y agree up to
time m—1, and X, takes the two values y,, and —1/y,, with respective probabilities
given by Lemma 1:

PlXpm=ynT>m] =1/(1+y;) and P[X,= —1/yn|T>m] =y, /(1+y5,) .

On {T'=m}, one has furthermore X,, # vy, whence X,, = —1/y,, and
Xp=—1/y; on {T'<oo}. Last, for each m € Z, the essential supremum of T
cannot be m since P[T >m|T >m] = P[X,, =ym|T >m] = 1/(1+y2,) > 0; thus
T' is not bounded above.
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(ii) = (iv). If (ii) holds, iterating the relation P[T >n|T' >n—1] =
forn <0

ives
T+y2 °

1
1+4+y2,

P[T>0T>n] = []
me]n,0]
and, taking the limit when n — —o0,

P[T>0] =[]

m<0

1
1+y2,

The left-hand side being strictly positive by hypothesis, the infinite product must
converge, and Y. y2 < o0o. As X, =y, foralln <T, > X2 < o as.
n<0 n<0

(iv) = (iii). According to the structure equation X? = 1 + HX, the process X
never vanishes and H = X — 1/X. Hence 1/(1+H?) = X?/(1-X?+X*) < 3 X2,
and if the series > X2 is a.s. convergent, so is also > 1/(1+H?2).

n<0 n<0

(iii) = (i). One of the roots of the structure equation z? = 1 + H, x satisfied
by X,, is ®,, = 5(sgn H,,)(|H,,| + \/H2 + 4), with the convention sgn0 = 1. Notice
that the predictable process ® verifies |®,| > |H,|, so the series > 1/(1+®2) is
a.s. convergent. Set n<0

1
T=inf{neZ: Y s 21}

m<n
Because the series is convergent, T' > —oo a.s. As ® is predictable, T is a predictable
stopping time (i.e. T—1 is a stopping time) and the event {n <7} is in J,_;. By
Proposition 3 (ii) and Lemma 1, P[X,,=®,|F, ;] = 1/(1+®2), so one can write

E[Z ll{xn:@n}] ~E [Z ey P[X, = <I>n|3”n_1]} - ]E[Z

n<T

1 }gl
1+ @2

Consequently, the sum ) . l;x, —¢,} is a.s. finite; so, with probability 1, for all
but finitely many n < 0, X, is the other root —1/®,, of the equation, and (i) holds
with ¥ = —1/®.

(iv) = (v) is trivial.

(v) = (i). The two roots of the structure equation x? = 1+ H, x satisfied by
X, are ®, = 2(sgnH,)(|H,|+ /H2 +4) and —1/®,; they verify |®,| > 1 and
|-1/®,| < 1. So X is equal to the predictable process Y = —1/® on the random
set {|X| < 1}. By hypothesis, this random set contains a random interval []—oo, S|
with S > —o0 a.s., so (i) holds.

(ii) = (o(T') = F;). Supposing (ii) to hold, let U be any F.-measurable random
variable. There is for each n € ZU{+oo} a Borel function u,, such that

U= U]I{T:oo} + Z U]l{T:n}

nez
= uoo(va me Z)]I{Tzoo} + Z un( . 7Xn—27 Xn—lan)]l{T:n}
nezZ
= uoo(yﬂ”w me Z)H{TZOO} + Z un(' -9 Yn—2,Yn—1, _1/yn)]1{T=n} )
nes

since y is deterministic, U is o(7T)-measurable.
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(ii) = (chaotic representation property). Fix n € Z. For any A € P, one has
Yy  P[T=n] if AC ]—o0,n;
-1 .
E[XsMir=ny] = { Ya\{n} (y—) P[T=n] if sup A = n;

0 if supA > n.
Squaring and summing over A yields

oo rir ¥ (i)

Ae? Ae? n
AC]—oo,n[
2 1
=P[T=n] (1 + —2) Z i
Yn Ae?P
AC]—oo,n[
1
=P[T=n)" (1+—5) [T (1+42).
Yn m<n
y2
Now, by induction on k < n, P[T' =n|T > k] = 7 s H 5> 50, in the limit
when k£ — —o0, TYn k<m<n m
Yn 1
n — P[T=
1+y2 ,L[n Tz, =n)s

and the above sum becomes

2 2 1 2
> (E[Xalir—py]) =P[T=n]" o——— =P[T=n] = E[(Ir=,)"] .
P[T =n]

Ae?

The left-hand side is the squared I?-norm of the orthogonal projection of 17—, on
the chaotic space x(X); the right-hand side is the squared I?-norm of l7—,, itself.
Their being equal shows that 17—, belongs to x(X), and, n being arbitrary, that
I?(o(T)) C x(X). We have seen above that o(T) = F; so 1#(F) C x(X), and the
chaotic representation property holds by Lemma 2. ]

Another, less simple, case of chaotic representation property

Recall the context: X is a novation, JF is its natural filtration, and all ten
conditions of Proposition 3 are in force; in particular, by condition (v), F is dyadic
and by condition (iv) F___ is degenerate. In this section, we shall work in a narrower
setting: we shall further suppose that F is generated by a process taking values in
a two-point space (the set {—1,1} will be convenient). Example 2 of Vershik [5]
shows that this additional hypothesis is not a consequence of the other assumptions.

LEMMA 3. — a) Let ¢ be a process with values in {—1,1}; call &€ the natural
filtration of € and suppose Var|e,|En_1] > 0 a.s. for each n € Z. There exists a
unique E-novation X such that sgn X¢ = e; moreover, X¢ has the same natural
filtration € as .

b) Suppose given a filtration F and an F-novation X; put € = sgn X (with for
instance sgn0 = 1). The following two conditions are equivalent:

(i) both processes X and e generate the same filtration;
(ii) the novation X¢ defined in a) is equal to X.
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REMARKS. — a) In Lemma 3 b), since X is an F-novation, Var[e,|F, ;] > 0, and
a fortiori Var[e,|E,—1] > 0 where € is the filtration generated by e. Hence the
process X°¢ in condition (ii) is well defined.

b) If the time-axis is {n €Z : n < 0} instead of Z, conditions (i) and (ii) in b)
are also equivalent to the seemingly weaker condition:

(i') the processes X and e generate the same o-field.

To check this, calling F (respectively €) the natural filtration of X (respectively ¢),
it suffices to verify that if F, = €,, then F,_, = &,_,. Supposing F, = €,
Xp = Ullg, 1y + VI, —_4y for some &, j-measurable U and V. This implies
(X,—U)(X,—V) = 0; expanding and conditioning on &, _; gives UV = —1;
in particular, U # V as., and {X,,=U} = {e, =1}, {X,,=V} = {e, = — 1}.
Now if W is any J,,_;-measurable random variable, it is also &,-measurable, so
W = QU -1y + Rl —_1y with @ and R measurable for &, ;. This can be
rewritten as W = AX,, + B, where Az + B is the &, _i-measurable affine function
mapping U to Q and V' to R. Conditioning on J,,_; kills the term AX,,, so W = B,
and W is €,,_;-measurable. This proves J,,_; =¢&,,_;.

PROOF OF LEMMA 3. — a) If X is any E-novation, then, owing to the filtration &
being dyadic, X,, = Ae,, + B, where A and B are £,,_j-measurable. Condition (N1)
implies X,, = A (e, —E[en]€n-1]), and (N2) then yields 1 = A% Var[e,|&,_1].
If furthermore sgn X = ¢, A cannot be negative, and one gets
X, — en — El[en|En_1] .
V' Var[e,|€—-1]

Conversely, X defined by this formula is an &-novation; and as [E[e,|€,-1]| < 1
and |e,| = 1, one has sgn X,, = ¢,. This proves existence and uniqueness.

Since sgn X = ¢, the natural filtration € of € is included in that of X; but the
explicit formula for X,, shows that X is adapted to &; so X generates €.

b) (ii) = (i) is an immediate consequence of a). Conversely, if an F-novation X
and its sign € have the same natural filtration €, € is included in F, so X is also an
E-novation, and X = X¢ by uniqueness in a). ]

PROPOSITION 6. — Let € = (g,),,c4 be a process with values in {—1,1} and call F
its natural filtration. Suppose

(i) the process € is Markov (but not necessarily homogeneous);
(ii) the o-field F__, is degenerate;
(iii) Var[e,|En—1] >0 a.s. for each n € Z.

Under these assumptions, the F-novation X¢ (defined in the previous lemma)
has the chaotic representation property.

PRrROOF. — We shall simply write X instead of X¢. Notice that all ten conditions of

Proposition 3 hold. If (Z,,),,., is any process, we shall set Zy = [[ Z, for A e P.
ncA

As € is a Markov process, the conditional expectation E[e,|F,_;] is a function
of £,_1; it takes values in [—1,1], and more precisely in the open interval (—1,1)
since Var[e,|%,_;] > 0. Hence we may put E[e,|F,_;] = sin©,,, for some random



DISCRETE CHAOTIC REPRESENTATION 13

variable ©,, = 0, (¢,,—1), depending on &,,_; only, and with values in (-7, 7). And

as €,—1 takes only the values —1 and 1, ©,, = a,,6,,—1 + 3, for two real numbers

— en(l) _en(_l) and B — en(1)+9n(_1)
" 2

o, 5
that are both in the open interval (-7, 5 ). With these notations, the formula giving
X, in the proof of Lemma 3 becomes X,, = (g, — sin©,)/cos ©,. This implies
en = X, cosO, + sin©,; squaring both sides gives X,% =1-2X, tan©®,, and
shows that the predictable process H appearing in the structure equation satisfied

by the novation X is H = —2 tan ©.

For m < n in Z, call x™ (respectively x7) the closed subspace of x(X) with
orthonormal basis {XA, AeP, AC]|—o0, n]} (respectively {X,, AC |m,n]});
notice that x7', has finite dimension 2"~ and that for U € x™ and V € X},
the product UV belongs to x™.

As F = o(en,n €Z), the chaotic representation property will be established if
we show that the chaotic space x(X) contains every random variable of the form
f(ems1,---,€n). For fixed m and n, those random variables form a finite-dimensional
vector space, with basis {e, , A C]m,n]}; so it suffices to show that each ¢, belongs
to x(X).

The first step of the proof will consist in establishing that for every A C Jm,n],
there exist () and R in ], such that ¢, = @ + Re,,. For fixed n, this will be shown
by induction on m < n. If m = n, the only possible A is A = &, and the property
holds trivially with Q =1 = Xz and R = 0. Suppose now it holds for some m < n.
Replacing ©,, by a,,&m—1 + Bm in the formula ¢,, = X,, cos©,, + sinO,, gives
an expression of the form e, = (X, +b) + (¢X;,+d)en—1. Now every subset A of
|Jm—1,n] is either of the form B, or of the form {m}UB, for some B C |m,n]. By
induction hypothesis, e = Q + Re,, with Q and R in x7); so €4 is either @ + Rey,
or Qe,, + R, and replacing ¢,,, by (aX,,+b) + (cX,,+d)e,,—1 establishes the claim.

Owing to this property, to show that ¢, is in x(X) for A C Jm,n], it suffices to
show that €, is in x". Without loss of generality, we shall do it for m = 0 only: the
rest of the proof will consist in establishing that €, belongs to the chaotic space x°
generated by (Xn), <o

Set
Qn\ [ cosB, sing, X,
(Rn) - (—sinﬁn cosﬁn) < 1 ) '

Rewriting (N1) and (N2) as

Rn-1 K)i”) (X, 1)] =1d,
one has

T Qn [ cosfB, sinf, cosfB, —sinf,\
B {(Rn> (@n R")l N (—sinﬂn cosﬁn) ld <sin6n cosfBn ) Id,
whence E[Q2|F, ;] = E[R2|F, ;] =1 and E[Q,R.|7,_;] = 0. Consequently, by
induction on n < 0, if A and B (respectively A" and B’) are two disjoint sets with
union AUB = A"U B’ = ]n,0],

1 fA=A"and B=DB'
ElQults) @ Fi)l5,] = { o 12
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and when (A, B) ranges over all pairs of complementary subsets of |n,0], the r.v.’s
Q4 Rg form an orthonormal basis of the subspace x2. The orthogonal projection of
o on this subspace is

Proj,o g = Z EleqQalip] QuRsp -
AUB=]n,0]
ANB=g

To show that ¢, is in the chaotic space, it suffices to show that it is the I2-limit of
Proj,o g when n — —o0; as legll”> = 1, this reduces to proving that |[Proj, o eoll?
tends to 1, or equivalently that

Z (]E[aOQARB])Q —1 when n — —oc.

AUB=]n,0]
ANB=g

Set U,, = @, cosa,, and V,, = R, sina,,. One has
€, = Xn cosO, +sin0O,

= (cos(a,e,_1+6n) sin(ane, 1+ 56n)) (ﬁn)

= (cos(ane, 1) sin(ane, 1)) ( o8 Sinﬂn) (ﬁn)

—sin (@, cosf,

= (cosq,, ¢€,_qsinaq,) <g") =U,+¢,1Va

Iterating this formula, one obtains
eo=Uo+U_1Vo+U_V_iVo+ ...+ Upns1Voya. . Vo +enVagr ... Vo
=cosay Qo+ cosa_y sinaygQ_1Ro+ ...
+cosa, 1 sina, o...sin0yQni1Rng2. .. Ry
+epsina, q...8inayRyy1... Ry .
Multiplying by Q4Rz (where AU B = |n,0] and AN B = &) and conditioning
by J,,, all terms cancel but one, and there only remains
o if A= and B = |n,0],
EleqQuRg|F,] =E[ensina, 4 ...sinagR2 ... Rj|F,]
= epsSina, 1 ...8InQq ;
o if A# @ and supA =m € |n,0],
EleqQaRp|5,]
=E|cosa,, sina,, . ...sino Qanln,m-1] RBm]n’m_lefannH ... R? !3’"”}
= cosq,, sina,, . ...sinaq E[QAm]n,m—ljRBm]n,m—l] ‘ 3"”}

= cosq, sina,, ...sinq H sin 3, H cos By

a€A beB
a<m b<m

(the latter follows from E[Q/|F—1] = sinfy and E[Ry|F—1] = cosf). Taking
expectations, squaring and summing gives |[Proj,o goll” as the sum of two terms.
The first term, corresponding to A = @, is

(E [6n})2 sin® ;- . .sin” oy ;
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the second term is the sum

2 .2 .2 .2 2
E cos” a,,, sin” a1 ...sin" o g Hsm Ba Hcos B

me]n,0] AUB=]n,m—1] a€A beB
ANB=g
= E cos® a, sin® a,, . ..sin? q H (sin? B, + cos? 3,)
me]n,0] a€]n,m—1]
= E cos® a,,, sin® Qpgq - - - sin? oy,
me&]n,0]

= E (Sin2 Qi q - - .sin? oy — sin? a,, sin? Qppiq - - - sin? ao)
me]n,0]

2

. . )
=1-—sin"a,,q...8in" .

Putting both terms together gives
|Proj,o eoll>=1- (1- E[gnf) sin® a1 - . . sin® oy

— 1 — sin? iy - .sin? oy Vare,, ,
and to establish the chaotic representation property it suffices to verify that

sin? Qpyq - .sin? a,y Vare,, — 0 when n tends to —oo.
Clearly, this holds if the product sin®a,, . ...sin® o tends to 0 (for Vare, < 1);
hence we only have to consider the case when the infinite product [] sin®q,, is
convergent. n<0

We shall show that in that case, condition (iii) of Proposition 5 is fulfilled; as the
chaotic representation property always holds in the degenerate situation considered
in that proposition, our Proposition 6 will thus be established in full generality.

That condition says that the series >, (1—|—H72L)_1 converges a.s., where H is
the predictable process featuring in the structure equation for the novation X. At
the beginning of the proof, we saw that H, = —2 tan ©,,; consequently

1 1 1

= g - 26117
1+ H?2 1+ 4 tan®0©,, 1+ tan?0,, cos

and it only remains to establish that the sum 3 cos? ©,, is a.s. finite.
n<0
Put &, = § — |a,|. Since the values assumed by ©,, are 8, — a,, and 3, + a,,
one has —% < B3, — |a,,| < B, + |a,,| < §, whence

{g—zén:—ngZ]an\<5n+|anl<g
-5 +2a, =5 —2la,| > B, —|a,| > %

and ©, = 3, o, € (—g, —g—f—Z&n) U (g - 2a,,, g) As the infinite product is
convergent, sin o, — 1,50 @, — 0, and 2a,, < 5 for all n small enough. For these n
one has |cos©,| < |cos(5—2a,)| = sin(2|a,,|) = 2sin|a,,|cos a,, < 2cosa,,, hence
also cos?©,, < 4cos?a, = 4(1— sin®a,,); so convergence of the infinite product

[] sin? a,, implies convergence of the series 3 cos? ©,,. [
n<0 n<0

The Markov hypothesis (i) in Proposition 6 has been used to perform explicit
computations on the process ¢; it is not clear whether the result remains true or not
when this hypothesis is dropped.
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