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A DISCRETE APPROACH

TO THE CHAOTIC REPRESENTATION PROPERTY

M. Émery

Abstract. — In continuous time, let (Xt)t>0 be a normal martingale (i.e. a process such

that both Xt and X2
t − t are martingales). One says that X has the chaotic representation

property if L2
(
σ(X)

)
is the (direct) Hilbert sum

⊕
p∈N

χp(X), where χp(X) is the space of all

p-fold iterated stochastic integrals∫

0<t1<...<tp

f(t1, . . . , tp) dXt1 . . . dXtp

with f square-integrable (χp(X) is called the pth chaotic space; by convention, χ0(X) is the

one-dimensional space of deterministic random variables). An open problem is to characterize

those processes X.

Instead of working in continuous time, we shall address an analogue of this problem where

the time-axis is the set Z of signed integers; in this setting, we shall give a sufficient (but

probably far from necessary) condition for the chaotic representation property to hold.

Notation and preliminaries

We shall use the set Z of all signed integers as our time-axis; the set of all finite
subsets of Z will be denoted by P. For m and n in Z, we shall have to do with the
following “intervals”:

cem,nce = {k ∈ Z : m < k 6 n} ;

cen,∞bd = {k ∈ Z : n < k} ;

ce−∞, nce = {k ∈ Z : k 6 n} .
ce−∞, nbd = {k ∈ Z : k < n} .

Given a filtration F = (Fn)n∈Z, a process X = (Xn)n∈Z is adapted (respectively
predictable ) if for each n the random variable Xn is Fn-measurable (respectively
Fn−1-measurable); a stopping time is an F∞-measurable random variable T with
values in Z∪{+∞}, such that for each n ∈ Z the event {T =n} (or, for that matter,
{T 6n}) belongs to Fn; notice that the value −∞ is not allowed to stopping times.

An empty sum
∑
i∈∅

xi is always null, an empty product
∏
i∈∅

xi is always 1.

With Z as the time-axis, the analogue of a normal martingale is no longer a
martingale, but a sort of normalized martingale increment:

Definition. — On a probability space (Ω,A,P), let F = (Fn)n∈Z be a filtration.
A process X = (Xn)n∈Z is a novation (more precisely: an F-novation) if, for each
time n ∈ Z, Xn belongs to L2(Fn) and verifies

EbdXn|Fn−1ce = 0 ;(N1)

EbdX2
n|Fn−1ce = 1 .(N2)
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The name ‘novation’ aims at suggesting that X plays the rôle of an innovation,
but the prefix ‘in’ has been dropped to stress that no independence is required.1

Condition (N1) says that Xn should be understood as a martingale increment; and
(N2) is a normalization hypothesis. The simplest example of a novation is a sequence
of independent random variables with mean 0 and variance 1.

Proposition 1 and definitions. — Let X be a novation on (Ω,A,P,F); for each
A ∈ P, denote by XA the product

∏
n∈A

Xn. The set of random variables {XA, A ∈ P}
is orthonormal in L2(Ω,A,P).

So this set is the orthonormal basis of some closed subset of L2(Ω,A,P), called
the chaotic space associated to X, and denoted by χ(X).

If {XA, A ∈ P} is total in L2(Ω,F∞,P), or equivalently if the chaotic space is
equal to L2(Ω,F∞,P), one says that X has the chaotic representation property.

The simplest example of a novation with the chaotic representation property is
the fair coin-tossing: the Xn are independent and uniformly distributed on {−1, 1},
and F is the filtration generated by X.

Proof of Proposition 1. — Fix A and B in P. For n ∈ Z, the formula

EbdXAXB |Fnce =

{
0 if A∩cen,∞bd 6= B∩cen,∞bd;
XA∩ce−∞,nceXB∩ce−∞,nce if A∩cen,∞bd = B∩cen,∞bd.

is true if n is large enough for ce−∞, nce to contain A and B; and if it holds for some
n, it holds for n − 1 too because X is a novation. So it holds for every n ∈ Z, and
in particular when n is small enough for A and B to be included in cen,∞bd. Thus,
for such an n,

EbdXAXB |Fnce =

{
0 if A 6= B
1 if A = B,

and the proposition is proved by taking expectations on both sides.

Here are five necessary conditions for a novation X to have the chaotic represen-
tation property.

Proposition 2 and definition. — Let X be a novation defined on some filtered
probability space (Ω,A,P,F). If X has the chaotic representation property, then

(i) for each n ∈ Z, the set
{
XA, A ∈ P, A ⊂ ce−∞, nce

}
is an orthonormal basis of

L2(Ω,Fn,P);

(ii) the filtration F is generated by X;

(iii) the σ-field F−∞ ( =
⋂
n Fn) is degenerate;

(iv) for all n ∈ Z and U ∈ L2(Fn), there exist Q and R in L2(Fn−1) such that
U = Q+RXn;

(v) for each U ∈ L2(F∞), there exists an F-predictable process H = (Hn)n∈Z such
that

E
[ ∑
n∈Z

H2
n

]
<∞ and U = EbdUce+

∑

n∈Z
HnXn .

When (v) holds, one says that the novation X has the predictable representation
property (with respect to the filtration F).

1. � Ne crains doncques, Poëte futur, d’innover quelques termes. � (J. du Bellay, La deffence et

illustration de la langue françoyse.)
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The analogy between this definition and the predictable representation property
in continuous time (see for instance bd3ce) is plain: Xn replaces dXt and

∑
replaces

∫
.

Proof. — (i) Fix n ∈ Z. For each A ∈ P, one has XA ⊥ L2(Fn) if Ameets cen,∞bd and
XA ∈ L2(Fn) if A is included in ce−∞, nce. Thus

{
XA, A ∈ P; A ⊂ ce−∞, nce

}
is an

orthonormal basis of L2(Fn) (and
{
XA, A ∈ P; A meets cen,∞bd

}
is an orthonormal

basis of its orthogonal supplement).

(ii) is a consequence of (i).

(iii) For A ∈ P and A 6= ∅, XA is orthogonal to L2(Fn) for every n < supA,
and a fortiori to L2(F−∞). So L2(F−∞) is included in the orthogonal supplement to
{XA, A ∈ P, A 6= ∅}; as this supplement consists of deterministic random variables,
F−∞ is degenerate.

(iv) We know from (i) that every random variable U ∈ L2(Fn) admits an
L2-expansion as

U =
∑

A∈P
A⊂ce−∞,nce

uAXA

with
∑
u2
A <∞. Setting

Q =
∑

A∈P
A⊂ce−∞,nbd

uAXA and R =
∑

A∈P
A⊂ce−∞,nbd

uA∪{n}XA ,

one has
RXn =

∑

A∈P
supA=n

uAXA

(approximate both sides by finite sums and take limits in L2), whence (iv).

(v) By the chaotic representation property, each U ∈ L2(F∞) has an expansion

U =
∑

A∈P

uAXA = u∅ +
∑

n∈Z

∑

A∈P
A⊂ce−∞,nbd

uA∪{n}XAXn .

Now, the random variable

Hn =
∑

A∈P
A⊂ce−∞,nbd

uA∪{n}XA =
∑

A∈P
supA=n

uAXA−{n}

belongs to L2(Fn−1) by (i), with squared norm EbdH2
nce =

∑
A∈P

supA=n

u2
A; summing in n

gives

E
[∑
n
H2
n

]
=
∑

A∈P
A 6=∅

u2
A <∞ ,

and, as u∅ = EbdUX∅ce = EbdUce, the formula for U becomes EbdUce+
∑
n
HnXn.

The well-known equivalence between extremality and the predictable representa-
tion property (see Theorem (V.4.6) of bd3ce) becomes completely elementary in our
discrete setting; it is recalled in the next proposition. We shall call L the set of all
probability laws on the real line that are carried by two points, and have mean 0 and
variance 1. In other words, an element of L is a probability of the form pδa + qδb,
with p > 0, q > 0, p+ q = 1, pa+ qb = 0, and pa2 + qb2 = 1.
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Lemma 1. — For each h ∈ R, there is a unique law `(h) ∈ L supported by the two
roots of the quadratic equation x2 = 1 + hx; it gives mass 1/(1 +x2) to each root x
of the equation. Moreover, this map ` : R→ L is a bijection.

Proof. — The roots of x2 = 1 + hx are two real numbers y and z with product
−1, so one is strictly positive and the other strictly negative. There is a unique
probability law λ carried by y and z and having mean 0; it weights y with mass
z/(z−y) = 1/(1+y2) and z with y/(y−z) = 1/(1+z2). And any random variable X
with law λ verifies X2 = 1 + hX and EbdXce = 0, whence EbdX2ce = 1, so λ ∈ L.

Conversely, any λ ∈ L is supported by two points, so a random variable X with
law λ verifies a quadratic equation X2 = hX + k; taking expectations gives k = 1,
so ` is surjective.

The elements of L can also be characterized as the centered laws with unit variance that

are extremal in the set of all centered laws. They are a fortiori extremal in the smaller set

of all centered laws with unit variance, but this is no longer a characterization: the extreme

points of the set of all centered laws with unit variance are the centered laws with unit

variance carried by two or three points.

Proposition 3. — Let X be a novation on a filtered probability space (Ω,A,P,F).

a) The following three conditions are equivalent:

(i) there exists a predictable process H such that X2 = 1 +HX;

(ii) there exists a predictable process L with values in L such that, for all Borel f
and all n ∈ Z, Ebdf(Xn+1)|Fnce = Ln+1(f);

(iii) there exists a predictable process L with values in L such that, for all Borel f
and all stopping times T , Ebdf(XT+1)|FT ce = LT+1(f) on the event {T <∞}.

If X has the predictable representation property, then F−∞ is degenerate, and
the three conditions (i) – (iii) hold.

b) If F−∞ is degenerate, the following five conditions are equivalent:

(iv) X has the predictable representation property;

(v) for each n ∈ Z, there exists an event Γ such that Fn+1 = σ(Fn,Γ);

(vi) for all n ∈ Z and all random variables U ∈ L2(Fn+1), one has

U = EbdU |Fnce+ EbdUXn+1|FnceXn+1 .

(vii) for all n ∈ Z and all Fn+1-measurable random variables U , there are two
Fn-measurable random variables Q and R such that U = Q+RXn+1;

(viii) for all stopping times T and all FT+1-measurable random variables U , there
are two FT -measurable random variables Q and R such that U = Q + RXT+1 on
the event {T <∞}.

c) If F−∞ is degenerate and if F is the filtration generated by X, all eight
conditions (i) – (viii) are equivalent to each other, and to the following further
two conditions:

(ix) for all n ∈ Z and all U ∈ L2(F∞), one has U =
∑
A∈P

A⊂cen,∞bd

EbdUXA|FnceXA;

(x) for all stopping times S and T such that S 6 T and all U ∈ L2(FT ), one has
U =

∑
A∈P

1l{A⊂ceS,Tce}EbdUXA|FSceXA.



                

Discrete chaotic representation 5

Condition (i) is called a structure equation ; its analogue in continuous time has
the form dbdX,Xcet = dt+Ht dXt. Conditions (i) to (iii) say that the natural filtration
of X is dyadic. Conditions (iv) to (viii) say that the filtration F itself is dyadic (given
the past Fn−1, the innovation consists in choosing among two possible values only for
Xn, or equivalently in choosing the sign of Xn). But these conditions (iv) to (viii) do
not imply that F is generated by X; they do not even imply that F is generated by
any novation whatsoever (see Vershik’s Example 2 in bd5ce). Conditions (ix) and (x)
are the conditional chaotic representation property at times n and S; it is essential
here that n and S are not allowed to take the value −∞: when n and S are −∞,
these conditions become the (unconditional) chaotic representation property, which
is in general strictly stronger than the predictable representation property. The rest
of this work will precisely be concerned with the gap between these properties: which
hypothesis should be added to the predictable representation property to imply the
chaotic representation property? We shall only give a very partial answer.

Proof of Proposition 3. — (i) ⇒ (ii). Assuming (i), define an L-valued
predictable process L by Ln = `(Hn), where ` is the map defined in Lemma 1.
As X2

n+1 = 1 + Hn+1Xn+1, Xn+1 is a.s. one of the two points of the support of
`(Hn+1); as EbdXn+1|Fnce = 0 and EbdX2

n+1|Fnce = 1, the conditional law of Xn+1

given Fn must be Ln+1. This gives (ii).

(ii) ⇒ (iii). Assuming (ii), for each n ∈ Z the conclusion holds on the event
{T =n}, so it holds on {T <∞}.

(iii) ⇒ (ii) is trivial, and to obtain (ii) ⇒ (i) it suffices to define the predictable
process H by `(H) = L.

Assuming X has the predictable representation property, for every U ∈ L2(F∞),
there is a predictable H such that

∑
n EbdH2

nce < ∞ and U = EbdUce +
∑
nHnXn;

this implies that the (square-integrable) martingale Mn = EbdU |Fnce is given by
Mn = EbdUce +

∑
m6nHmXm. For U ∈ L2(F−∞), one has U = EbdUce, showing that

F−∞ is degenerate.

We now pass to the equivalence of (iv) – (viii); the end of a), that is, (iv) ⇒ (i),
will be established later.

(iv) ⇒ (vi). We suppose X has the predictable representation property. The
martingale argument a few lines above implies that, for every U ∈ L2(Fn+1), one
has U = EbdU |Fnce+Hn+1Xn+1. As U and EbdU |Fnce are in L2, so is Hn+1Xn+1 too.
Multiplying both sides by Xn+1 and conditioning by Fn gives Hn+1 = EbdUXn+1|Fnce,
whence (vi).

(vi)⇒ (v). Choosing U = 1l{Xn+1=0} in (vi) yields 1l{Xn+1=0} = PbdXn+1 = 0 |Fnce,
and shows that {Xn+1 = 0} is in Fn. Using (N2), this implies Xn+1 6= 0 a.s., and,
using (N1), EbdX+

n+1|Fnce = EbdX−n+1|Fnce > 0 a.s.

Choosing now U = 1l{Xn+1>0} in (vi) gives 1l{Xn+1>0} = Q+RXn+1, with Q and
R measurable for Fn and R = EbdX+

n+1|Fnce > 0. So Xn+1 = (1l{Xn+1>0}−Q)/R, and
(vi) becomes

∀U ∈ L2(Fn+1) U = EbdU |Fnce+ EbdUXn+1|Fnce (1l{Xn+1>0}−Q)/R ,

showing that Fn+1 is generated by Fn and the event {Xn+1> 0}.



               

6 M. Émery

(v)⇒ (vii). Hypothesis (v) implies for each n the existence of two Fn-measurable
random variables F and G such that Xn+1 = F 1lΓ + G 1lΓc . Observing that
X2
n+1 − (F +G)Xn+1 + FG = 0 and conditioning on Fn, one obtains FG = −1.

Consequently, F 6= G a.s. and 1lΓ = (Xn+1−G)/(F−G). Using (v) again, every
Fn+1-measurable U has the form V 1lΓ + W , with V and W measurable for Fn;
replacing 1lΓ by (Xn+1−G)/(F−G) shows (vii).

(vii) ⇔ (viii). Given an FT+1-measurable U , apply (vii) to each Un = U 1l{T=n}.

(vii) and (F−∞ degenerate) ⇒ (iv). Let U be any random variable in L2(F∞)
and M be the martingale Mn = EbdU |Fnce. When applied to Mn+1 −Mn, (vii)
gives Mn+1 −Mn = Hn+1Xn+1 for some Fn-measurable Hn+1 (Q vanishes by
conditioning on Fn); so one has Mn −Mm = Hm+1Xm+1 + . . .+HnXn for m < n.
Since F−∞ is degenerate, Mn tends to EbdUce a.s. and in L2 when n → −∞; it also
tends to M∞ = U when n→ +∞, so U = EbdUce+

∑
n∈Z

HnXn. Writing

EbdH2
n+1ce = E

[
H2
n+1 EbdX2

n+1|Fnce
]

= EbdH2
n+1X

2
n+1ce = E

[
(Mn+1−Mn)

2]
,

one obtains EbdH2
m+1 + . . .+H2

nce = E
[
(Mn−Mm)

2]
for m < n, giving in the limit

E
[∑
n
H2
n

]
= EbdU2ce − EbdUce2 <∞.

Proposition 3 b) is completely proved; to end proving a), that is, proving
(iv) ⇒ (i), it suffices to establish (vii) ⇒ (i). That is quite easy: Hypothesis (vii)
gives X2

n+1 = Q+RXn+1, and Q = 1 is obtained by conditioning on Fn.

We now start showing c); from here on, we assume F to be generated by X and
F−∞ to be degenerate.

(i) ⇒ (v). From X2
n = 1 + HnXn it follows that Xn = f(Hn, 1l{Xn>0}), where

f(h, 0) = 1
2 (h −

√
h2 + 4) and f(h, 1) = 1

2 (h +
√
h2 + 4). This formula shows that

Fn, which we know is generated by Fn−1 and Xn, is also generated by Fn−1 and the
event {Xn> 0}.

(vi) ⇒ (ix). Iterating (vi), one obtains for all m and n in Z such that m 6 n
∀U ∈ L2(F∞) EbdU |Fnce =

∑

A⊂cem,nce
EbdUXA|FmceXA .

Indeed, fixing n, it is true when m = n (for the right-hand side consists in
one term only, EbdUX∅|FmceX∅); and if it holds for some m 6 n, one sees
that it also holds for m − 1 by applying (vi) to replace each EbdUXA|Fmce by
EbdUXA|Fm−1ce+ EbdUXmXA|Fm−1ceXm.

To obtain (ix), it suffices to let n tend to infinity in this formula; convergence
takes place in L2 owing to the following estimate:

∑

A⊂cem,nce
EbdUXA|Fmce2 =

∑

A,B⊂cem,nce
EbdUXA|FmceEbdUXB |FmceEbdXAXB |Fmce

= E
[
EbdU |Fnce2

∣∣Fm
]
6 EbdU2|Fmce .

(ix) ⇒ (x). For m 6 n and U ∈ L2(Fn), EbdUXA|Fnce = 0 if supA > n, so (ix)
implies U =

∑
A⊂cem,nce

EbdUXA|FmceXA. Thus,

∀U ∈ L2(F∞) EbdU |Fnce =
∑

A⊂cem,nce
EbdUXA|FmceXA .
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If S is a stopping time and if m 6 n,

1l{S=m} EbdU |Fnce = 1l{S=m}
∑

A⊂cem,nce
EbdUXA|FmceXA

=
∑

A∈P

1l{A⊂ceS,nce} 1l{S=m} EbdUXA|FSceXA ;

summing in m gives

(∗) EbdU |Fnce =
∑

A∈P

1l{A⊂ceS,nce} EbdUXA|FSceXA on the event {S6n}.

On the complementary event {S >n}, the right-hand side is just EbdU |FSce; taken
together, these two results can be rewritten

EbdU |FS∨nce =
∑

A∈P

1l{A⊂ceS,nce} EbdUXA|FSceXA .

Letting now n tend to ∞, this yields, for all U ∈ L2(F∞),

U =
∑

A∈P

1l{A⊂ceS,∞bd } EbdUXA|FSceXA .

Given a stopping time T > S and a U ∈ L2(FT ), we have to show that

U =
∑

A∈P

1l{A⊂ceS,Tce} EbdUXA|FSceXA ;

it suffices to verify that the difference between the right-hand sides of these two
formulas vanishes:

¿
∑

A∈P

1l{A⊂ceS,∞bd } 1l{A meets ceT,∞bd } EbdUXA|FSceXA = 0 ?

Saying that A meets ceT,∞bd amounts to saying that supA > T (with the convention
sup∅ = −∞). This sum can be rewritten∑

n∈Z
1l{T6n}

∑

A∈P
supA=n+1

1l{A⊂ceS,∞bd } EbdUXA|FSceXA

=
∑

n∈Z
1l{T6n}

∑

B∈P

1l{B⊂ceS,nce}EbdUXB∪{n+1}|FSceXB∪{n+1}

=
∑

n∈Z
1l{T6n}Xn+1

∑

B∈P

1l{B⊂ceS,nce}Ebd(UXn+1)XB |FSceXB .

Now, on the event {T 6n}, one has a fortiori S 6 n, so we may use (∗) to transform
the sum over B into EbdUXn+1|Fnce, yielding

∑
n 1l{T6n}Xn+1 EbdUXn+1|Fnce. Taking

into account that {T 6n} belongs to Fn and that U1l{T6n} is Fn-measurable (because
U is FT -measurable), the conclusion is obtained by writing

1l{T6n} EbdUXn+1|Fnce = EbdU1l{T6n}Xn+1|Fnce = U1l{T6n} EbdXn+1|Fnce = 0 .

(x) ⇒ (vi) is trivial by taking S = n and T = n+ 1.

From now on, we suppose given a novation X and its natural filtration F, and we
assume that X enjoys the predictable representation property with respect to F; so
all ten conditions (i) – (x) of Proposition 3 hold. They do not imply the chaotic
representation property (see bd2ce for a counterexample); the question is to find
additional conditions that are sufficient for the chaotic representation property to
hold. Observe that the problem depends only on the law of the process X; so the
conditions we are looking for are conditions on the law of X.
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Two simple instances of chaotic representation property

The simplest case is when the Xn are independent; by Proposition 3 (ii), the
law of each Xn belongs to L, and an easy dimension argument gives the chaotic
representation property:

Proposition 4. — If the novation X consists of independent random variables
Xn, each with law in L, the chaotic representation property holds.

Proof. — Let (Ap)p∈N be an increasing sequence in P with limit
⋃
pAp = Z. By

martingale convergence, any random variable in L2(F∞) can be approximated by
its projection on L2

(
σ(Xn, n∈Ap)

)
; so it suffices to establish that for fixed A ∈ P,

the space SA = L2
(
σ(Xn, n∈A)

)
is included in the chaotic space χ(X). Each Xn

takes two values, hence the random vector (Xn)n∈A takes 2|A| values, and SA has
dimension 2|A|. But the subspace S′A of SA with orthonormal basis {XB , B⊂A} also
has dimension 2|A|; thus SA = S′A, whence SA ⊂ χ(X).

Another case is when the novation X is deterministic in some neighbourhood
of −∞; before giving a precise statement (Proposition 5), we prove an auxiliary
lemma saying that the chaotic representation property needs to be checked near
−∞ only. Recall that stopping times are not allowed to assume the value −∞.

Lemma 2. — Let T be a stopping time. If L2(FT ) ⊂ χ(X), the chaotic representation
property holds.

Proof. — By replacing T with T ∧ 0, we may suppose T < +∞ a.s. To prove the
lemma, it suffices to show

(∗) L2(FT ) ⊂ χ(X) ⇒ L2(FT+1) ⊂ χ(X) ;

for this implies first L2(FT+p) ⊂ χ(X) for each p ∈ N, and then L2(F∞) ⊂ χ(X)
since

⋃
p∈N L2(FT+p) is dense in L2(F∞) by martingale convergence.

To show (∗), take any U ∈ L2(FT+1) and apply Condition (viii) of Proposition 3
to U −EbdU |FT ce; this yields U = EbdU |FT ce+KXT+1 for some FT -measurable K. As

EbdU2|FT ce = EbdU |FT ce2 +K2EbdX2
T+1|FT ce = EbdU |FT ce2 +K2 ,

K belongs to L2(FT ). Observing that U = EbdU |FT ce +
∑
nK1l{T=n}Xn+1 and that

EbdU |FT ce ∈ χ(X), it suffices to verify that K1l{T=n}Xn+1 is in χ(X). But we know
K1l{T=n} to be in L2(FT )∩L2(Fn) ⊂ χ(X)∩L2(Fn); so it has an expansion of the form∑

A∈P
A⊂ce−∞,nce

uAXA, and its product with Xn+1 is in χ(X) too, with chaotic expansion
∑

A∈P
supA=n+1

uA\{n+1}XA .

Proposition 5. — The following five conditions are equivalent:

(i) there exist a random variable S with values in Z ∪ {+∞} and a predictable
process Y = (Yn)n∈Z such that X = Y on the random interval cece−∞, Sbdbd;
(ii) there exist a stopping time T such that PbdT >nce > 0 for all n ∈ Z and a
deterministic process y = (yn)n∈Z such that X = y on cece−∞, T bdbd, XT = −1/yT on
{T <∞}, and

P
[
Xn = yn

∣∣T >n
]

=
1

1 + y2
n

P
[
Xn = − 1/yn

∣∣T >n
]

=
y2
n

1 + y2
n

;
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(iii) the predictable process H of Proposition 3 (i) verifies
∑

n60

1

1 +H2
n

<∞ a.s.;

(iv) the series
∑
n60

X2
n converges a.s.;

(v) with probability 1, |Xn| < 1 for all n small enough.

When these conditions are met, the σ-field FT is generated by T , and the chaotic

representation property holds.

For an analogue of this statement in continuous time, see Théorème 5 of bd1ce and

Théorème 5.3.6 of Taviot bd4ce.
Convergence of the series in (iv) holds a.s. but not in L1, for EbdX2

nce = 1.

Proof of Proposition 5. — (i)⇒ (ii). Fix n such that PbdS >nce > 0. We shall first

see by induction that for everym 6 n there exists an Fm-measurable random variable

Zm such that Xn = Zm on the event {S >n}. This is true for m = n with Zn = Xn.

Supposing it to hold for some m 6 n, there exists a Borel function f such that

Zm = f(. . . , Xm−2, Xm−1, Xm); so on {S >n}, Xm = f(. . . , Xm−2, Xm−1, Ym), and

it holds for m−1 too, with Zm−1 = f(. . . , Xm−2, Xm−1, Ym) being Fm−1-measurable

because Y is predictable.

Consequently, EbdXn1l{S>n}|Fmce = EbdZm1l{S>n}|Fmce = Zm PbdS >n |Fmce, and

1l{S>n} EbdXn1l{S>n}|Fmce = 1l{S>n}Xn PbdS >n |Fmce .
Letting m tend to −∞, we get 1l{S>n} EbdXn1l{S>n}ce = 1l{S>n}Xn PbdS >nce, showing

that Xn is the constant xn = EbdXn|S >nce on the event {S >n}. Unfixing n, we

obtain that X agrees with some deterministic process x on the interval cece−∞, Sbdbd.
By Condition (i) of Proposition 3, there is a predictable process H such that

X2 = 1 +HX; so Φ = 1
2 (H+

√
H2+4) and Ψ = 1

2 (H−
√
H2+4) are two predictable

processes such that ΦΨ = −1 and that for each m, Xm is a.s. equal to Φm or Ψm.

There are two Borel functions φm and ψm such that Φm = φm(. . . , Xm−2, Xm−1)

and Ψm = ψm(. . . , Xm−2, Xm−1).

Fix again n such that PbdS >nce > 0. Define a deterministic process y = (ym)m∈Z
by ym = xm if m 6 n and (inductively) by ym = φm(. . . , ym−2, ym−1) if m > n.

For m 6 n, PbdXk = yk ∀k6mce > PbdS >nce > 0; putting Em = {Xk = yk ∀k <m},
one has PbdXm= ym|Emce > 0. But the conditional law of Xm given Em is the law

in L supported by the two points φm(. . . , ym−2, ym−1) and ψm(. . . , ym−2, ym−1). So

ym is one of these two points and −1/ym is the other one; this holds for m > n too

by the very definition of ym.

Put T = inf {m : Xm 6= ym}. As T is minorated by S ∧ n, it does not take the

value −∞, and T is a stopping time. On the event {T >m}, X and y agree up to

time m−1, and Xm takes the two values ym and −1/ym with respective probabilities

given by Lemma 1:

PbdXm = ym|T >mce = 1/(1+y2
m) and PbdXm = − 1/ym|T >mce = y2

m/(1+y2
m) .

On {T =m}, one has furthermore Xm 6= ym, whence Xm = −1/ym, and

XT = −1/yT on {T <∞}. Last, for each m ∈ Z, the essential supremum of T

cannot be m since PbdT >m|T >mce = PbdXm = ym|T >mce = 1/(1+y2
m) > 0; thus

T is not bounded above.
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(ii) ⇒ (iv). If (ii) holds, iterating the relation PbdT >n|T >n−1ce =
1

1 + y2
n

gives
for n < 0

PbdT > 0|T >nce =
∏

m∈cen,0ce

1

1 + y2
m

and, taking the limit when n→ −∞,

PbdT > 0ce =
∏

m60

1

1 + y2
m

.

The left-hand side being strictly positive by hypothesis, the infinite product must
converge, and

∑
n60

y2
n <∞. As Xn = yn for all n < T ,

∑
n60

X2
n <∞ a.s.

(iv) ⇒ (iii). According to the structure equation X2 = 1 + HX, the process X
never vanishes and H = X − 1/X. Hence 1/(1+H2) = X2/(1−X2+X4) 6 4

3 X
2,

and if the series
∑
n60

X2
n is a.s. convergent, so is also

∑
n60

1/(1+H2
n).

(iii) ⇒ (i). One of the roots of the structure equation x2 = 1 + Hnx satisfied
by Xn is Φn = 1

2 (sgnHn)
(
|Hn|+

√
H2
n + 4

)
, with the convention sgn 0 = 1. Notice

that the predictable process Φ verifies |Φn| > |Hn|, so the series
∑
n60

1/(1+Φ2
n) is

a.s. convergent. Set

T = inf
{
n∈Z :

∑

m6n

1

1+Φ2
m

> 1
}
.

Because the series is convergent, T > −∞ a.s. As Φ is predictable, T is a predictable
stopping time (i.e. T−1 is a stopping time) and the event {n<T} is in Fn−1. By
Proposition 3 (ii) and Lemma 1, PbdXn=Φn|Fn−1ce = 1/(1+Φ2

n), so one can write

E
[∑

n<T

1l{Xn=Φn}
]

= E
[∑

n

1l{n<T}PbdXn = Φn|Fn−1ce
]

= E
[∑

n<T

1

1 + Φ2
n

]
6 1 .

Consequently, the sum
∑
n<T 1l{Xn=Φn} is a.s. finite; so, with probability 1, for all

but finitely many n 6 0, Xn is the other root −1/Φn of the equation, and (i) holds
with Y = −1/Φ.

(iv) ⇒ (v) is trivial.

(v) ⇒ (i). The two roots of the structure equation x2 = 1 + Hnx satisfied by
Xn are Φn = 1

2 (sgnHn)
(
|Hn|+

√
H2
n + 4

)
and −1/Φn; they verify |Φn| > 1 and

|−1/Φn| 6 1. So X is equal to the predictable process Y = −1/Φ on the random
set {|X| < 1}. By hypothesis, this random set contains a random interval cece−∞, Sbdbd
with S > −∞ a.s., so (i) holds.

(ii) ⇒ (σ(T ) = FT ). Supposing (ii) to hold, let U be any FT -measurable random
variable. There is for each n ∈ Z∪{+∞} a Borel function un such that

U = U1l{T=∞} +
∑

n∈Z
U1l{T=n}

= u∞(Xm, m∈Z)1l{T=∞} +
∑

n∈Z
un(. . . , Xn−2, Xn−1, Xn)1l{T=n}

= u∞(ym, m∈Z)1l{T=∞} +
∑

n∈Z
un(. . . , yn−2, yn−1,−1/yn)1l{T=n} ;

since y is deterministic, U is σ(T )-measurable.



              

Discrete chaotic representation 11

(ii) ⇒ (chaotic representation property). Fix n ∈ Z. For any A ∈ P, one has

EbdXA1l{T=n}ce =





yA PbdT =nce if A ⊂ ce−∞, nbd;
yA\{n}

(−1)

yn
PbdT =nce if supA = n;

0 if supA > n.

Squaring and summing over A yields
∑

A∈P

(
EbdXA1l{T=n}ce

)2
= PbdT =nce2

∑

A∈P
A⊂ce−∞,nbd

(
y2
A + y2

A

1

y2
n

)

= PbdT =nce2
(

1 +
1

y2
n

) ∑

A∈P
A⊂ce−∞,nbd

y2
A

= PbdT =nce2
(

1 +
1

y2
n

) ∏

m<n

(
1 + y2

m

)
.

Now, by induction on k < n, PbdT =n|T >kce =
y2
n

1+y2
n

∏

k<m<n

1

1+y2
m

, so, in the limit
when k → −∞,

y2
n

1+y2
n

∏

m<n

1

1+y2
m

= PbdT=nce ,

and the above sum becomes
∑

A∈P

(
EbdXA1l{T=n}ce

)2
= PbdT =nce2 1

PbdT =nce = PbdT =nce = Ebd(1lT=n)
2ce .

The left-hand side is the squared L2-norm of the orthogonal projection of 1lT=n on
the chaotic space χ(X); the right-hand side is the squared L2-norm of 1lT=n itself.
Their being equal shows that 1lT=n belongs to χ(X), and, n being arbitrary, that
L2(σ(T )) ⊂ χ(X). We have seen above that σ(T ) = FT ; so L2(FT ) ⊂ χ(X), and the
chaotic representation property holds by Lemma 2.

Another, less simple, case of chaotic representation property

Recall the context: X is a novation, F is its natural filtration, and all ten
conditions of Proposition 3 are in force; in particular, by condition (v), F is dyadic
and by condition (iv) F−∞ is degenerate. In this section, we shall work in a narrower
setting: we shall further suppose that F is generated by a process taking values in
a two-point space (the set {−1, 1} will be convenient). Example 2 of Vershik bd5ce
shows that this additional hypothesis is not a consequence of the other assumptions.

Lemma 3. — a) Let ε be a process with values in {−1, 1}; call E the natural
filtration of ε and suppose Varbdεn|En−1ce > 0 a.s. for each n ∈ Z. There exists a
unique E-novation Xε such that sgnXε = ε; moreover, Xε has the same natural
filtration E as ε.

b) Suppose given a filtration F and an F-novation X; put ε = sgnX (with for
instance sgn 0 = 1). The following two conditions are equivalent:

(i) both processes X and ε generate the same filtration;

(ii) the novation Xε defined in a) is equal to X.
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Remarks. — a) In Lemma 3 b), since X is an F-novation, Varbdεn|Fn−1ce > 0, and

a fortiori Varbdεn|En−1ce > 0 where E is the filtration generated by ε. Hence the

process Xε in condition (ii) is well defined.

b) If the time-axis is {n∈Z : n 6 0} instead of Z, conditions (i) and (ii) in b)

are also equivalent to the seemingly weaker condition:

(i′) the processes X and ε generate the same σ-field.

To check this, calling F (respectively E) the natural filtration ofX (respectively ε),

it suffices to verify that if Fn = En, then Fn−1 = En−1. Supposing Fn = En,

Xn = U1l{εn=1} + V 1l{εn=−1} for some En−1-measurable U and V . This implies

(Xn−U)(Xn−V ) = 0; expanding and conditioning on Fn−1 gives UV = −1;

in particular, U 6= V a.s., and {Xn =U} = {εn = 1}, {Xn =V } = {εn = − 1}.
Now if W is any Fn−1-measurable random variable, it is also En-measurable, so

W = Q1l{εn=1} + R1l{εn=−1} with Q and R measurable for En−1. This can be

rewritten as W = AXn + B, where Ax + B is the En−1-measurable affine function

mapping U to Q and V to R. Conditioning on Fn−1 kills the term AXn, so W = B,

and W is En−1-measurable. This proves Fn−1 = En−1.

Proof of Lemma 3. — a) If X is any E-novation, then, owing to the filtration E

being dyadic, Xn = Aεn +B, where A and B are En−1-measurable. Condition (N1)

implies Xn = A
(
εn − Ebdεn|En−1ce

)
, and (N2) then yields 1 = A2 Varbdεn|En−1ce.

If furthermore sgnX = ε, A cannot be negative, and one gets

Xn =
εn − Ebdεn|En−1ce√

Varbdεn|En−1ce
.

Conversely, X defined by this formula is an E-novation; and as
∣∣Ebdεn|En−1ce

∣∣ < 1

and |εn| = 1, one has sgnXn = εn. This proves existence and uniqueness.

Since sgnX = ε, the natural filtration E of ε is included in that of X; but the

explicit formula for Xn shows that X is adapted to E; so X generates E.

b) (ii) ⇒ (i) is an immediate consequence of a). Conversely, if an F-novation X

and its sign ε have the same natural filtration E, E is included in F, so X is also an

E-novation, and X = Xε by uniqueness in a).

Proposition 6. — Let ε = (εn)n∈Z be a process with values in {−1, 1} and call F

its natural filtration. Suppose

(i) the process ε is Markov (but not necessarily homogeneous);

(ii) the σ-field F−∞ is degenerate;

(iii) Varbdεn|En−1ce > 0 a.s. for each n ∈ Z.

Under these assumptions, the F-novation Xε (defined in the previous lemma)

has the chaotic representation property.

Proof. — We shall simply write X instead of Xε. Notice that all ten conditions of

Proposition 3 hold. If (Zn)n∈Z is any process, we shall set ZA =
∏
n∈A

Zn for A ∈ P.

As ε is a Markov process, the conditional expectation Ebdεn|Fn−1ce is a function

of εn−1; it takes values in bd−1, 1ce, and more precisely in the open interval (−1, 1)

since Varbdεn|Fn−1ce > 0. Hence we may put Ebdεn|Fn−1ce = sin Θn, for some random
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variable Θn = θn(εn−1), depending on εn−1 only, and with values in (−π2 , π2 ). And
as εn−1 takes only the values −1 and 1, Θn = αnεn−1 + βn for two real numbers

αn =
θn(1)− θn(−1)

2
and βn =

θn(1) + θn(−1)

2
that are both in the open interval (−π2 , π2 ). With these notations, the formula giving
Xn in the proof of Lemma 3 becomes Xn = (εn− sin Θn)/ cos Θn. This implies
εn = Xn cos Θn + sin Θn; squaring both sides gives X2

n = 1 − 2Xn tan Θn and
shows that the predictable process H appearing in the structure equation satisfied
by the novation X is H = −2 tan Θ.

For m 6 n in Z, call χn (respectively χnm) the closed subspace of χ(X) with
orthonormal basis

{
XA, A ∈ P, A ⊂ ce−∞, nce

}
(respectively {XA , A⊂cem,nce});

notice that χnm has finite dimension 2n−m and that for U ∈ χm and V ∈ χnm
the product UV belongs to χn.

As F∞ = σ(εn, n∈Z), the chaotic representation property will be established if
we show that the chaotic space χ(X) contains every random variable of the form
f(εm+1, . . . , εn). For fixed m and n, those random variables form a finite-dimensional
vector space, with basis {εA , A⊂cem,nce}; so it suffices to show that each εA belongs
to χ(X).

The first step of the proof will consist in establishing that for every A⊂cem,nce,
there exist Q and R in χnm such that εA = Q+Rεm. For fixed n, this will be shown
by induction on m 6 n. If m = n, the only possible A is A = ∅, and the property
holds trivially with Q = 1 = X∅ and R = 0. Suppose now it holds for some m 6 n.
Replacing Θm by αmεm−1 + βm in the formula εm = Xm cos Θm + sin Θm gives
an expression of the form εm = (aXm+b) + (cXm+d)εm−1. Now every subset A of
cem−1, nce is either of the form B, or of the form {m}∪B, for some B ⊂ cem,nce. By
induction hypothesis, εB = Q+Rεm with Q and R in χnm; so εA is either Q+Rεm
or Qεm +R, and replacing εm by (aXm+b) + (cXm+d)εm−1 establishes the claim.

Owing to this property, to show that εA is in χ(X) for A ⊂ cem,nce, it suffices to
show that εm is in χm. Without loss of generality, we shall do it for m = 0 only: the
rest of the proof will consist in establishing that ε0 belongs to the chaotic space χ0

generated by (Xn)n60.

Set (
Qn
Rn

)
=

(
cosβn sinβn
− sinβn cosβn

)(
Xn

1

)
.

Rewriting (N1) and (N2) as

EFn−1

[(
Xn

1

)
(Xn 1 )

]
= Id ,

one has

EFn−1

[(
Qn
Rn

)
(Qn Rn )

]
=

(
cosβn sinβn
− sinβn cosβn

)
Id

(
cosβn − sinβn
sinβn cosβn

)
= Id ,

whence EbdQ2
n|Fn−1ce = EbdR2

n|Fn−1ce = 1 and EbdQnRn|Fn−1ce = 0. Consequently, by
induction on n 6 0, if A and B (respectively A′ and B′) are two disjoint sets with
union A ∪B = A′ ∪B′ = cen, 0ce,

Ebd(QARB)(QA′RB′)|Fnce =

{
1 if A = A′ and B = B′

0 else;
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and when (A,B) ranges over all pairs of complementary subsets of cen, 0ce, the r.v.’s
QARB form an orthonormal basis of the subspace χ0

n. The orthogonal projection of
ε0 on this subspace is

Projχ0
n
ε0 =

∑

A∪B=cen,0ce
A∩B=∅

Ebdε0QARBceQARB .

To show that ε0 is in the chaotic space, it suffices to show that it is the L2-limit of
Projχ0

n
ε0 when n → −∞; as ‖ε0‖2 = 1, this reduces to proving that ‖Projχ0

n
ε0‖2

tends to 1, or equivalently that
∑

A∪B=cen,0ce
A∩B=∅

(
Ebdε0QARBce

)2 −→ 1 when n→ −∞.

Set Un = Qn cosαn and Vn = Rn sinαn. One has

εn = Xn cos Θn + sin Θn

=
(

cos(αnεn−1 +βn) sin(αnεn−1 +βn)
)(Xn

1

)

=
(

cos(αnεn−1) sin(αnεn−1)
)( cosβn sinβn
− sinβn cosβn

)(
Xn

1

)

= ( cosαn εn−1 sinαn )

(
Qn
Rn

)
= Un + εn−1Vn

Iterating this formula, one obtains

ε0 = U0 + U−1V0 + U−2V−1V0 + . . .+ Un+1Vn+2 . . . V0 + εnVn+1 . . . V0

= cosα0Q0 + cosα−1 sinα0Q−1R0 + . . .

+ cosαn+1 sinαn+2 . . . sinα0Qn+1Rn+2 . . . R0

+ εn sinαn+1 . . . sinα0Rn+1 . . . R0 .

Multiplying by QARB (where A ∪ B = cen, 0ce and A ∩ B = ∅) and conditioning
by Fn, all terms cancel but one, and there only remains

• if A = ∅ and B = cen, 0ce,
E
[
ε0QARB

∣∣Fn
]

= Ebdεn sinαn+1 . . . sinα0R
2
n+1 . . . R

2
0|Fnce

= εn sinαn+1 . . . sinα0 ;

• if A 6= ∅ and supA = m ∈ cen, 0ce,
Ebdε0QARB |Fnce

= E
[
cosαm sinαm+1 . . . sinα0QA∩cen,m−1ceRB∩cen,m−1ceQ

2
mR

2
m+1 . . . R

2
0

∣∣Fn
]

= cosαm sinαm+1 . . . sinα0 E
[
QA∩cen,m−1ceRB∩cen,m−1ce

∣∣Fn
]

= cosαm sinαm+1 . . . sinα0

∏

a∈A
a<m

sinβa
∏

b∈B
b<m

cosβb

(the latter follows from EbdQ`|F̀ −1ce = sinβ` and EbdR`|F̀ −1ce = cosβ`). Taking
expectations, squaring and summing gives ‖Projχ0

n
ε0‖2 as the sum of two terms.

The first term, corresponding to A = ∅, is
(
Ebdεnce

)2
sin2 αn+1 . . . sin

2 α0 ;
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the second term is the sum∑

m∈cen,0ce
cos2 αm sin2 αm+1 . . . sin

2 α0

∑

A∪B=cen,m−1ce
A∩B=∅

∏

a∈A
sin2 βa

∏

b∈B
cos2 βb

=
∑

m∈cen,0ce
cos2 αm sin2 αm+1 . . . sin

2 α0

∏

a∈cen,m−1ce
(sin2 βa + cos2 βa)

=
∑

m∈cen,0ce
cos2 αm sin2 αm+1 . . . sin

2 α0

=
∑

m∈cen,0ce

(
sin2 αm+1 . . . sin

2 α0 − sin2 αm sin2 αm+1 . . . sin
2 α0

)

= 1− sin2 αn+1 . . . sin
2 α0 .

Putting both terms together gives

‖Projχ0
n
ε0‖2 = 1−

(
1− Ebdεnce2

)
sin2 αn+1 . . . sin

2 α0

= 1− sin2 αn+1 . . . sin
2 α0 Var εn ,

and to establish the chaotic representation property it suffices to verify that

sin2 αn+1 . . . sin
2 α0 Var εn −→ 0 when n tends to −∞.

Clearly, this holds if the product sin2 αn+1 . . . sin
2 α0 tends to 0 (for Var εn 6 1);

hence we only have to consider the case when the infinite product
∏
n60

sin2 αn is
convergent.

We shall show that in that case, condition (iii) of Proposition 5 is fulfilled; as the
chaotic representation property always holds in the degenerate situation considered
in that proposition, our Proposition 6 will thus be established in full generality.

That condition says that the series
∑
n60 (1+H2

n)
−1

converges a.s., where H is
the predictable process featuring in the structure equation for the novation X. At
the beginning of the proof, we saw that Hn = −2 tan Θn; consequently

1

1 +H2
n

=
1

1 + 4 tan2 Θn
6 1

1 + tan2 Θn
= cos2 Θn ,

and it only remains to establish that the sum
∑
n60

cos2 Θn is a.s. finite.

Put αn = π
2 − |αn|. Since the values assumed by Θn are βn − αn and βn + αn,

one has −π2 < βn − |αn| < βn + |αn| < π
2 , whence

{ π
2 − 2αn = −π2 + 2|αn| < βn + |αn| < π

2

−π2 + 2αn = π
2 − 2|αn| > βn − |αn| > −π2

and Θn = βn ± αn ∈
(
−π2 ,−π2 +2αn

)
∪
(
π
2 − 2αn,

π
2

)
. As the infinite product is

convergent, sin2 αn → 1, so αn → 0, and 2αn <
π
2 for all n small enough. For these n

one has | cos Θn| < | cos(π2−2αn)| = sin(2|αn|) = 2 sin |αn| cosαn 6 2 cosαn, hence
also cos2 Θn < 4 cos2 αn = 4 (1− sin2 αn); so convergence of the infinite product∏
n60

sin2 αn implies convergence of the series
∑
n60

cos2 Θn.

The Markov hypothesis (i) in Proposition 6 has been used to perform explicit
computations on the process ε; it is not clear whether the result remains true or not
when this hypothesis is dropped.
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bd1ce M. Émery. Quelques cas de représentation chaotique. Séminaire de Probabilités
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