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ON VERSHIK’S STANDARDNESS CRITERION

AND TSIRELSON’S NOTION OF COSINESS

M. Émery and W. Schachermayer

Abstract. — Building on work done by A. Vershik some thirty years ago, the insight

into different types of filtrations has recently seen important progress, due in particular to

B. Tsirelson, and L. Dubins, J. Feldman, M. Smorodinsky, B. Tsirelson. Key concepts are

the notions of a standard filtration (due to A. Vershik) and of a cosy filtration (due to

B. Tsirelson). We investigate the relation between these two concepts and try to provide a

comprehensive and self-contained presentation of the topic.

Part of this work is expository, and consists in translating into a probabilist’s language

Vershik’s necessary and sufficient condition for standardness, and his theorem on lacunary

isomorphism. There are also original results: Theorem 2 proves that standardness is in fact

equivalent to a certain variant of the notion of cosiness, which we call I-cosiness; an example

borrowed from Vershik and Smorodinsky then shows that I-cosiness is strictly stronger than

another variant, D-cosiness, used in earlier works. Another new result is a (negative) answer

to a question of H. von Weizsäcker: the last section gives an example of a filtration (Fn)n∈−N
and a σ-field B such that F0 and B are “almost independent”, but nevertheless

⋂

n∈−N

(Fn ∨B) ⊇/
( ⋂
n∈−N

Fn
)
∨ B .

Many thanks to A. M. Vershik for enjoyable and fruitful conversations about his
theory of filtrations. We are also grateful to the Schrödinger Institut in Vienna,
where part of this work was done during the Mini-Symposium on the Classification
of Filtrations held in December 1998.

Introduction

The objects of this study are filtrations. We shall not be interested in their
set-theoretical properties, but in their probabilistic ones: we shall only consider
filtrations on a probability space (Ω,A,P), and the notions relevant for our analysis,
e.g. that of independence, are not invariant under changes of the measure P. (In full
rigor, we should speak of filtered probability spaces rather than filtrations.) We refer
to the next section for a precise definition of an isomorphism between two filtrations
in the present context.

In the late sixties and early seventies, A. Vershik bd15ce initiated a classification
of filtrations. Consider filtrations (Fn)n∈−N, where time is a negative integer, such
that

⋂
n Fn is degenerate and each Fn is generated by Fn−1 and a random variable

independent of Fn−1, uniformly distributed on bd0, 1ce. A typical example of this
situation is, of course, the filtration generated by an i.i.d. sequence (Xn)n∈−N of
random variables with uniform law on bd0, 1ce; a natural (and innocent-looking)
question is whether this example already covers all cases of filtrations verifying the
above properties. One of Vershik’s results is the following, highly non-trivial, fact:
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these filtrations are not all isomorphic to each other. More precisely, calling standard
a filtration generated by an independent sequence of uniformly distributed random
variables, he exhibited non standard filtrations satisfying the above conditions,
and obtained his standardness criterion, a necessary and sufficient condition for
a filtration to be standard.

Written in the language of ergodic theory, these ideas did not find their way into
the probabilistic culture until 25 years later, when they were used by L. Dubins,
J. Feldman, M. Smorodinsky and B. Tsirelson bd5ce to show that standard filtrations
are not stable under equivalent changes of probability. They deduced therefrom that
Brownian filtrations are not stable either under equivalent changes of probability.

A further step in the search of filtration invariants was made by B. Tsirelson, who
showed in bd14ce that a Walsh process is not immersible into a Brownian filtration,
that is, into a filtration generated by some (finite- or infinite-dimensional) Brownian
motion. The strategy of his proof involves introducing a new property, cosiness,
possessed by all Brownian filtrations (but more general than mere “Brownianness”);
he then shows that a Walsh process is not immersible into a cosy filtration.

This strategy, establishing non-cosiness to deduce non-Brownianness, has been
adapted to other situations: J. Warren proves in bd16ce that the filtration generated
by sticky Brownian motion is not cosy; the non-Brownian change of probability
constructed on Wiener space by Dubins, Feldman, Smorodinsky and Tsirelson in bd5ce
is shown in bd3ce to be non-cosy; a non-cosy change of time on Wiener space is
constructed in bd7ce. In the latter two articles, bd3ce and bd7ce, Tsirelson’s definition of
cosiness is slightly modified (weakened, and adapted to discrete time); what is used
there is the variant of cosiness which we call D-cosiness below.

These two tools, the standardness criterion on the one hand, and cosiness and its
variants on the other hand, are very efficient means of establishing that some given
filtration is not standard (or not Brownian). The present article aims at bridging the
gap between them, by establishing that standardness is equivalent to yet another
variant of cosiness (we call it I-cosiness).

We shall first copy the proof of Vershik’s criterion in the language of stochastic
processes, and graft thereupon the equivalence between standardness and I-cosiness
(Theorem 2 and Corollary 5).

Then we shall test the efficiency of this new criterion on one of Vershik’s non
standard, hence also non I-cosy, examples; somewhat unexpectedly, this particular
non I-cosy example turns out to be D-cosy (Proposition 9).

Last, we shall show in Proposition 10 that the same example answers negatively
a question raised by H. von Weizsäcker: if a filtration (Fn)n60 and a σ-field B are
almost independent (this will be explained), does the germ σ-field

⋂
n

(Fn∨B) always
equal

(⋂
n

Fn
)
∨B?

Notation and definitions

All probability spaces (Ω,A,P) will be P-complete; by a sub-σ-field of A, we
always mean an (A,P)-complete sub-σ-field of A. For instance, σ(X) denotes the
σ-field generated by the r.v. X and the null events; and when we consider a product
(Ω′×Ω′′,A′⊗A′′,P′×P′′) of probability spaces, A′⊗A′′ is completed for P′×P′′. Also,
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all filtered probability spaces (Ω,A,P,F) will satisfy the usual hypotheses of the
general theory of processes: each Ft is (A,P)-complete and, if the time-parameter is
continuous, the filtration is right-continuous.

Recall that the σ-field A is essentially separable (resp. essentially finite) if it
is generated by countably (resp. finitely) many events (and the null events; this
is implicit). Equivalently, A is generated by some random variable (resp. simple
random variable). This is tantamount to saying that L1(Ω,A,P) is a separable
Banach space (resp. is finite-dimensional), and entails that every sub-σ-field of A is
also essentially separable (resp. essentially finite).

Definition. — An embedding of a probability space (Ω,A,P) into another one
(Ω,A,P) is a mapping Ψ from L0(Ω,A,P) to L0(Ω,A,P) that commutes with Borel
operations on countably many r.v.’s:

Ψ
(
f(X1, . . . , Xn, . . .)

)
= f

(
Ψ(X1), . . . ,Ψ(Xn), . . .

)
for every Borel f : RN → R

and preserves the probability laws:

P
[
Ψ(X) ∈ E

]
= PbdX ∈ Ece for every Borel E ⊂ R.

An embedding is always injective and transfers not only random variables, but
also sub-σ-fields, filtrations, processes, etc. It is called an isomorphism if it is
surjective; it then has an inverse. An embedding Ψ of (Ω,A,P) into (Ω,A,P) is
always an isomorphism between (Ω,A,P) and

(
Ω,Ψ(A),P

)
.

Definition. — Given two filtered probability spaces (Ω,A,P,F) and (Ω,A,P,F),
the filtrations F and F are isomorphic if there exists an isomorphism Ψ from
(Ω,F∞,P) to (Ω,F∞,P) such that Ψ(F) = F.

It would be more rigorous to say that the filtered probability spaces (and not
only the filtrations) are isomorphic; this precision is necessary when there may be
an ambiguity on the probabilities P and P. In the sequel we shall never change
probabilities, so we shall allow ourselves this abuse of language.

Definitions. — Let F and G be two filtrations on a probability space (Ω,A,P).

The filtration F is included in G if Ft ⊂ Gt for each time t.

The filtration F is immersed in G if every F-martingale is a G-martingale (this
is stronger than mere inclusion).

The filtrations F and G are jointly immersed1 if each of them is immersed in
F∨G (the smallest filtration where F and G are included; it can be defined by
(F∨G)t =

⋂
ε>0

(
Ft+ε ∨ Gt+ε

)
for each time t).

As with the previous definition, the role played by P should be stressed: The fact
that F is immersed in G is in general not stable under a change of probability.

Note also that, by a density argument, F is immersed in G if and only if every
bounded F-martingale is a (bounded) G-martingale; and, by stopping, if and only if
every local martingale for F is a local martingale for G.

1. Or, more precisely, jointly immersed in F ∨ G. But we shall see in Lemma 4 b) that this holds

as soon as there exists a filtration H such that both F and G are immersed in H.



               

4 M. Émery and W. Schachermayer

The notion of immersion is fundamental in many aspects of stochastic calculus;
for instance, it is hidden inside the definition of a Brownian motion for a filtration,
or of the Markov property with respect to a filtration. It has been used by many
authors, sometimes implicitly, without giving it a name, sometimes explicitly, under
various names; see bd3ce for more details and for some references. (The work bd1ce by
D. Aldous and M. Barlow should be added to those references.)

Lemma 1. — Let F and G be two independent filtrations (that is, Ft and Gt are
independent for each t). Then F and G are jointly immersed in F∨G.

Proof. — An independent enlarging of a filtration preserves its martingales.

Lemma 2. — Let F, G, H and K be four filtrations on the same sample space,
such that F is immersed in H and G in K. If H and K are independent, F∨G is
immersed in H∨K.

Proof. — It suffices to show that the product FG of a bounded F-martingale F
and a bounded G-martingale G is an H∨K-martingale. This is obtained by taking
any bounded, Ht-measurable (respectively Kt-measurable) random variable Ht

(respectively Kt) and writing

EbdF∞G∞HtKtce = EbdF∞HtceEbdG∞Ktce = EbdFtHtceEbdGtKtce = EbdFtGtHtKtce .
Remark. — If F and G are immersed in H, it is not always true that F∨G is
immersed in H, even when F and G are independent. A very simple counter-example
can be built from two independent random variables U and V with uniform law on
{−1, 1}. Put Mt = U 1l{t>1} and Nt = V 1l{t>1}. The filtrations F and G respectively
generated by M and N are independent and immersed (by Lemma 1) in the filtration
H given by Ht = σ(UV ) if t < 1 and Ht = σ(U, V ) if t > 1; but the process
MN = UV 1lbdbd1,∞bdbd is not an H-martingale, though it is of course an F∨G-martingale.

In other words, if F and G are two independent filtrations, the product of an
F-martingale and a G-martingale is always an F∨G-martingale; but if M and N are
two independent martingales for a filtration H, the product MN is not necessarily
an H-martingale. (Note, however, that the product of two independent continuous
H-martingales is always an H-martingale, for in this case 〈M,N〉 = 0.)

A sufficient condition for the product of two martingales to be a local martingale
is that their covariation process is constant; this suggests the following statement:
Let two filtrations F and G be immersed in H. Suppose there exists an H-optional
subset A of R+×Ω such that, for all F-martingales M and G-martingales N , the
processes

∫
1lA dbdM,Mce and

∫
1lAc dbdN,Nce are constant. Then the filtration F∨G

is immersed in H. The simple proof of this statement is left to the reader; we shall
only need the particular instance when A is the deterministic interval bdbd0, tcece:
Lemma 3. — Let two filtrations F and G be immersed in some filtration H. Suppose
that for some time t, F∞ is included in Ht and Gt is degenerate. The filtration F∨G

is immersed in H.

Proof. — It suffices to show that the product FG of a bounded F-martingale F
and a bounded G-martingale G is an H-martingale. The martingale equality may be
checked separately on the intervals bd0, tce and bdt,∞), since they have t in common.
On bdt,∞), this equality holds because F = Ft is constant and Ht-measurable; on
bd0, tce, it holds because G = EbdG∞ce is constant and deterministic.



              

On Standardness and Cosiness 5

Lemma 4. — Let F, G and H be three filtrations on some sample space (Ω,A,P).

a) If F is included in G and G in H, and if F is immersed in H, then F is

immersed in G.

b) if F and G are immersed in H, they are jointly immersed (in F∨G).

Remark. — Lemma 4 b) can be rewritten as follows: two filtrations F and G on

the same sample space are jointly immersed if and only if there exists on that space

a filtration H such that F and G are immersed in H. This equivalence explains a

posteriori the choice of the name for this property.

Proof. — a) Any F-martingale is an H-martingale adapted to G, whence a

G-martingale.

b) If both F and G are immersed in H, applying a) to F, F∨G and H shows that

F is immersed in F∨G; similarly for G.

If a filtration F is included in a filtration G, each of the following three statements

is a necessary and sufficient condition for F to be immersed in G:

for each t, the σ-fields F∞ and Gt are conditionally independent given Ft ;

for each t, the operators of conditional expectation verify EF∞EGt = EFt ;

for each t, the operators of conditional expectation verify EGtEF∞ = EFt .

These three characterizations of immersion can be found in Exercise V.4.16.1o of

Revuz-Yor bd11ce. We shall not use them directly, but in a disguised form: Lemma 5

will rephrase them in terms of F-saturation.

Definition. — Let (Ω,A,P,F) be a filtered probability space. A sub-σ-field B of A

is F-saturated if B ⊂ F∞ and if PbdB|Ft ce (= Ebd1lB |Ft ce) is B-measurable for each

B ∈ B and each time t.

Lemma 5. — Let (Ω,A,P,F) be a filtered probability space. The map E 7→ E∞ is

a bijection between all filtrations immersed in F and all F-saturated sub-σ-fields

of A. Its inverse is the map B 7→ E defined by Et = B∩Ft .

Consequently, the filtrations E immersed in F are characterized by their end

σ-fields E∞, and verify Et = E∞∩Ft for every t.

Proof. — Let E be immersed in F and set B = E∞. Pick any B ∈ B and consider

the E-martingale Mt = PbdB|Etce; it is also an F-martingale, and PbdB|Ftce is equal to

PbdB|Etce, whence B-measurable; so B is F-saturated. This equality also shows that

if B ∈ B∩Ft , PbdB|Etce = PbdB|Ft ce = 1lB , whence B ∈ Et, and Et = B∩Ft .

Conversely, starting with any F-saturated sub-σ-field B of A, define a filtration

E included in F by Et = B∩Ft . Clearly, E∞ ⊂ B. For each X ∈ L∞(B), the

F-martingale Mt = EbdX|Ft ce is adapted to the smaller filtration E, so it is an

E-martingale. Consequently, noticing that EbdX|E∞ce = M∞ = EbdX|F∞ce = X

(because B ⊂ F∞), one sees that B is included in E∞, whence B = E∞. So M

is the most general bounded E-martingale, and E is immersed in F.

It is obvious that the intersection of two F-saturated σ-fields is F-saturated too;

Lemma 5 translates this into a statement on immersed filtrations:
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Lemma 6. — If two filtrations F and G are jointly immersed in F∨G, their

intersection F∩G (the filtration consisting of the intersections Ft∩Gt) is immersed

in each of them.

Proof. — Put H = F∨G; by hypothesis, both F and G are immersed in H. It

suffices to show that F∩G is immersed in H, and the result will follow by applying

Lemma 4 a) to F∩G, F and H. By Lemma 5, the σ-fields F∞ and G∞ are H-saturated;

consequently, so is also F∞∩G∞. Still by Lemma 5, the filtration I defined by

It = F∞∩G∞∩Ht is immersed in H. Applying Lemma 5 again gives F∞∩Ht = Ft
and G∞∩Ht = Gt, wherefrom It = Ft∩Gt.

Lemma 7. — Let (Ω,A,P,F) be a filtered probability space and B an F-saturated

sub-σ-field of A. For a given t, B is independent of Ft if and only if B∩Ft is

degenerate.

If this holds, and if C is any F-saturated σ-field included in Ft , then B∨C is

F-saturated.

Proof. — Supposing B∩Ft is degenerate, take B ∈ B. The random variable

PbdB|Ft ce is measurable with respect to B (by saturation) and to Ft , hence a.s.

constant. Consequently, B is independent of Ft ; so B and Ft are independent.

Conversely, if B and Ft are independent, B∩Ft is independent of itself, that is,

degenerate.

The second part of the lemma is a corollary of Lemmas 3 and 5.

From now on, the discussion will be restricted to filtrations indexed by the time-

axis −N = {. . . ,−2,−1, 0}: the instants of time are negative integers. (In fact,

only a neighbourhood of −∞ is interesting; at the cost of a few minor changes,

everything extends to the case when the time-axis is Z.) All statements seen so far

on immersion and saturation are still valid, with naturally F∞ being replaced by F0.

In this situation (and more generally whenever time is discrete), there is a very

simple and useful instance of immersion:

Lemma 8. — Let (Ω,A,P,F) be a filtered probability space and, for each n 6 0,

let Cn be a sub-σ-field of Fn, independent of Fn−1. The filtration E defined by

En = σ(Cm,m6n) is immersed in F, and the σ-field σ(Cn, n6 0) is F-saturated.

Proof. — Every bounded, E0-measurable r.v. E has the form φ(. . . , C−1, C0)

where each Cn is a Cn-measurable r.v. For fixed n 6 0, the r.v.’s . . . , Cn−1, Cn
are Fn-measurable and (Cn+1, . . . , C0) is independent of Fn; hence EbdE|Fnce equals∫
φ(. . . , Cn−1, Cn, cn+1, . . . , c0) dγn+1(cn+1) . . . dγ0(c0), where γm is the law of Cm.

As this is En-measurable, EbdE|Fnce equals EbdE|Ence, showing immersion of E in F

and F-saturation of E0.

Definition. — Two filtrations F = (Fn)n∈−N and G = (Gn)n∈−N, defined on the

same sample space (Ω,A,P), are I-separate if there exists an n ∈ −N such that the

σ-fields Fn and Gn are independent.

The letter I in this name stands for Independence. Later on, we shall meet other

separation conditions (D-separation, H-separation, . . . ).
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Definition. — A filtered probability space (Ω,A,P,F), where F = (Fn)n∈−N, is
I-cosy if for every F0-measurable r.v. R and every δ > 0, there exists a probability
space (Ω,A,P) with two filtrations F′ and F′′ such that

(i) each of F′ and F′′ is isomorphic to F;

(ii) F′ and F′′ are jointly immersed;

(iii) F′ and F′′ are I-separate;

(iv) the copies R′ ∈ L0(Ω,F′0,P) and R′′ ∈ L0(Ω,F′′0 ,P) of R by the isomorphisms
in (i) are δ-close in probability: P

[
|R′−R′′|> δ

]
< δ.

When there is no ambiguity on the underlying space (Ω,A,P), we shall simply
say that the filtration F is I-cosy.

If the filtration F were indexed by Z instead of −N, the σ-fields F0, F′0 and F′′0 in
the above definition should be replaced with F∞, F′∞ and F′′∞.

The definition of I-cosiness is inspired from two sources. The first one is Tsirelson’s
definition of cosiness in bd14ce; it is the same as I-cosiness, save the separation
condition (iii) (Tsirelson works in continuous time and assumes that all martingales
are continuous; in this framework, his separation condition is the existence of a
constant ρ < 1 such that, for each F′-martingale M ′ and each F′′-martingale M ′′,
bdM ′,M ′′cet 6 ρ bdM ′,M ′ce1/2t bdM ′′,M ′′ce1/2t ). The other source is a proof of non-
standardness by Smorodinsky bd13ce, who implicitly uses I-cosiness, without giving it
an explicit name.

Observe that I-cosiness is invariant by isomorphisms: two isomorphic filtrations
are either both I-cosy, or both non I-cosy.

Proposition 1. — A filtration immersed in an I-cosy filtration is itself I-cosy.

Proof. — If (Ω,A,P) is endowed with two filtrations F and G, if F is immersed
in G and if Ψ is an embedding of (Ω,G0,P) into some probability space, then the
filtration Ψ(F) is immersed in Ψ(G). The proposition follows immediately from this
remark, the definition of I-cosiness and the transitivity of immersions.

Definition. — Let F and G be two filtrations, not necessarily on the same
probability space. The filtration F is immersible into G if there exists a filtration
immersed in G and isomorphic to F.

Using the invariance of I-cosiness under isomorphisms, Proposition 1 immediately
bootstraps into a stronger result:

Corollary 1. — A filtration immersible into an I-cosy filtration is itself I-cosy.

Proposition 2. — I-cosiness is stable by taking subsequences: Let F = (Fn)n∈−N
be an I-cosy filtration and σ : −N → −N a strictly increasing map. The filtration
G = (Gn)n∈−N defined by Gn = Fσ(n) is I-cosy too.

Proof. — Let R be a G0-measurable r.v.; it is also F0-measurable, so for δ > 0
we have two isomorphic copies F′ and F′′ of F, jointly immersed, I-separate, and
verifying condition (iv). Put G′n = F′σ(n), G′′n = F′′σ(n) and H = G′ ∨G′′. Plainly, the
filtrations G′ and G′′ are isomorphic to G , immersed in H, and I-separate.
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Lemma 9. — Let (E, ρ) be a separable metric space, and F an I-cosy filtration.

The property defining I-cosiness still holds when the random variables R are taken

E-valued (with ρ(R′, R′′) replacing |R′−R′′|).

Proof. — Approximating in probability R by a simple r.v., we may suppose that

R takes only finitely many values x1, . . . , xp in E. It then suffices to apply the

definition of I-cosiness to the {1, . . . , p}-valued r.v. S defined by R = xS and to

δ′ = δ ∧ 1
2 inf
i 6=j

ρ(xi, xj).

Definition. — A filtration F = (Fn)n∈−N is of product type if there exists an

independent sequence (Cn)n∈−N of sub-σ-fields of A such that Fn = σ(Cm, m 6 n)

for each n 6 0.

This definition is borrowed from Feldman bd8ce and Feldman-Smorodinsky bd9ce,
who define a filtered probability space (Ω,A,P,F) to be of product type when it

satisfies the above property, thus stressing the role of the measure P. But, as we

already do for isomorphisms and immersions, we shall simply speak of filtrations

of product type, keeping in mind that this notion is not invariant under changes of

measure.

Notice that if F is of product type, the σ-fields Cn in the preceding definition are

in general not uniquely determined. Consider for instance the natural filtration of a

process (εn)n60 made of i.i.d. r.v.’s uniform on {−1, 1}. This filtration is of product

type, with Cn = σ(εn); replacing C0 by σ(ε−1ε0) yields another family of σ-fields

with the same property.

Of course, if (Yn)n∈−N is an independent sequence of random variables, the

filtration generated by the process Y is of product type. Conversely, every filtration

F of product type and such that F0 is essentially separable, is the natural filtration

of such an independent process.

Proposition 3. — Every filtration of product type is I-cosy.

Proof. — Let F be of product type: there exists an independent sequence (Cn)n∈−N
of sub-σ-fields of A such that Fn = σ(. . . ,Cn−1,Cn). Fix R ∈ L0(F0) and δ > 0.

Remark that the σ-fields Bn = σ(Cn+1,Cn+2, . . . ,C0) form a monotone sequence

(Bn)n∈−N of sub-σ-fields of A, with limit
∨
n Bn = F0 when n → −∞. By Doob’s

direct martingale convergence theorem, there exist an n < 0 and a r.v. S ∈ L0(Bn)

such that S is δ-close to R in probability. Fix these n and S.

On a suitable sample space (Ω,A,P), for instance the product (Ω×Ω,A⊗A,P×P),

there exist two independent sub-σ-fields A1 and A2 of A such that both (Ω,A1,P)

and (Ω,A2,P) are isomorphic to (Ω,A,P); call Ψ1 and Ψ2 the isomorphisms:

Ai = Ψi(A) for i ∈ {1, 2}, and put Cim = Ψi(Cm). Define three filtrations

F′, F′′ and G on (Ω,A,P) as follows:

for every m 6 0, Fm
′ = σ(. . . ,C1

m−1,C
1
m) ;

for every m 6 0, Gm = σ(. . . ,C1
m−1,C

2
m−1,C

1
m,C

2
m) ;

for m 6 n, Fm
′′ = σ(. . . ,C2

m−1,C
2
m)

and for n < m 6 0, Fm
′′ = σ(. . . ,C2

n−1,C
2
n,C

1
n+1, . . . ,C

1
m−1,C

1
m) .
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To show that F is I-cosy, we shall check that F′ and F′′ verify the four conditions
in the definition of I-cosiness.

(i) The restriction Ψ′ of Ψ1 to F0 is an isomorphism from F to F′. An isomorphism
Ψ′′ between F and F′′ is given by the following algorithm: If Cm are Cm-measurable
r.v.’s and if φ is a Borel function, put

Ψ′′
(
φ(. . . , Cn−1, Cn, Cn+1, . . . , C0)

)

= φ
(
. . . ,Ψ2(Cn−1),Ψ2(Cn),Ψ1(Cn+1), . . . ,Ψ1(C0)

)
.

(ii) F′ and F′′ are immersed in G by Lemma 1, because G is an independent
enlargement of each of them.

(iii) The σ-fields F′n and F′′n are independent because they are respectively
included in A1 and A2.

(iv) Put R′ = Ψ′(R), R′′ = Ψ′′(R), S′ = Ψ′(S) and S′′ = Ψ′′(S). By isomorphic
transfer, R′ and S′ (respectively R′′ and S′′) are δ-close in probability. Owing to
the definitions of Ψ′ and Ψ′′, these isomorphisms have the same restriction to Bn;
so S′ = Ψ′(S) = Ψ′′(S) = S′′. Consequently, R′ and R′′ are 2δ-close in probability.

Corollary 2. — Any filtration immersible into a filtration of product type is I-cosy.

Proof. — Immediate from Proposition 3 and Corollary 1.

As we shall now see, the converse is also true. We shall get it as a straightforward
consequence of Vershik’s criterion, more precisely of condition 3 in Theorem 3.2 of
Vershik bd15ce (it becomes condition (vii) in our Theorem 2 below). The next three
sections are devoted to this topic; the reader already familiar with Vershik’s theory
can skip these sections and jump directly to the (short and easy) Proposition 5.

Vershik’s standardness criterion: Preliminary notions

Vershik’s work on filtrations is written in Rohlin’s language bd12ce, where the idea of
conditioning with respect to a sub-σ-field is expressed by quotienting the probability
space. Sticking to a vocabulary more familiar to probabilists (at least, to us), the
next proposition recalls what happens when the factor space is diffuse (that is, all
equivalence classes in the quotient are isomorphic to the Lebesgue space bd0, 1ce).
Proposition 4 and definition. — Given a sample space (Ω,A,P), let B be an
essentially separable sub-σ-field of A and C a sub-σ-field of B. The following four
conditions are equivalent:

(i) there exists a B-measurable random variable Y such that, for every C-measurable
random variable Z, PbdY =Zce = 0;

(ii) there exists a B-measurable random variable, independent of C and having a
diffuse law;

(iii) there exists a B-measurable random variable X, independent of C, with uniform
law on bd0, 1ce, and such that C ∨ σ(X) = B;

(iv) every random variable V that verifies C ∨ σ(V ) = B, has a diffuse law.

When these hypotheses and conditions are met, we shall say that B is condi-
tionally non-atomic given C, and every X satisfying condition (iii) will be called a
complement to C in B.
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Proof. — Trivially, (iii) ⇒ (ii).

(ii) ⇒ (i). Let Y be B-measurable, independent of C, and with diffuse law η. For

any C-measurable Z, calling ζ the law of Z and using the fact that η is diffuse, one

has PbdY =Zce =
∫∫

1l{y=z} η(dy) ζ(dz) =
∫
η({z}) ζ(dz) = 0.

(i) ⇒ (iii). Let Y be a B-measurable random variable such that PbdY =Zce = 0

for every C-measurable Z. The essentially separable σ-field B is generated by some

random variable B; its sub-σ-field C is essentially separable too and is generated by

some C. Call γ the law of C, and (βc)c∈R a regular version of the law of B given C:

βc is a probability well-defined for γ-almost every c, depending measurably on c,

and the joint law of (C,B) is γ(dc)βc(db).

Remark that Y has the form y◦B for some measurable function y; consequently,

for any C-measurable Z, PbdB=Zce 6 PbdY = y◦Zce = 0 by the choice of Y . This

implies that almost all probabilities βc are diffuse; indeed, for ε > 0, call a(c) the

smallest (i.e. leftmost) atom of βc with mass at least ε, or +∞ if there is no such

atom; as PbdB= a◦Cce = 0, for almost every c, βc has no atom weighing at least ε.

For each c, call Fc the distribution function of βc, given by Fc(x) = βc
(
(−∞, x)

)
;

as βc has no atoms, for every t ∈ bd0, 1ce, βc gives mass t to the interval F−1
c

(
bd0, tce

)
.

Define a B-measurable, bd0, 1ce-valued random variable X by X = FC◦B.

For every bounded, measurable function φ and every t ∈ bd0, 1ce, one has

Ebdφ◦C 1l{X6t}ce = Ebdφ◦C 1l{FC◦B6t}ce =

∫∫
φ(c) 1l{Fc(b)6t} γ(dc)βc(db)

= t

∫
φ(c) γ(dc) = t Ebdφ◦Cce ;

thus X is independent of C (of C) and uniformly distributed on bd0, 1ce. Calling Gc the

right-continuous inverse of Fc, defined on bd0, 1ce, one almost surely has B = GC◦X,

so B is C∨σ(X)-measurable and B = C ∨ σ(X).

(i) ⇒ (iv). Suppose Y verifies (i) and C generates C; let V be such that

C ∨ σ(V ) = B. For some Borel f , one has Y = f(C, V ), and for each v ∈ R,

one can write PbdV= vce 6 PbdY = f(C, v)ce = 0.

(iv) ⇒ (i). Assuming (iv), let B be a r.v. generating B and such that B 6= 0 a.s.

If Z is any C-measurable r.v., V = B 1l{B 6=Z} is B-measurable and one has

{V = 0} = {B=Z}, whence B = V + Z 1l{V=0}; so C ∨ σ(V ) = B. By (iv), V must

be diffuse, wherefrom PbdB=Zce = PbdV = 0ce = 0, and B fulfills (i).

Corollary 3. — Let B, C and D be three sub-σ-fields in an essentially separable

sample space (Ω,A,P); assume C is included in B.

a) If B∨D is conditionally non-atomic given C∨D, then B is conditionally non-

atomic given C.

b) If B and D are independent, and if B is conditionally non-atomic given C,

then B∨D is conditionally non-atomic given C∨D; moreover, every complement of

C in B is also a complement of C∨D in B∨D.

Proof. — a) If B∨D is conditionally non-atomic given C∨D, for any V such that

C∨σ(V ) = B, one also has C∨D∨σ(V ) = B∨D, so V is diffuse by condition (iv),

and B is conditionally non-atomic given C by the same condition.
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b) If B and D are independent and if B is conditionally non-atomic given C, every
complement X to C in B is independent of C∨D (because X is independent of C,
and D is independent of C∨σ(X)); as C∨σ(X)∨D = B∨D, X is also a complement
to C∨D in B∨D.

Remark. — At this stage, it may be useful to warn the reader against two pitfalls:

a) If B is conditionally non-atomic given C and if Y is B-measurable, with
diffuse law, and independent of C, there may exist no complement X to C in B

such that σ(X) ⊃ σ(Y ). Consider for instance three independent random variables
C, Y and Z with uniform law on bd0, 1ce. Call Γ the event {C < 1

2}, define C as
the σ-field σ(C) and B as the σ-field σ(C, Y, Z1lΓ). Since Y satisfies condition (ii) of
Proposition 4, B is conditionally non-atomic given C. LetX be any B-measurable r.v.
independent of C and such that σ(X) ⊃ σ(Y ). We shall show σ(X) = σ(Y ), thus
preventing C∨σ(X) to equal B (for clearly, Z1lΓ is not C∨σ(Y )-measurable). There
are two Borel functions f and g such that Y = f(X) and X = g(C, Y, Z1lΓ) a.s.
Putting h(c, y) = g(c, y, 0), one has X = h

(
C, f(X)

)
a.s. on Γc. Consequently, for

almost every c > 1
2 , one has x = h

(
c, f(x)

)
for almost all x. Fix such a c and put

k(y) = h(c, y); equality x = k◦f(x) holds for almost all x, whence X = k◦f(X) a.s.,
giving X = k◦Y a.s., and σ(X) = σ(Y ).

b) If B is conditionally non-atomic given C and if D is such that C∨D = B, there
may exist no D-measurable complement to C in B. Take for instance Ω equal to the
union of the three rectangles bd0, 1

2ce×bd0, 1ce, bd 1
2 , 1ce×bd0, 1

2ce and bd1, 3
2ce×bd 1

2 , 1ce, endowed
with the restriction of the Lebesgue measure. Call C the first coordinate (it is
bd0, 3

2ce-valued) and D the second one (it is bd0, 1ce-valued); define C as σ(C), D as σ(D)
and B as σ(C,D). Since |D− 1

2 | is independent of C, B is conditionally non-atomic
given C. Let X be any D-measurable random variable such that C∨σ(X) = B. We
shall show σ(X) = D, thus preventing X to be independent of C. There are two
Borel functions f and g such that X = f(D) and D = g(C,X) a.s. Consequently,
D = g

(
C, f(D)

)
a.s. and for almost every c < 1

2 , one has d = g
(
c, f(d)

)
for almost

all d in bd0, 1ce. Fix such a c and put h(x) = g(c, x); equality d = h◦f(d) holds for
almost all d ∈ bd0, 1ce, whence D = h◦f(D) a.s., giving D = h◦X a.s., and σ(X) = D.

In counter-example a) above, Y had a diffuse law. If, on the opposite, Y is discrete,
a complement X always exists, as can easily be seen:

Corollary 4. — Let B and C be two sub-σ-fields of A, with C ⊂ B and
B conditionally non-atomic given C.

If Y is a B-measurable random variable taking finitely or countably many values,
B is conditionally non-atomic given C∨σ(Y ).

If furthermore Y is independent of C, there exists a complement X to C in B

such that σ(X) ⊃ σ(Y ).

Proof. — For every random variable V such that C∨σ(Y )∨σ(V ) = B, the pair
(Y, V ) has a diffuse law by Proposition 4 (iv). Since Y is discrete, this implies
PbdV= vce =

∑
y PbdV= v, Y= yce = 0, so V is diffuse, and B is conditionally non-atomic

given C∨σ(Y ) by the same condition (iv).

If Y is independent of C, let X ′ denote any complement to C∨σ(Y ) in B, and
X a random variable generating σ(Y,X ′); notice that σ(X) ⊃ σ(Y ) and that X is
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diffuse because X ′ is. So we may choose X uniform on bd0, 1ce. Since C, Y and X ′ are
independent and C∨σ(Y )∨σ(X ′) = B, X is a complement to C in B.

Vershik’s standardness criterion: First level

Vershik’s theory of standard filtrations is a two-storied building. The first floor,
which we now shall enter, gives a necessary and sufficient condition for a filtration
to be standard, in terms of F-saturation. Theorem 1 below translates into our
language the equivalence between 1 and 2 in Vershik’s Theorem 3.2 of bd15ce. (His
condition 3 uses a more sophisticated tool; this is postponed to the next section.)
Besides changing the language, another difference is that, in this section, we deal
with the non-atomic case only, whereas his statement covers the atomic case as
well. Indeed, for the sake of simplification, in bd15ce some statements are given in
the atomic case only; the general case has recently been written in full details by
J. Feldman bd8ce; see also J. Feldman and M. Smorodinsky bd9ce.
Definitions. — A filtration (Fn)n60 is non-atomic if F0 is essentially separable
and if, for each n 6 0, Fn is conditionally non-atomic given Fn−1.

A filtration (Fn)n60 is standard non-atomic if it is generated by a process
(Xn)n60, where Xn are independent random variables with uniform law on bd0, 1ce.

These definitions are compatible: A standard non-atomic filtration is non-atomic.
The important point in the latter definition is that the r.v.’s Xn are independent,

with diffuse laws; that these laws can be chosen uniform on bd0, 1ce is irrelevant, but
shows that all standard non-atomic filtrations are isomorphic to each other. Clearly,
a filtration isomorphic to a standard non-atomic filtration is standard non-atomic
too.

Theorem 1 (Vershik bd15ce). — Let F = (Fn)n60 be a non-atomic filtration on some
probability space (Ω,A,P). The following four statements are equivalent:

(i) F is standard non-atomic;

(ii) F is of product type;

(iii) the tail σ-field F−∞ is degenerate; and, for every F0-measurable random
variable R and every δ > 0, there exist an essentially finite, F-saturated σ-field B

and a B-measurable random variable S, such that P
[
|R−S|> δ

]
< δ;

(iv) For every δ > 0, n 6 0 and every simple, Fn-measurable r.v. R, there
exist m < n, an F-saturated B independent of Fm verifying Fm∨B = F0, and
a B∩Fn-measurable r.v. S such that PbdS 6=Rce < δ.

The gist of the equivalence (i) ⇔ (iv) in this theorem can be better understood
with the help of the following lemma:

Lemma. — Assume F is non-atomic and fix m 6 0. If an F-saturated σ-field B is
independent of Fm and if Fm∨B = F0, there exist Xm+1, . . . , X0 such that each X`

is a complement to F̀ −1 in F̀ and σ(Xm+1, . . . , X0) = B.

We mention this lemma only for the light it sheds on the theorem; we shall neither
use it nor prove it. In the second paragraph of (iv)⇒ (iv′) in the proof of the theorem,
we shall need and establish a slightly stronger property. (That paragraph contains
a parameter n; when n = 0 it reduces to a proof of the lemma.)
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Proof of Theorem 1. — (i) ⇒ (ii) is trivial: calling Cn the σ-field generated

by Xn, one has Fn = σ(. . . ,Cn−1,Cn).

(ii) ⇒ (iii). Hypothesis (ii) says that Fn = σ(. . . ,Cn−1,Cn), where the Cn are

independent; the degeneracy of F−∞ follows by Kolmogorov’s zero-one law. As F0 is

essentially separable, so is also each Cn; hence there exists for each n an increasing

sequence (Cjn)j∈N of essentially finite sub-σ-fields such that Cn =
∨
j>0

Cjn. For each

j > 0, put

Bj = C
j
−j ∨ C

j
−j+1 ∨ . . . ∨ C

j
0 ;

this is an F-saturated σ-field by Lemmas 8 and 5. The σ-fields Bj form an increasing

sequence whose limit σ(Bj , j> 0) contains every Cn; consequently σ(Bj , j> 0) = F0,

and
⋃
j>0

L0(Bj) is dense in L0(F0).

The proof of (iii)⇒ (iv) will be made clearer by breaking it into two smaller steps.

We shall introduce a new condition (iii′), and establish (iii) ⇒ (iii′) ⇒ (iv). Here is

this intermediate statement (the letters SC stand for ‘saturated complement’):

(iii′) Call SC(m,F) the set of all F-saturated sub-σ-fields B of F0 that are

independent of Fm and verify Fm ∨ B = F0. For every F0-measurable R and every

n 6 0, there exist an m < n, a B ∈ SC(m,F) and a B-measurable S such that

P
[
|R−S|> δ

]
< δ.

(iii) ⇒ (iii′). This is a straightforward consequence of the following fact: If F is

non-atomic and if F−∞ is degenerate, for every n 6 0 and every essentially finite,

F-saturated B, there exist an m < n and a C ∈ CS(m,F) such that C ⊃ B. To

establish this claim, remark first that if B is an event such that 0 < PbdBce < 1, the

degeneracy hypothesis implies B /∈ Fm for m small enough. Since B contains only

finitely many events (modulo negligibility), there is an m (fixed in the sequel) smaller

than n, such that B /∈ Fm for every B ∈ B verifying 0 < PbdBce < 1. So B∩Fm is

degenerate, and, by Lemma 7, B is independent of Fm.

By Lemma 5, the filtration defined by D` = B∩F̀ is immersed in F; D` is

degenerate for ` 6 m. Noticing that each D` is essentially finite, Corollary 4

asserts that F̀ is conditionally non-atomic given F̀ −1∨D`; call Z` a complement

to F̀ −1∨D` in F̀ , and define a filtration E by taking E` degenerate if ` 6 m and

E` = D`∨σ(Zm+1, . . . , Z`) if ` > m. The claim will be shown with C = E0.

First, Fm∨E` ⊃ F̀ for each ` > m: This inclusion is trivial for ` = m, and if it

holds for `, then Fm∨E`+1 ⊃ Fm∨E`∨D`+1∨σ(Z`+1) ⊃ F̀ ∨D`+1∨σ(Z`+1) = F̀ +1.

So Fm∨C = Fm∨E0 = F0.

Second, C = E0 is F-saturated. By Lemma 5, it suffices to show that E is immersed

in F. For every ` 6 0 and every bounded, E`-measurable U , we have to show that

EbdU |F̀ −1ce is E`−1-measurable. When ` 6 m, U is deterministic; so we may suppose

` > m. Without loss of generality, we may also suppose that U is a product WV`D`,

where W ∈ L∞
(
σ(Zm+1, . . . , Z`−1)

)
, V` ∈ L∞

(
σ(Z`)

)
and D` ∈ L∞(D`). Taking

W out of the conditional expectation, it remains to show that EbdV`D`|F̀ −1ce is

E`−1-measurable. We may replace V` by EbdV`|F̀ −1∨D`ce; but V` is independent of

F̀ −1∨D` by definition of Z`; so EbdV`|F̀ −1∨D`ce is a constant, and we are left with

EbdD`|F̀ −1ce. This is D`−1-measurable because D is immersed in F.
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Last, by Lemma 5, C∩Fm = E0∩Fm = Em is degenerate, and C is independent of
Fm by Lemma 7.

So C is in SC(m,F); as C = E0 ⊃ D0 = B, the proof of (iii) ⇒ (iii′) is complete.

(iii′) ⇒ (iv). Assuming (iii′), fix n 6 0, δ > 0 and R measurable for Fn and
F -valued, where F is a finite subset of R; without loss of generality, we shall take
F = {1, . . . , p}. Put δ′ = δ/p. Hypothesis (iii′) provides us with an m < n, a
B ∈ SC(m,F) and a B-measurable r.v. T such that P

[
|T −R|> δ′

]
< δ′; by

replacing if necessary T with 1 ∨ T ∧ p, we may further suppose |T −R| 6 p−1.
This implies E

[
|T −R|

]
6 δ′ + (p−1)P

[
|T −R| > δ′

]
6 δ′ + (p−1)δ′ = δ. By

L1-contractivity of conditional expectations, T ′ = EbdT |Fnce is also δ-close to R in L1.
Since T is B-measurable and B is F-saturated, T ′ is B∩Fn-measurable.

For x ∈ R, call ψ(x) the point in F closest to x (take the smallest such point if
there are two of them). Among all F -valued r.v.’s, S = ψ◦T ′ is closest to T ′ in L1,
whence E

[
|S−T ′|

]
6 E

[
|T ′−R|

]
6 δ, and E

[
|R−S|

]
6 2δ. Since R and S are

F -valued, PbdR 6=Sce = P
[
|R−S| > 1

]
6 E

[
|R−S|

]
6 2δ; as S is B∩Fn-measurable,

(iv) is established.

The proof of (iv) ⇒ (i) will also be sliced into two smaller steps, by introducing
a new statement (iv′) and establishing (iv) ⇒ (iv′) ⇒ (i). This intermediate step is:

(iv′) Suppose given n < 0 and Xn+1, . . . , X0 such that each X` is a complement
to F̀ −1 in F̀ . For every R ∈ L0(F0) and δ > 0, there exist some m < n, some
Xm+1, . . . , Xn with the same property (each X` is a complement to F̀ −1 in F̀ ) and
some r.v. S ∈ L0

(
σ(Xm+1, . . . , X0)

)
verifying P

[
|R−S|> δ

]
< δ.

(iv) ⇒ (iv′). Take R, δ, n and Xn+1, . . . , X0 as in (iv′); by the assumption on
the X`, F0 is equal to Fn∨σ(Xn+1, . . . , X0). Writing Fn as the limit of an increasing
sequence of essentially finite sub-σ-fields, one can δ-approximate R by a r.v. of
the form φ(T,Xn+1, . . . , X0), where φ is Borel and T is Fn-measurable and simple.
Applying (iv) to T , we obtain an m < n, a B ∈ SC(m,F) and a B∩Fn-measurable S
verifying PbdS 6=T ce < δ. This gives P

[
φ(S,Xn+1, . . . , X0) 6=φ(T,Xn+1, . . . , X0)

]
< δ,

and R is 2δ-close in probability to φ(S,Xn+1, . . . , X0).

The filtration E` = B∩F̀ associated to B by Lemma 5 has the following
properties: E is immersed in F, S is En-measurable, and Fm∨E0 = F0; moreover,
by definition of B, E is independent of the σ-field Fm. According to Lemma 3,
the filtration F′ = Fmce∨E, equal to F up to time m and to Fm∨E from m on,
is immersed in F. Its end σ-field is Fm∨E0 = F0, so Lemma 5 gives F′ = F

and one has Fm∨E` = F̀ for all ` ∈ bdm, 0ce. For m < ` 6 0, E` is condition-
ally non-atomic given E`−1, for this property is inherited from F̀ and F̀ −1 by
Corollary 3 a). For m < ` 6 n, choose a complement X` to E`−1 in E`. By
Corollary 3 b), X` is also a complement to F̀ −1 in F̀ . As Em is degenerate,
σ(Xm+1, . . . , Xn) = En, and S is σ(Xm+1, . . . , Xn)-measurable; consequently, R is
2δ-close to some ψ(Xm+1, . . . , Xn, Xn+1, . . . , X0).

(iv′) ⇒ (i). Choose any r.v. R generating F0, and a sequence (δj)j∈N tending
to 0. Starting for instance with n = −1 and an arbitrary complement X0 to F−1

in F0, and using repeatedly (iv′) for each δj in turn, construct a sequence (X`)`60,
a strictly decreasing sequence (nj)j∈N in −N, and random variables Sj , respectively
σ(Xnj+1, . . . , X0)-measurable and δj-close to R in probability. Being the limit in
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probability of Sj , R is σ(X`, `6 0)-measurable, whence σ(X`, `6 0) = F0. The
filtration generated by the process X is immersed in F by Lemma 8, and its value
at time 0 is F0, so it is equal to F by Lemma 5.

Vershik’s standardness criterion: Second level

Given a filtration (Fn)n60 (with F0 essentially separable) and an F0-measurable
r.v. R, all the information on R available at time −1 is contained in the conditional
law π−1R = LbdR|F−1ce of R given F−1. Similarly, all the information available at
time −2 on the values of R is carried by the conditional law LbdR|F−2ce. But this
does not encapture everything that can be said about R at time −2: it may miss
some possible prediction at time −2 of how the values of R will progressively be
revealed in the future. Specifically, the conditional law π−2R = Lbdπ−1R|F−2ce may
contain more information than LbdR|F−2ce. For an example, take a triple (N,X−1, X0)
of independent and non-degenerate r.v.’s, such that N takes values −1 and 0,
and X−1 and X0 have the same law; take F−2 = σ(N), F−1 = σ(N,X−1) and
F0 = σ(N,X−1, X0), and choose R = XN . The r.v. LbdR|F−2ce only tells you that R
is independent of F−2, with the same law as X−1 and X0; whereas the r.v. π−2R
generates a bigger σ-field: it further tells you that if N = −1, R will actually be
known at time −1, and if N = 0, R will still be completely unknown at time −1.

A key idea in Vershik’s theory is to repeat this operation by putting π−3R =
Lbdπ−2R|F−3ce, and so on; he uses the full sequence (πnR)n∈−N of such iterated
conditional laws. These πnR will be rigorously defined before Lemma 13, that
characterizes the information they contain. They play the central role in the second
part of Vershik’s criterion, which says that F is standard non-atomic if and only if for
each R the iterated prediction πnR becomes closer and closer to being deterministic
when n tends to −∞. This should be compared to the well-known, much easier fact,
that F−∞ is degenerate if and only if for each R the conditional law of R given Fn
becomes closer and closer to being deterministic when n tends to −∞.

As the successive πnR do not live in the same space, Vershik introduces for
each n a distance ρn on the corresponding space, these distances being related to
each other in a precise way; only then can the asymptotic condition be rigorously
stated (condition (vii) in Theorem 2 below). It is also possible to give an equivalent
statement that does not involve the distances ρn, namely I-cosiness; as we shall
see, equivalence between I-cosiness and Vershik’s second-level condition is easily
established. We feel that I-cosiness may prove handier in some instances, because the
ρn no longer appear; but it is essentially the same thing. (Vershik also gives another
restatement, condition 4 in his theorem 3.2, in terms of his “tower of measures”.
This is a space where all the πnR can be made to live together; but the ρn are still
implicitly there, in the very definition of the tower. We shall not elaborate further
on this topic.)

Instead of working with real random variables, we shall take them K-valued,
where (K, ρ) is a non-empty compact metric space; this will make some iterations
easier, because the space K ′ of all probability measures on K is also compact
and metrizable (for the topology of weak convergence). The set of all a.s. defined,
K-valued random variables will be called L(K) (or L(A,K) to specify the σ-field),
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and endowed with the distance Ebdρ(R,S)ce. Given an essentially separable sub-σ-field
C in a sample space (Ω,A,P), the conditional law LbdR|Cce of an R ∈ L(K) given
C is a random variable belonging to L(C,K ′); it is almost surely well defined, for
instance by disintegrating the joint law of (C,R) where C is any r.v. generating C.

On the set K ′ of all probabilities on K, the Kantorovich-Rubinshtein distance ρ′

is defined as

ρ′(µ, ν) = inf
λ has margins

µ and ν

∫

K×K
ρ(r, s)λ(dr, ds) ,

where the infimum is taken over all probabilities λ on the product K×K with
margins µ and ν. References on this definition are given by Vershik bd15ce and Dubins,
Feldman, Smorodinsky and Tsirelson bd5ce; see also the survey by Belili bd4ce, or the
recent book bd10ce by Rachev and Rüschendorf. All we need to know about ρ′ is
recalled in the next lemma.

Lemma 10. — With these notations, ρ′ is indeed a distance on K ′. Moreover, the
topology generated by ρ′ is the topology of weak convergence; in particular, (K ′, ρ′)
is compact.

Let g : K → R be a c-Lipschitz function, that is, |g(r)−g(s)| 6 c ρ(r, s).
The function g′ defined on K ′ by g′(µ) =

∫
K
g(r)µ(dr) is c-Lipschitz too:

|g′(µ)− g′(ν)| 6 c ρ′(µ, ν).

Proof. — First, to establish the triangle inequality, assume ρ′(µ1, µ2) < α
and ρ′(µ2, µ3) < β. There exist a probability λ′ with marginals µ1 and µ2,
such that

∫
ρ(r, s)λ′(dr, ds) < α, and a λ′′ with marginals µ2 and µ3, such

that
∫
ρ(s, t)λ′′(ds, dt) < β. Disintegrating λ′ and λ′′ gives probabilities ν′s

and ν′′s , defined for µ2-almost all s, such that λ′(dr, ds) = µ2(ds) ν′s(dr) and
λ′′(ds, dt) = µ2(ds) ν′′s (dt). Putting λ(dr, dt) =

∫
s∈K ν

′
s(dr)ν

′′
s (dt)µ2(ds), it is a

child’s play to verify that λ is a probability with marginals µ1 and µ3 such that∫
ρ(r, t)λ(dr, dt) < α+ β.

We now verify that a sequence (µj)j∈N in K ′ converges weakly to a limit ν ∈ K ′
if and only if ρ(µj , ν) tends to 0; taking a constant sequence µj = µ will by the same
token give the separation condition and show that ρ is a distance.

If µj converges weakly to ν, there exist, on a suitable sample space, random
variables Rj and S with these laws and such that ρ(Rj , S) tends in probability
to 0. As ρ(Rj , S) is bounded by the diameter of K, convergence also holds
in L1 and Ebdρ(Rj , S)ce → 0. But, calling λj the joint law of Rj and S, one has
ρ′(µj , ν) 6

∫
ρ(r, s)λj(dr, ds) = Ebdρ(Rj , S)ce, wherefrom ρ′(µj , ν)→ 0.

Conversely, supposing ρ′(µj , ν) → 0, we have to verify that µj(f) → ν(f) for
every continuous function f on K. By compactness, f is uniformly continuous, and
given any ε > 0 there exists δ > 0 such that

|f(r)− f(s)| 6
{
ε if ρ(r, s) < δ

2 sup |f | if ρ(r, s) > δ

}
6 ε+

2 sup |f |
δ

ρ(r, s) .

Now choose a probability λj with marginals µj and ν, such that
∫
ρ(r, s)λj(dr, ds) 6 ρ′(µj , ν) +

δε

2 sup |f |
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and write ∣∣∣
∫
f dµj −

∫
f dν

∣∣∣ =
∣∣∣
∫
f(r)λj(dr, ds)−

∫
f(s)λj(dr, ds)

∣∣∣

6
∫
|f(r)− f(s)|λj(dr, ds)

6 ε+
2 sup |f |

δ

∫
ρ(r, s)λj(dr, ds)

6 ε+
2 sup |f |

δ
ρ′(µj , ν) + ε .

This implies lim sup
j
|
∫
f dµj −

∫
f dν| 6 2ε, and

∫
f dµj tends to

∫
f dν.

Last, if g is a real, c-Lipschitz function on K, given µ and ν in K ′ a similar
computation yields for every λ with marginals µ and ν

|g′(µ)− g′(ν)| 6
∫
|g(r)− g(s)|λ(dr, ds) 6 c

∫
ρ(r, s)λ(dr, ds) ;

taking the infimum over all such λ yields |g′(µ)− g′(ν)| 6 c ρ′(µ, ν).

The next two lemmas show how the definition of ρ′ is taylor-made to transfer
distance estimates all the way down or up a filtration. Going down the ladder is
immediate:

Lemma 11. — Let R and S be two K-valued random variables. If C is an essentially
separable sub-σ-field, one has E

[
ρ′
(
LbdR|Cce,LbdS|Cce)

]
6 Ebdρ(R,S)ce.

Proof. — For almost all ω, the conditional law Lbd(R,S)|Cce(ω) is a probability on
K×K with marginals LbdR|Cce(ω) and LbdS|Cce(ω). Calling it λ(ω) and inserting it
into the definition of ρ′ yields the almost sure inequality

ρ′
(
LbdR|Cce(ω),LbdS|Cce(ω)

)
6
∫
ρ(r, s)λ(ω)(dr, ds) = Ebdρ(R,S)|Cce(ω) ,

whence E
[
ρ′
(
LbdR|Cce,LbdS|Cce

)]
6 Ebdρ(R,S)ce.

Climbing up the ladder is a little more arduous; this is done in the next lemma. To
make things technically easier, we shall deal with simple random variables, that is,
random variables that take only finitely many values.

Lemma 12. — On some (Ω,A,P), let B and C be sub-σ-fields such that C ⊂ B

and B is conditionally non-atomic given C; suppose R ∈ L(B,K) and L ∈ L(C,K ′)
are simple and the values (in K ′) taken by the random variable L are probability
measures on K with finite support. There exists a r.v. S ∈ L(B,K) verifying
LbdS|Cce = L and Ebdρ(R,S)ce = E

[
ρ′
(
LbdR|Cce, L

)]
.

Proof. — There exists a finite set F ⊂ K such that the values of R are points
of F and the (finitely many) values taken by L are probabilities with supports in F .
By weak compactness of the set of all probabilities on K×K, the infimum in the
definition of ρ′ is reached for some λ; writing this for µ = LbdR|Cce(ω) and ν = L(ω)
shows for almost every ω the existence of a probability λ(ω) on F×F , verifying∑

s∈F
λ(ω, . , s) = LbdR|Cce(ω)

∑

r∈F
λ(ω, r, . ) = L(ω)

∑

(r,s)∈F×F
ρ(r, s)λ(ω, r, s) = ρ′

(
LbdR|Cce(ω), L(ω)

)
;and
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moreover, λ(ω) can be taken C-measurable, for instance by the measurable section
theorem, or by choosing λ as a continuous function of the vectors LbdR|Cce and L
in RF .

Put Σ(ω) =
∑
s∈F

λ
(
ω,R(ω), s

)
=
∑
r∈F

1l{R=r} PbdR=r|Cce and deduce from

PbdΣ = 0 and R= r|Cce = PbdR= r|Cce 1l{PbdR= r|Cce=0} = 0

that PbdΣ = 0ce = 0 and Σ > 0 a.s. Call s1, . . . , sp the points of F and for 0 6 j 6 p set

Qj(ω) =
λ
(
ω,R(ω), s1

)
+ . . .+ λ

(
ω,R(ω), sj

)

Σ(ω)
;

these r.v.’s are C∨σ(R)-measurable and verify 0 = Q0 6 Q1 6 . . . 6 Qp = 1. Now
R is simple, so, by Corollary 4, B is conditionally non-atomic given C∨σ(R), and
by Proposition 4 there exists a complement X to C∨σ(R) in B. The F -valued r.v.
S defined by

S(ω) = sj ⇐⇒ Qj−1(ω) < X(ω) 6 Qj(ω)

verifies

PbdS= s|C∨σ(R)ce =
λ
(
ω,R(ω), s

)

Σ(ω)
;

PbdR= r and S= s|C∨σ(R)ce = 1l{R=r}
λ(ω, r, s)

PbdR=r|Cce ;

PbdR= r and S= s|Cce = PbdR= r|Cce λ(ω, r, s)

PbdR=r|Cce = λ(ω, r, s)

(everything vanishes if the denominator is null). This shows that the conditional law
of (R,S) given C is λ. It implies on the one hand LbdS|Cce = L and on the other hand

Ebdρ(R,S)|Cce =
∑

(r,s)∈F×F
ρ(r, s)λ(r, s) = ρ′

(
LbdR|Cce, L

)
,

whence Ebdρ(R,S)ce = E
[
ρ′
(
LbdR|Cce, L

)]
.

Fixing a filtered space (Ω,A,P, (Fn)n60) such that F0 is essentially separable, the
(a.s. well defined) conditional law LbdR|F−1ce of an R ∈ L(K) given F−1 is a random
variable belonging to L(F−1,K

′). As mentioned at the beginning of this section, this
will be iterated by considering the conditional law of this r.v. given F−2, and so on.
To do so, we shall use the following notation: (K0, ρ0) = (K, ρ), π0R = R; and for
each n 6 0, (Kn−1, ρn−1) = (Kn

′, ρn′) and πn−1R is the conditional law of πnR
given Fn−1. Notice that each (Kn, ρn) is a compact metric space, and the random
variable πnR belongs to L(Fn,Kn).

What information is conveyed by the r.v. πnR? It contains the conditional law
of R given Fn, but also (see the example at the beginning of this section) predictions
about how these conditional laws may evolve from the present time n to the future
time 0 (call this second-order information). And it also contains predictions about
how this second-order information itself may evolve in the future (this is third order),
and so on, up to order |n| (no more information is added to πnR by iterating beyond
order |n|). This procedure is an informal description from inside; the next lemma
gives a (simpler) characterization from outside.
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Lemma 13. — Assume F0 is essentially separable and fix R ∈ L(F0,K). The

filtration generated by the process (πnR)n60 is the smallest filtration E immersed

in F such that R is E0-measurable. The σ-field σ(πnR,n6 0) is the smallest

F-saturated σ-field making R measurable.

Partial proof. — We shall only show the immersion and saturation properties.

Minimality will not be used in the sequel; its proof is left to the reader.

To see that the filtration generated by the process (πnR)n60 is immersed in F, it

suffices to verify that Ebdφ(πmR,m6 0)|Fnce is σ(πmR,m6n)-measurable for each

n 6 0. Writing Ebdφ(. . . , π−1R, π0R)|F−1ce as
∫
φ(. . . , π−1R, r) d(π−1R)(r) shows it

for n = −1; the general case follows by iteration.

Consequently, by Lemma 5, the σ-field σ(πnR,n6 0) is F-saturated.

Lemma 14. — Suppose F0 to be essentially separable. If R and S are two K-valued,

F0-measurable random variables,

Ebdρn(πnR, πnS)ce 6 Ebdρ(R,S)ce .
Proof. — Immediate by iterating Lemma 11.

Lemma 15. — Let F be non-atomic and R be an F0-measurable r.v. with values in

a finite set F ⊂ K. For every δ > 0, there exists an F0-measurable, F -valued r.v.

S such that π−1S is simple and Ebdρ(R,S)ce < δ.

Proof. — Call F ′ the set of all probabilities on F ; it is compact, so there exist a

finite G ⊂ F ′ and a Borel f : F ′ → G such that ρ−1

(
µ, f(µ)

)
< δ for every µ ∈ F ′.

Lemma 12 with L = f(π−1R) gives a K-valued S such that π−1S = L (hence S is F -

valued) and that Ebdρ(R,S)ce = Ebdρ−1(π−1R,L)ce = E
[
ρ−1

(
π−1R, f(π−1R)

)]
< δ.

Definition. — The filtration (Fm)m60 and n 6 0 being fixed, a r.v. R ∈ L(F0,K)

is n-simple if the |n|+1 r.v.’s πnR, πn+1R, . . . , π0R = R are simple.

The next lemma says that n-simplicity of R is in fact a property of πnR.

Notation. — Set KS
0 = K and for n < 0 call KS

n the set of all probabilities carried

by finitely many points of KS
n+1. Observe that KS

n is included in Kn, but KS
n is not

compact (unless n = 0 or |K| = 1).

Lemma 16. — Assume F0 is essentially separable. For n 6 0, a random variable

R ∈ L(F0,K) is n-simple if and only if πnR is simple and takes its values in KS
n.

Proof. — For n = 0, this is just the definition of a simple r.v. Assuming the lemma

holds for some n, we shall prove it for n− 1.

If R is (n−1)-simple, it is also n-simple, and, by induction hypothesis, πnR is

simple and takes its values in KS
n; these values belong to some finite F ⊂ KS

n. The

set F ′ of all probabilities on F is included in KS
n−1; πn−1R has values in F ′ and

a fortiori in KS
n−1. It is also simple, by definition of (n−1)-simplicity.

Conversely, if πn−1R is simple and takes its values in KS
n−1, these values

are finitely many probabilities finitely supported in KS
n, so πnR is simple and

KS
n-valued, and, by induction hypothesis, R is n-simple. As πn−1R is simple too, R

is (n−1)-simple.
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Lemma 17. — Suppose F to be non-atomic; for some n 6 0, let R ∈ L(F0,K)

and L be a simple, Fn-measurable r.v. with values in KS
n. There exists an n-simple

S ∈ L(F0,K) such that πnS = L and Ebdρ(R,S)ce = Ebdρn(πnR,L)ce.

Proof. — If n = 0, take S = L. If n < 0, writing Ln instead of L and

working by induction, it suffices to show that our hypothesis implies the existence

of a simple, KS
n+1-valued Ln+1 ∈ L(Fn+1,Kn+1) verifying LbdLn+1|Fnce = Ln and

Ebdρn+1(πn+1R,Ln+1)ce = Ebdρn(πnR,Ln)ce. But this is just Lemma 12 with Kn+1

instead of K, B = Fn+1 and C = Fn.

Lemma 18. — Assume F is non-atomic. For fixed n 6 0, the set of all n-simple

r.v.’s is dense in L(F0,K).

Proof. — For n = 0, this just recalls that simple r.v.’s are dense. To prove the

lemma, it suffices to show that the set of all (n−1)-simple r.v.’s is dense in the set of

all n-simple ones. So let R be n-simple; πnR is simple and KS
n-valued (Lemma 16),

its values belong to a finite subset F of KS
n. Applying Lemma 15 to πnR yields an

F -valued Ln such that LbdLn|Fn−1ce is simple and Ebdρn(πnR,Ln)ce arbitrarily small;

then Lemma 17 gives a n-simple S such that πnS = Ln and Ebdρ(R,S)ce is small; as

πn−1S = LbdLn|Fn−1ce is simple, S is (n−1)-simple.

With Lemmas 17 and 18 at our disposal, the equivalence between standardness

and Vershik’s second-level criterion is within hand reach.

Definition. — Let (K, ρ) denote the unit interval bd0, 1ce with the usual distance. A

filtration F satisfies Vershik’s criterion if F0 is essentially separable and, for every

δ > 0 and every F0-measurable, bd0, 1ce-valued R, there exist an n 6 0 and a µ ∈ Kn

such that Ebdρn(πnR,µ)ce < δ, where (Kn, ρn) and πnR are inductively defined as

above, starting with (K, ρ).

Remark. — This definition is not changed if the interval bd0, 1ce is replaced with

an arbitrary infinite compact metric space (K, ρ). To see it, observe first that the

property holds with (K, ρ) if and only if it holds for every (F, ρ), where F ranges

over all finite subsets of K (approximate R ∈ L(F0,K) by simple random variables

and use Lemma 14). Then notice that if it holds for (F, ρ), it also holds for any

other metric space (F 1, ρ1) with the same cardinality as F (since, after identifying

F and F 1 by an arbitrary bijection, the ratio ρ1/ρ is bounded above and below).

Proposition 5. — If a filtration F = (Fn)n60 is I-cosy and if F0 is essentially

separable, F satisfies Vershik’s criterion.

Proof. — Given an F0-measurable, bd0, 1ce-valued R and a δ > 0, the cosiness

hypothesis provides us with an n, an (Ω,A,P) and two isomorphic copies F′ and F′′

of F on Ω, jointly immersed (in F = F′ ∨F′′), independent at time n, and

such that P
[
|R′−R′′| > δ

]
< δ. As |R′−R′′| 6 1, E

[
|R′−R′′|

]
< 2δ, whence

Ebdρn(πnR
′, πnR′′)ce < 2δ by Lemma 14. In this formula, the Kn-valued r.v. πnR

′ is

defined in the filtration F; by immersion, it remains the same when computed in F′.
By isomorphic transfer, πnR

′ and πnR
′′ have the same law as πnR; call q this law.

As πnR
′ and πnR

′′ are independent, the measurable function φ defined on Kn by
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φ(λ) =
∫
ρn(λ′, λ) q(dλ′) = Ebdρn(πnR, λ)ce verifies

Ebdφ(πnR)ce =

∫
φ(λ′′) q(dλ′′) =

∫∫
ρn(λ′, λ′′) q(dλ′) q(dλ′′)

= Ebdρn(πnR
′, πnR

′′)ce < 2δ ;

hence Pbdφ(πnR)> 3δce 6 2
3 , and there exists an ω0∈Ω such that φ

(
(πnR)(ω0)

)
<3δ.

Taking µ = (πnR)(ω0), one has Ebdρn(πnR,µ)ce = φ(µ) < 3δ.

Theorem 2 (Vershik bd15ce). — Let F = (Fn)n60 be a non-atomic filtration on some
probability space (Ω,A,P). The following three statements are equivalent to each
other and to statements (i), (ii), (iii) and (iv) of Theorem 1:

(v) F is immersible into a filtration of product type;

(vi) F is I-cosy;

(vii) F satisfies Vershik’s criterion.

Proof. — (ii)⇒ (v) is trivial, (v)⇒ (vi) has already been seen in Corollary 2, and
(vi) ⇒ (vii) repeats Proposition 5.

(vii) ⇒ (iii). Define a sequence of functions gn : Kn → bd0, 1ce by g0 = Id and
gn−1(µ) =

∫
Kn

gn(λ)µ(dλ). Given any F0-measurable, bd0, 1ce-valued r.v. R, equality
EbdR|Fnce = gn(πnR) holds for n = 0, and if it holds for some n, the definition of
πn−1R implies

EbdR|Fn−1ce = Ebdgn(πnR)|Fn−1ce =

∫

Kn

gn(λ) (πn−1R)(dλ) = gn−1(πn−1R) ;

so EbdR|Fnce = gn(πnR) for all n. Now, by Lemma 10, each gn is 1-Lipschitz.
Consequently,

∣∣EbdR|Fnce− gn(µ)
∣∣ 6 ρn(πnR,µ) for any µ ∈ Kn. Combining this

estimate with hypothesis (vii), we obtain for every δ > 0 an n and a constant c
such that EbdR|Fnce is δ-close to c in L1. As this holds for some n, it also holds for all
n small enough, so there are constants cn such that EbdR|Fnce− cn tends to 0 in L1

when n→ −∞. This implies that EbdR|Fnce → EbdRce, which in turn shows that F−∞
is degenerate.

It remains to show that every R ∈ L0(F0) can be approximated to any given
accuracy by a r.v. belonging to some essentially finite, F-saturated σ-field. By
truncation, we may suppose that R is bounded, and by an affine transformation,
that 0 6 R 6 1. Take K = bd0, 1ce and fix δ > 0. Hypothesis (vii) gives an n
(fixed in the sequel) and a µ ∈ Kn such that Ebdρn(πnR,µ)ce < δ. According to
Lemma 18, there exists an n-simple r.v. S such that Ebdρ(R,S)ce < δ. Lemma 14 gives
Ebdρn(πnR, πnS)ce < δ, whence Ebdρn(πnS, µ)ce < 2δ, and Pbdρn(πnS, µ)> 3δce < 2

3 .
This estimate, and the fact that πnS is a.s. KS

n-valued (apply Lemma 16 to S),
imply that for some ω0 one has ρn

(
(πnS)(ω0), µ

)
< 3δ and (πnS)(ω0) ∈ KS

n.
Putting ν = (πnS)(ω0), one gets ρn(µ, ν) < 3δ and Ebdρn(πnS, ν)ce < 5δ. Taking
now L deterministic and equal to ν in Lemma 17, we get an n-simple T such that
Ebdρ(S, T )ce < 5δ and πnT = ν.

The σ-field B = σ(πmT,m 6 0) is F-saturated by Lemma 13. For each m 6 n,
πmT is deterministic (easy induction, starting from πnT = ν); and for m > n,
πmT is simple because T is n-simple; so B is essentially finite. Since Ebdρ(R, T )ce < 6δ
and T is B-measurable, (iii) is established.
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Lemma 19. — If two filtered sample spaces (Ω1,A1,P1,F1) and (Ω2,A2,P2,F2)
satisfy Vershik’s criterion, their product (Ω1×Ω2,A1⊗A2,P1⊗P2,F1⊗F2) satisfies
it too.

Proof. — The proof is elementary and involves no new idea; but it is made tedious
and lengthy by the need of verifying inequalities in such spaces as (K×K)n. For more
clarity, we shall denote by ? the push-forward of a measure by a function: if σ is a
probability on E and if f : E → F is measurable, f ?σ is the probability σ◦f−1 on F .

Starting from a compact metric space (K, ρ), we have defined a sequence
(Kn, ρn) of such spaces; a product (K̃, ρ̃) can also be defined by K̃ = K×K and
ρ̃
(
(x1, x2), (y1, y2)

)
= ρ(x1, y1) +ρ(x2, y2). Then, (K̃n, ρ̃n) is defined by K̃n = (K̃)n

and ρ̃n = (ρ̃)n, and (K̃n, ρ̃n) by K̃n = (̃Kn) (= Kn×Kn) and ρ̃n = (̃ρn) as above.

There is for each n 6 0 a natural map in : K̃n → K̃n, defined by induction: i0 is
the identity on K̃, and, for n < 0, an arbitrary element u = (µ1, µ2) of K̃n = Kn×Kn

is mapped to inu = in(µ1, µ2) = in+1 ? (µ1⊗µ2); this is meaningful because µ1 and
µ2 are probabilities on Kn+1.

This map in is useful in our setting because if R1 (respectively R2) is K-valued,
F1

0-measurable (respectively F2
0-measurable), R = (R1, R2) is K̃-valued and F0-

measurable (we denote by (Ω,A,P,F) the product space), and one has, with obvious
notations, πnR = in(π1

nR
1, π2

nR
2). Indeed, if this holds at level n, then

πn−1R = LbdπnR|Fn−1ce = L
[
in(π1

nR
1, π2

nR
2)
∣∣ Fn−1

]

= in ? L
[
(π1
nR

1, π2
nR

2)
∣∣ Fn−1

]
= in ?

(
Lbd(π1

nR
1)|F1

n−1ce⊗Lbd(π2
nR

2)|F2
n−1ce

)

= in ? (π1
n−1R

1⊗π2
n−1R

2) = in−1(π1
n−1R

1, π2
n−1R

2) .

Now, it is a fact that the distances ρ̃n on K̃n and ρ̃n on K̃n are related by

for all u and v in K̃n, ρ̃n(inu, inv) 6 ρ̃n(u, v) .

bdThis formula is trivial for n = 0, so to prove it by induction, we may suppose it
to hold for n and check it for n − 1. We are given u = (µ1, µ2) and v = (ν1, ν2) in
K̃n−1 = Kn−1×Kn−1; µ1, µ2, ν1, and ν2 are elements of Kn−1, that is, probabilities
on Kn; we want to majorize ρ̃n−1(in−1u, in−1v). If λ1(ds1, dt1) is any probability
on Kn×Kn with marginals µ1 and ν1, and λ2(ds2, dt2) any probability on Kn×Kn

with marginals µ2 and ν2, then λ
(
d(s1, s2), d(t1, t2)

)
= λ1(ds1, dt1)λ2(ds2, dt2) is

a probability on K̃n×K̃n with marginals µ1⊗µ2 and ν1⊗ν2; and, calling jn the
map from K̃n×K̃n to K̃n×K̃n defined by jn(s, t) = (ins, int), the image jn ? λ is a
probability on K̃n×K̃n, with marginals in ? (µ1⊗µ2) and in ? (ν1⊗ν2), that is, with
marginals in−1u and in−1v. As a consequence, ρ̃n−1(in−1u, in−1v) is majorized by
the infimum, over all such choices of λ1 and λ2, of the integral

∫

K̃n×K̃n
ρ̃n(σ, τ) `(dσ, dτ) =

∫

K̃n×K̃n
ρ̃n(σ, τ) (jn?λ)(dσ, dτ)

=

∫

K̃n×K̃n
ρ̃n(ins, int)λ(ds, dt) .

By induction hypothesis, and by the definition of ρ̃n as a sum, this is majorized by
∫

K̃n×K̃n
ρ̃n(s, t)λ(ds, dt) =

∫

K4
n

(
ρn(s1, t1)+ρn(s2, t2)

)
λ1(ds1, dt1)λ2(ds2, dt2) ;
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taking now the infimum over all λ1 with marginals µ1 and ν1, and all λ2 with
marginals µ2 and ν2, we get ρn−1(µ1, ν1) + ρn−1(µ2, ν2), that is, ρ̃n−1(u, v). The
inequality is established.ce

To prove the lemma, we have to show that if R is F0-measurable and bd0, 1ce-
valued, πnR is well approximated by some constant µ for some n. But R itself is
approximated by a finite sum R1

1R
2
1 + . . . + R1

pR
2
p, where R1

k (respectively R2
k) are

F1
0-measurable (respectively F2

0-measurable) and bounded. By Lemma 14, it suffices
to verify the property when R is such a sum, that is, a scalar product R1·R2, where
R1 and R2 have their values in some compact K = bd−M,Mcep. Endow K with the
Euclidean distance ρ. As F1 and F2 satisfy Vershik’s criterion, the remark following
the definition of the criterion gives E1bdρn(π1

nR
1, µ1)ce < δ and E2bdρn(π2

nR
2, µ2)ce < δ

for some n, µ1 and µ2. The inequality seen above yields

ρ̃n
(
πn(R1, R2), in(µ1, µ2)

)
6 ρn(π1

nR
1, µ1) + ρn(π2

nR
2, µ2) .

Now if f : (K̂, ρ̂) → (K̄, ρ̄) is a c -Lipschitz map between two compact metric
spaces, f (n) : (K̂n, ρ̂n) → (K̄n, ρ̄n) can be inductively defined by f0 = f and
f (n)µ = fn+1 ? µ for n < 0; it is elementary to check that πn(f◦S) = f (n)(πnS)
and that f (n) is c -Lipschitz too. Applying this to the scalar product f : K×K → K̄
where K̄ = bd−pM2, pM2ce gives

ρ̄n
(
πn
(
f(R1, R2)

)
, f (n)

(
in(µ1, µ2)

))
6 c ρ̃n

(
πn(R1, R2), in(µ1, µ2)

)
,

where c is a Lipschitz constant for f (this constant depends on p and M , but these
parameters are fixed). So the left-hand side has expectation less than 2cδ, and the
lemma is proved.

To lift the assumptions on F in Theorems 1 and 2, we need a definition of
standardness suitable for the general case (atomic or not).

Definition — A filtration F is standard2 if it is immersible into a standard non-
atomic filtration.

This name is not misleading, because a non-atomic filtration is standard if and
only if it is standard non-atomic. Indeed, a standard non-atomic filtration is standard
because it is immersed in itself; conversely, if a non-atomic filtration is standard, it
is standard non-atomic by (v) ⇒ (i) in Theorem 2. In other words, a filtration is
standard non-atomic if and only if it is both standard and non-atomic.

Corollary 5. — Let (Ω,A,P,F) be a filtered probability space. The following five
conditions are equivalent:

(i) F is standard;

(ii) F is immersible into a standard filtration;

(iii) if (Ω,A,P,F) is a standard non-atomic filtered sample space, the independent
product of F and F is standard non-atomic too;

(iv) F0 is essentially separable and F is I-cosy;

(v) F satisfies Vershik’s criterion.

2. We follow Vershik’s terminology. Feldman bd8ce and Feldman-Smorodinsky bd9ce say substandard;

and they call prestandard a filtration satisfying condition (iii) of Corollary 5.
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The independent product in condition (iii) just means a filtration of the form
F′ ∨ F′, where F′ and F′ are defined on the same sample space, independent and
respectively isomorphic to F and F. The product of F with a standard non-atomic
filtration is well-defined, up to isomorphism; so if (iii) holds for some standard
non-atomic (Ω,A,P,F), it holds for every standard non-atomic (Ω,A,P,F).

Proof of Corollary 5. — (i) ⇒ (iv). A standard non-atomic filtration satisfies
(iv) by Theorem 2; and a filtration immersible into a filtration satisfying (iv) also
satisfies (iv) by Corollary 1.

(iv) ⇒ (v) has already been seen in Proposition 5.

(v) ⇒ (iii). As F is standard non-atomic, it satisfies Vershik’s criterion by
Theorem 2. By Lemma 19, its product with F satisfies Vershik’s criterion too. But
this product is non-atomic; consequently, by Theorem 2 again, it is standard non-
atomic.

(iii) ⇒ (ii). By Lemma 1, a filtration is always immersible into its independent
product with any other filtration.

(ii) ⇒ (i). If F is immersible into a filtration G which is in turn immersible into a
standard non-atomic filtration H, then F is immersible into H, whence standard.

Among the reasons that make standardness an interesting notion stands the
following fact. Let (Fn)n60 be a filtration, and (En)n60 be a sequence of sets, each
of which is either a finite set or the interval bd0, 1ce. Suppose there exists for each n
an Fn-measurable r.v. Xn, uniformly distributed on En, independent of Fn−1, and
such that Fn−1∨σ(Xn) = Fn. The filtration F is standard (if and) only if it is of
product type.

We shall not prove this statement. When each Xn has a diffuse law, it just repeats
equivalence (i) ⇔ (v) in Theorems 1 and 2. In the general case, it is an immediate
corollary of Theorem 3.2 of Vershik bd15ce. Vershik gives a complete proof only in the
case when each En is finite, but the indices n such that En is infinite are easy to
deal with, in the same way as above: approximate random variables by simple ones
and use Corollary 4. Another proof is provided by Feldman bd8ce; a key step in his
method consists in showing that, for some special K, ρ, µ and ν, it is possible to find
a probability λ on K×K, carried by a graph, and arbitrarily close to being optimal
in the definition of the Kantorovich-Rubinshtein distance ρ′(µ, ν). And still another
proof is given by Feldman and Smorodinsky bd9ce; instead of using the distances ρn
on Kn, they use (non-separating) distances on the quotients (Ω,F,P)/Fn.

The restriction that each Xn is uniformly distributed is essential. A very simple
counter-example is attributed to Vinokurov by Vershik (bd15ce page 756; see also
Feldman bd8ce): the natural filtration F of “the” stationary Markov chain (Mn)n60

with two states and transition matrix
( p 1−p

1−p p

)
, where 0 < p < 1 and p 6= 1

2 . An

easy coupling argument3 shows that F is I-cosy, hence standard (Corollary 5). On

3. Consider two independent copies M1 and M2 of M , put Tm = inf {n > m M1
n =M2

n} and

define another copy M3 of the process M by M3
n = M1

n if n 6 Tm and M3
n = M2

n if n > Tm. The

filtrations generated by M1 and M3 are isomorphic to that of M and jointly immersed in that of

(M1,M2); by taking m small enough, the processes M1 and M3 have a large probability of being

equal on a given interval {n, . . . , 0}.
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the other hand, there are (modulo negligibility) only two non-degenerate Fn-events
independent of Fn−1, namely {Mn =Mn−1} and {Mn 6=Mn−1}. So if F were of
product type, it would be generated by the process Yn = 1l{Mn=Mn−1}; but this
process determines M only up to one bit of information (interchange both states),
a contradiction.

Vershik’s theorem on lacunary isomorphism

The same tools that were needed to establish Vershik’s criterion will now be used
to prove his theorem on lacunary isomorphism, a phemenon that we find still much
more mind–boggling than the existence of non standard filtrations. It says that
a non standard filtration can always be made standard by a deterministic time-
change, that is, by replacing −N with one of its subsequences. We keep following
closely Vershik bd15ce.
Theorem 3 (lacunary isomorphism). — Let F be a filtration such that F0 is
essentially separable and F−∞ is degenerate. There exists a strictly increasing map
σ : −N→ −N such that the filtration G defined by Gn = Fσ(n) is standard.

The argument will be split into several statements.

Lemma 20. — Let B and C be two sub-σ-fields of A, with C included in B and
B conditionally non-atomic given C. If R is a B-measurable r.v. taking values in
some finite set F , there exists a B-measurable, F -valued r.v. S independent of C

and such that PbdS 6=Rce = 1
2

∑
r∈F

E
[
|PbdR=r|Cce−PbdR=rce|

]
.

Proof. — Remark first that if K is a finite set endowed with the distance
ρ(r, s) = 1l{r 6=s}, then the Kantorovich-Rubinshtein distance ρ′ on the compact K ′

is explicitly given by the formula ρ′(µ, ν) = 1
2

∑
t∈K
|µ(t)−ν(t)|. To see this, define

p(r) =
(
µ(r)−ν(r)

)+
= µ(r)− µ(r)∧ν(r) ,

q(s) =
(
µ(s)−ν(s)

)−
= ν(s)− µ(s)∧ν(s) ,

C = 1−∑
t
µ(t)∧ν(t) =

∑
r
p(r) =

∑
s
q(s) = 1

2

∑
t
|µ(t)−ν(t)|

and observe that λ(r, s) = µ(r)∧ν(s) 1l{r=s} + p(r)q(s)/C is a probability on K×K
verifying λ(t, t) = µ(t)∧ν(t), thus achieving the infimum in the definition of ρ′(µ, ν).

Now apply Lemma 12 to K = F endowed with this ρ, to R, and to the constant
r.v. L = ` where ` is the law of R. This gives an S with values in F such that
LbdS|Cce = ` (so S is independent of C) and PbdS 6=Rce = 1

2

∑
r∈F

E
[
|LbdR|Cce(r)−`(r)|

]
.

Lemma 21. — Let F be a non-atomic filtration such that F−∞ is degenerate. For
every δ > 0 and every F0-measurable, simple r.v. R, there exist an m < 0 and an
F0-measurable r.v. S, independent of Fm and verifying PbdS 6=Rce < δ.

Proof. — Call F a finite set where R takes its values. For each r∈F , the degeneracy
of F−∞ implies that PbdR=r|Fmce → PbdR=rce in L1 when m → −∞. So there is an
m < 0 such that

∑
r∈F

E
[
|PbdR=r|Fmce−PbdR=rce|

]
< δ; and Lemma 20 gives the S

sought for.
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Lemma 22. — Let F be a filtration verifying the same hypotheses as in the previous
lemma. Suppose given an n 6 0 and |n| random variables Xn+1, . . . , X0 such that
each X` is a complement to F̀ −1 in F̀ . For every δ > 0 and every F0-measurable
r.v. R, there exist an m < n, a complement X ′ to Fm in Fn, and a r.v. S,
σ(X ′, Xn+1, . . . , X0)-measurable and δ-close to R in probability.

Proof. — Writing F0 = Fn∨σ(Xn+1, . . . , X0) and approximating Fn by essentially
finite σ-fields, we may suppose R to be of the form φ(T,Xn+1, . . . , X0) where φ is
Borel and T is Fn-measurable and simple. Lemma 21 applied to T and to the shifted
filtration (. . . ,Fn−1,Fn) gives an m < n and a simple, Fn-measurable S, independent
of Fm and such that PbdS 6=T ce < δ; a fortiori, Pbdφ(S,Xn+1, . . . , X0) 6=Rce < δ.
According to Corollary 4, there exists a complement X ′ to Fm in Fn such that
σ(X ′) ⊃ σ(S); so S = ψ(X ′) and φ

(
ψ(X ′), Xn+1, . . . , X0

)
is δ-close to R in

probability.

Proposition 6. — Let F be a non-atomic filtration such that F−∞ is degenerate.
There exists a strictly increasing map σ : −N → −N such that the filtration G

defined by Gn = Fσ(n) is standard non-atomic.

Proof. — Choose a r.v. R generating F0 and a sequence (δ`)`60 such that
δ0 = 1, δ` > 0 and δ` → 0 when ` → −∞. We shall first show the existence
of a strictly increasing mapping σ : −N → −N, a sequence (X ′`)`60 such that
each X ′` is a complement to Fσ(`−1) in Fσ(`), and and a sequence (S`)`60 of
r.v.’s such that S` is σ(X ′`, . . . , X

′
0)-measurable and δ`-close to R in probability.

Indeed, supposing σ(`), . . . , σ(0), X ′`+1, . . . , X
′
0 and S`+1, . . . , S0 have already been

constructed, σ(`−1), X ′` and S` are obtained simply by applying Lemma 22 to
the filtration (. . . ,Fσ(`+1)−2,Fσ(`+1)−1,Fσ(`+1),Fσ(`+2), . . . ,Fσ(−1),Fσ(0)); this gives
σ, X ′ and S by induction (the first step just starts with σ(0) = 0, no X ′ and no S;
applying Lemma 22 then yields σ(−1), X ′0 and S0, and so on).

Now, Lemma 8 says that the (standard non-atomic) filtration G′ generated by the
process X ′ is immersed in the filtration G defined by Gn = Fσ(n). But R is the limit
in probability of S`, so it is G′0-measurable, whence G′0 = F0 by the choice of R. As G0

is sandwiched between G′0 and F0, one also has G′0 = G0; consequently, by Lemma 5,
G′ = G (both these filtrations are immersed in G), and G is standard non-atomic.

Proof of Theorem 3. — Let F be any filtration such that F0 is essentially
separable and F−∞ is degenerate. By enlarging the sample space if necessary, we
may suppose the existence of a standard non-atomic filtration H independent of
F. The filtration F∨H satisfies the sames hypotheses as F and is non-atomic. So
Proposition 6 can be applied to this filtration, giving a sub-sequence σ such that
the filtration Kn = Fσ(n)∨Hσ(n) is standard non-atomic. Set Gn = Fσ(n). Being
immersed in K by Lemma 1, the filtration G is standard.

Study of an example

To illustrate the notion of I-cosiness and how it can be used, we now turn to
Vershik’s Example 2 (bd15ce, page 744). This will be done in two steps: we start with
a modified, easier version of the example, due to Smorodinsky bd13ce; there the state
spaces are finite. Then we come back to Vershik’s version, which is slightly less
simple (the state space is bd0, 1ce), but stationary.
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Definitions. — Given a filtered probability space
(
Ω,A,P, (Fn)n60

)
, a process

(εn)n60 is an F-coin-tossing if, for each n 6 0, εn is Fn-measurable, independent

of Fn−1, and uniformly distributed on {−1, 1}.
A filtration F has the predictable representation property with respect to an

F-coin-tossing ε if F−∞ is degenerate and, for each n, Fn is generated by

Fn−1 and εn.

The definition of an F-coin-tossing is equivalent to demanding that the law of

the process ε is that of a fair coin-tossing, and that the filtration it generates is

immersed in F.

The predictable representation property with respect to ε amounts to saying

that every F-martingale M has the form Mn = EbdM0ce +
∑
m6n

Hmεm for some

F-predictable process H.

Theorem 4 (Vershik bd15ce, Smorodinsky bd13ce). — There exists a filtered probability

space (Ω,A,P) with a filtration F = (Fn)n60 and an F-coin-tossing ε = (εn)n60

such that F has the predictable representation property with respect to ε, but F is

not standard.

In particular, this F is not of product type (this would imply I-cosiness by

Proposition 3), so it is not generated by any coin-tossing whatsoever; according to

Corollary 2, is it not even immersible into a filtration of product type (for instance

the filtration generated by some coin-tossing process).

We now describe Smorodinsky’s construction of this paradoxical filtration.

Let A be a finite set, called the alphabet, with k elements, called letters (k > 2).

An ordered sequence of m letters is called an m-word; the set of all m-words is Am,

its cardinality is km. An m-word w and an m′-word w′ can be concatenated to form

the (m+m′)-word w·w′. For n 6 0, put Bn = A2|n| .

Consider a Markov process (Xn, εn)n60 with the following law: for each n 6 0,

(Xn, εn) is uniformly distributed on Bn×{−1, 1} (that is, the random 2|n|-word Xn

and the random sign εn are uniform and independent); the transition from n−1 to n

is obtained by taking εn independent of (Xn−1, εn−1) and choosing Xn as the first

half of the word Xn−1 if εn = 1, and as the second half of Xn−1 if εn = −1.

Clearly, this transition probability, when applied to a uniformly distributed

(Xn−1, εn−1), yields a uniformly distributed (Xn, εn); this compatibility implies

existence and uniqueness in law of the process (X, ε). From now on, we suppose

(X, ε) is realized on a sample space (Ω,A,P), and we call F the filtration it generates.

The Markov property and the independence of εn and (Xn−1, εn−1) imply that

εn is independent of Fn−1; in other words, the process ε is an F-coin-tossing.

Theorem 4′ (Smorodinsky bd13ce). — With the above definitions, the filtration F

has the predictable representation property with respect to ε, but it is not standard.

The proof is copied from Smorodinsky; the only difference is that we use the

language of I-cosiness, but the mathematics are exactly the same.
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Proof of the predictable representation property. — As Xn is the first
or second half of Xn−1 according to the value of εn, Xn is a function of Xn−1 and
εn, and Fn is generated by Fn−1 and εn. To establish the predictable representation
property, it remains to verify that F−∞ is degenerate, or, equivalently, that for
each Z ∈ L1(F0), the conditional expectation EbdZ|Fnce tends to EbdZce when n tends
to −∞.

We know that Xn is one half of the word Xn−1; call Wn the other half
(which may happen to be equal to Xn). Knowing X0, the sequence (εn) and
the sequence (Wn), it is easy to recover all the Xn by backward induction;
so F0 is generated by X0, the ε and the W . Consequently, we may suppose
that Z is a function of X0, (ε`+1, ε`+2, . . . , ε0) and (W`+1,W`+2, . . . ,W0) for
some ` < 0. The vector (W`+1,W`+2, . . . ,W0, X0) is itself a function of X` and
(ε`+1, ε`+2, . . . , ε0); so Z = f(X`, ε`+1, . . . , ε0). Now, for n 6 `, to compute the
conditional expectation EbdZ|Fnce, we may replace Z by EbdZ|F̀ ce; the latter is but
g(X`), with g(x) = Ebdf(x, ε`+1, . . . , ε0)ce, for (ε`+1, . . . , ε0) is independent of F̀ . So
it suffices to check that the conditional law of X` given Fn tends to the uniform
law on A2|`| . This conditional law can easily be described: the random 2|n|-word Xn

can be sliced into 2|n|−|`| smaller words, each with length 2|`|; conditionally on Fn,
X` is uniformly chosen among those 2|n|−|`| words. As they are independent and
uniformly distributed on A2|`| , they constitute a 2|n|−|`|-sample of the uniform law
on A2|`| , and the conditional law of X` given Fn is the empirical measure associated
to this sample. When n→ −∞, the size of the sample tends to infinity (it doubles
at each step), and the empirical measure converges almost surely to the uniform law
on A2|`| by the law of large numbers.

Before we turn to non-standardness, some definitions and estimates will be useful.
In the next lemma, the symmetric group Sm is identified with the group of all
permutations of the set Im = {1, 2, . . . ,m}.
Lemma 23. — There exists a sequence (Gn)n60 such that

(i) for each n 6 0, Gn is a sub-group of the symmetric group S2|n| , having 22|n|−1

elements;

(ii) the permutation of I2|n|+1 defined as the translation by 2|n| modulo 2|n|+1 is in
Gn−1 (it globally exchanges both halves of the interval I2|n|+1 without modifying the
order inside them);

(iii) if g1 and g2 are in Gn, then the permutation g of I2|n|+1 acting as g1 on the
first half I2|n| of I2|n|+1 , and as g2 on its second half (identified with I2|n| by a
translation) is in Gn−1.

The Gn are unique; this is easy to check but we shall not need it. They are the
groups of automorphisms of the dyadic tree; Vershik calls them Dn.

Proof of Lemma 23. — By induction: define G0 as {Id} and Gn−1 as the set of
all permutations g of I2|n|+1 such that

either both halves of the interval I2|n|+1 are globally stable by g, and the
restriction of g to each half is in Gn;

or both halves of the interval are globally exchanged by g, and g is the product
of the translation defined in condition (ii) by an element of the previous type.
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It is easy to see that this set is indeed a group, whose order |Gn−1| verifies

|Gn−1| = 2 |Gn|2; this gives (i).

A word w ∈ Bn can be written as w1w2 . . . w2|n| . The group Gn acts on Bn in the

obvious way, by permuting the 2|n| letters: g(w1w2 . . . w2|n|) = wg(1)wg(2) . . . wg(2|n|).

Notice the following property: if g1 and g2 are in Gn, there exists g ∈ Gn−1 such

that, for all words u and v in Bn, g(u·v) = g1(u)·g2(v) and there exists h ∈ Gn−1

such that, for all words u and v in Bn, h(v·u) = g1(u)·g2(v).

Endow the set Bn with the distance

δn(w′, w′′) =
1

2|n|

2|n|∑

i=1

1l{w′
i
6=w′′

i
} .

Remark that the distance δn is invariant under the action of Gn (more generally, of

the whole symmetric group) and define on Bn×Bn the symmetric function

dn(w′, w′′) = inf
g∈Gn

δn
(
w′, g(w′′)

)
.

Lemma 24. — If u′, v′, u′′ and v′′ are four words in Bn,

1
2

[(
dn(u′, u′′)+dn(v′, v′′)

)
∧
(
dn(u′, v′′)+dn(v′, u′′)

)]
> dn−1(u′·v′, u′′·v′′) .

(Actually, Smorodinsky establishes equality; only this inequality will be needed.)

Proof of Lemma 24. — We first show 1
2

(
dn(u′, u′′)+dn(v′, v′′)

)
> dn−1(w′, w′′),

with w′ = u′·v′ and w′′ = u′′·v′′. The left side is 1
2

[
δn
(
u′, g1(u′′)

)
+δn

(
v′, g2(v′′)

)]
,

where g1 and g2 are in Gn; this is also δn−1

(
u′·v′, g1(u′′)·g2(v′′)

)
. But g1(u′′)·g2(v′′)

is equal to g(u′′·v′′), where g is the element of Gn−1 acting as g1 on the first half of

the word and as g2 on the second half. So we have on the left δn−1

(
w′, g(w′′)

)
, and

this majorizes dn−1(w′, w′′) by definition of dn−1.

The other minoration is similar, with an h ∈ Gn−1 such that g1(u′′)·g2(v′′) equals

h(v′′·u′′).
Lemma 25. — Let F′ and F′′ be two isomorphic copies of F, both immersed in

some filtered probability space
(
Ω,A,P, (Fn)n60

)
; call X ′ and X ′′ the copies of X

in F′ and F′′. The process dn(X ′n, X
′′
n) is an F-submartingale.

Proof of Lemma 25. — Fix n 6 0 and write X ′n−1 = U ′ ·V ′ and X ′′n−1 = U ′′ ·V ′′,
where U ′ is the first half of the random word X ′n−1 and similarly for X ′′. By

immersion, the copies ε′ and ε′′ of ε in F′ and F′′ verify

Pbdε′n=1|Fn−1ce = Pbdε′n=− 1|Fn−1ce = Pbdε′′n=1|Fn−1ce = Pbdε′′n=− 1|Fn−1ce = 1
2 .

This implies

Pbdε′n=ε′′n=1|Fn−1ce = Pbdε′n=ε′′n=− 1|Fn−1ce = 1
2 Pbdε′n=ε′′n|Fn−1ce ;

Pbdε′n=1, ε′′n=− 1|Fn−1ce = Pbdε′n=− 1, ε′′n=1|Fn−1ce = 1
2 Pbdε′n 6=ε′′n|Fn−1ce .

By construction of X,

X ′n =

{
U ′ if ε′n = 1
V ′ if ε′n = −1

X ′′n =

{
U ′′ if ε′′n = 1
V ′′ if ε′′n = −1;
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so

Ebddn(X ′n, X
′′
n)|Fn−1ce = dn(U ′, U ′′) Pbdε′n=ε′′n=1|Fn−1ce

+ dn(U ′, V ′′) Pbdε′n=1, ε′′n=− 1|Fn−1ce
+ dn(V ′, U ′′) Pbdε′n=− 1, ε′′n=1|Fn−1ce
+ dn(V ′, V ′′) Pbdε′n=ε′′n=− 1|Fn−1ce

= 1
2

[
dn(U ′, U ′′)+dn(V ′, V ′′)

]
Pbdε′n=ε′′n|Fn−1ce

+ 1
2

[
dn(U ′, V ′′)+dn(V ′, U ′′)

]
Pbdε′n 6=ε′′n|Fn−1ce

and

Ebddn(X ′n, X
′′
n)|Fn−1ce > 1

2

[(
dn(U ′, U ′′)+dn(V ′, V ′′)

)
∧
(
dn(U ′, V ′′)+dn(V ′, U ′′)

)]
.

It now suffices to appeal to Lemma 24 to get

Ebddn(X ′n, X
′′
n)|Fn−1ce > dn−1(X ′n−1, X

′′
n−1) .

Lemma 26. — Fix n < 0 and m = 2|n|. If W ′ and W ′′ are two independent
random m-words with uniform law on Bn,

P
[
dn(W ′,W ′′)6 1

2

]
<

1

2

( 4√
k

)m
.

In particular, if k > 16, Ebddn(W ′,W ′′)ce > 1
4 .

Proof of Lemma 26. — We start with the distance δn instead of dn:

P
[
δn(W ′,W ′′)6 1

2

]
= P

[
W ′ and W ′′ have at least m/2 matching letters

]

= P
[
∃J ⊂{1, . . . ,m} |J | = 1

2 m ∀j ∈ J W ′(j) = W ′′(j)
]

6
∑

J⊂{1,...,m}
|J|=m

2

Pbd∀j ∈ J W ′(j) = W ′′(j)ce

=
∑

J⊂{1,...,m}
|J|=m

2

(1

k

)m
2
6

∑

J⊂{1,...,m}

(1

k

)m
2

=
( 2√

k

)m
.

Now, since for any g inGn (or in Sm), gW ′′ is uniformly distributed and independent
of W ′,

P
[
dn(W ′,W ′′)6 1

2

]
= P

[
∃g ∈Gn δn(W ′, gW ′′)6 1

2

]
6
∑

g∈Gn
Pbdδn(W ′, gW ′′)6 1

2ce

= 2m−1 Pbdδn(W ′,W ′′)6 1
2ce 6

1

2

( 4√
k

)m
.

When k > 16, the m-th power is at most 1, one has P[dn(W ′,W ′′)6 1
2 ] 6 1

2 , whence

Ebddn(W ′,W ′′)ce > E
[

1
2 1l{dn(W ′,W ′′)> 1

2}
]

= 1
2 P[dn(W ′,W ′′)> 1

2 ] > 1
4 .

End of the proof of Theorem 4′. To establish that F is not standard, we shall
show it is not I-cosy.

First case : k > 16. — On some sample space (Ω,A,P), let F′ and F′′ be any two
filtrations isomorphic to F, jointly immersed and I-separated. By triviality of G0

and by Lemma 25, one has for every n 6 0

PbdX ′0 6= X ′′0 ce = Ebdδ0(X ′0, X
′′
0 )ce = Ebdd0(X ′0, X

′′
0 )ce > Ebddn(X ′n, X

′′
n)ce .
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By I-separation, there is an n < 0 such that X ′n and X ′′n are independent. For

this n, Lemma 26 gives Ebddn(X ′n, X
′′
n)ce > 1

4 , wherefrom PbdX ′0 6= X ′′0 ce > 1
4 . This

minoration shows that condition (iv) in the definition of I-cosiness cannot be satisfied

for R = X0, and F is not I-cosy.

Second case : k < 16. — The new alphabet Â = A4 has at least 16 letters; it consists

of “new letters”, which are blocks of 4 old letters. Calling B̂n the space Â2|n| , there

is a natural identification between Bn−2 and B̂n, obtained by considering a word

of 2|n|+2 = 4× 2|n| old letters as a word of 2|n| new letters. Putting X̂n = Xn−2

and ε̂n = εn−2 for n 6 0, the natural filtration F̂ of the process (X̂, ε̂) is given by

F̂n = Fn−2. The first case applies to the new, hatted, process and shows that F̂ is

not I-cosy; according to Proposition 2, neither is F.

Other forms of cosiness

As recalled in the introduction, two other definitions of cosiness can be found in

the literature; all three definitions are identical but for the separation condition (iii).

The genuine one, hereafter called
�

-cosiness, was introduced by Tsirelson bd14ce in a

framework where all martingales are continuous; the separation condition it uses is a

reinforcement of the Kunita-Watanabe inequality: Two jointly immersed filtrations

F and G (such that all martingales are continuous) are
�

-separate if for some r < 1

and for all F-martingales M and G-martingales N started at 0, one has

bdM,Nce2 6 r bdM,Mce bdN,Nce .
When rewritten in discrete time, this is equivalent to a conditional correlation

inequality: For F and G jointly immersed in H and for all F ∈ L2(Fn) andG ∈ L2(Gn),

Cov bdF,G | Hn−1ce2 6 r Var bdF | Hn−1ce Var bdG | Hn−1ce ;

with this separation condition, we do not know if the non I-cosy filtration of the

above example is
�

-cosy or not.

The separation condition used in bd2ce, bd3ce and bd7ce is slightly different: it does

not involve time, but only the end σ-fields F∞ and G∞ of the filtrations (or F0 and

G0 when time is −N); this makes it in some sense a coarse tool when compared

to
�

-separation or I-separation. We shall call it D-separation (D for diffuse). Its

definition is quite simple: Two filtrations F and G are D-separate if for all random

variables F ∈ L0(F∞) and G ∈ L0(G∞) with diffuse laws, one has PbdF =Gce = 0.

And D-cosiness is defined exactly as I-cosiness, but with D-separation instead of

I-separation in condition (iii).

At the risk of adding a little more confusion to this admittedly already rather

messy situation, we shall introduce yet another variant of cosiness. Not only by sheer

pleasure of losing the reader in a maze of definitions, but also for a logical reason:

we shall establish that the non I-cosy filtration of the previous section is cosy in this

new sense, so it is worth stating this result with a definition of cosiness as strong

as possible. (By contradistinction, D-cosiness was used in bd2ce, bd3ce and bd7ce to show

that some filtrations are not D-cosy, that is why its definition was made as weak as

possible.)
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This new definition formalizes an idea introduced and brilliantly used, whithout
giving it a name, by Tsirelson in bd14ce; it consists in “rotating” a Gaussian processes
and all associated filtrations. If G = (Gλ)λ∈Λ is a centered Gaussian process and
G′ an independent copy of G, define a new centered Gaussian process (Gαλ)α∈R,λ∈Λ

by Gαλ = Gλ cosα+G′λ sinα. Notice that for any fixed α, the process Gα = (Gαλ)λ∈Λ

has the same law as G; so the σ-fields σ(G) and σ(Gα) are isomorphic, with an
isomorphism Ψα such that Ψα(Gλ) = Gαλ .

Definition. — A filtration F (not necessarily indexed by −N) is G-cosy if there
exist two independent centered Gaussian processes G and G′ with the same law,
defined on some sample space (Ω,A,P), and an embedding Φ of (Ω,F∞,P) into(
Ω, σ(G),P

)
, such that, with the above notation, for each α the filtrations Φ(F) and

Ψα◦Φ(F) are jointly immersed.

This simply means the existence (possibly on an extension of Ω) of a Gaussian
process G verifying F∞ ⊂ σ(G) and such that F and any copy Fα of F obtained by
rotating G are jointly immersed.

The simplest example of a G-cosy filtration is any filtration generated by a
Gaussian process, for instance a Brownian filtration. This is the case Tsirelson
considered when introducing cosiness; his proof in bd14ce that such filtrations are
cosy is copied below, in Proposition 8 and in the remark following it. But we
cannot restrict ourselves to this case: in the proof of Proposition 9, we shall need
the definition of G-cosiness in its full extent.

Lemma 27. — A filtration immersible into a G-cosy filtration is itself G-cosy.

Proof. — Suppose that F satisfies the above definition and E is immersed in F.
One has Φ(E∞) ⊂ Φ(F∞) ⊂ σ(G); and Φ(E) is immersed in Φ(F). By hypothesis,
the filtrations Ψα◦Φ(F) and Φ(F) on Ω are immersed in their supremum H, so
Φ(E) and Ψα◦Φ(E) are also immersed in H, and jointly immersed by Lemma 4 b).

This shows that a filtration immersed in a G-cosy filtration is itself G-cosy, and
the lemma follows by isomorphism.

Proposition 7. — Every standard filtration (Fn)n60 is G-cosy.

Proof. — A standard filtration is immersible into a standard, non-atomic filtration;
so by the preceding lemma it suffices to verify that a (or “the”) standard non-atomic
filtration is G-cosy. Now a standard non-atomic filtration is generated by an i.i.d.
sequence (Gn)n60 of standard Gaussian random variables; it suffices to enlarge Ω
to accomodate both G and an independent copy G′ of G, and the definition of
G-cosiness is readily verified.

Proposition 8. — Every G-cosy filtration is D-cosy.

Proof. — Suppose a filtration F is G-cosy. By replacing F with the isomorphic
filtration Φ(F), we may suppose that Ω = Ω and Φ = Id in the definition of
G-cosiness.

Fix δ > 0 and R in L0(F∞); notice that R ∈ L0
(
σ(G)

)
. By Slutsky’s lemma

(see Théorème 1 of bd2ce), the map α 7→ Ψα(R) is continuous for the topology of
convergence in probability; so, for α close enough to 0, the distance between Ψα(R)
and Ψ0(R) is less than δ. For any α, the isomorphic copies Fα = Ψα(F) and F of
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the filtration F are jointly immersed by hypothesis. Last, for α 6= 0 (mod π), the
filtrations Fα and F are D-separate; see for instance Proposition 2 of bd3ce.

Consequently, for α close enough to 0 but not null, the filtrations Fα and F0

fulfill all four conditions in the definition of D-cosiness.

Remark. — Define two σ-fields B and C to be H-separate if, for some p ∈ bd1, 2),

∀B ∈ Lp(B) ∀C ∈ Lp(C) EbdBCce 6 ‖B‖Lp ‖C‖Lp

(the letter H stands for Hypercontractivity, or for Hypo-independence). Define two
filtrations F and G to be H-separate if their end σ-fields F∞ and G∞ are, and
a filtration to be H-cosy if it satisfies the definition of D-cosiness (or I-cosiness,
or

�
-cosiness) with H-separation instead of D-separation (or I-separation, or

�
-separation). It is not difficult to see that H-separation implies D-separation

(see bd2ce, or Proposition 1 of bd3ce); therefore H-cosiness implies D-cosiness. And the
proof of Proposition 8 (or the proof of Proposition 2 of bd3ce) shows in fact a stronger
result: G-cosiness ⇒ H-cosiness ⇒ D-cosiness.

Proposition 9. — The (non standard, hence also non I-cosy) filtration F of
Theorem 4 ′ is G-cosy (hence also H-cosy and D-cosy).

The proof of this proposition will use some properties of a very small, abelian
subgroup of the group Gn described in Lemma 23. Tsirelson calls it the group of
cube automorphisms (as opposed to the whole group Gn of tree automorphisms).

Lemma 28. — For n 6 0 and (η1, . . . , η|n|) ∈ {−1, 1}|n|, define an operation
γnη1,...,η|n| on all 2|n|-words as follows: γ0

∅ is the identity on A1, and for n 6 −1,
writing every 2|n|-word of A2|n| as the concatenation u·v of two 2|n|−1-words,

γnη1,...,η|n|(u·v) =

{
γn+1
η2,...,η|n|(u) · γn+1

η2,...,η|n|(v) if η1 = 1,

γn+1
η2,...,η|n|(v) · γn+1

η2,...,η|n|(u) if η1 = −1.

These operations form a commutative group, called Hn, with 2|n| elements. The
map (η1, . . . , η|n|) 7→ γnη1,...,η|n| is a group isomorphism between {−1, 1}|n| and Hn.

For γ ∈ Hn \{Id}, there is a partition of {1, . . . , 2|n|} into 2|n|−1 pairs such that
γ (considered as an element of Sn) acts by swapping both elements of each pair.

Proof of Lemma 28. — Both properties

γnη1,...,η|n| = Id ⇔ (η1, . . . , η|n|) = (1, . . . , 1)

γnη′1η′′1 ,...,η′|n|η
′′
|n|

= γnη′1,...,η′|n|
γnη′′1 ,...,η′′|n|

are readily verified by induction on n.

For 1 6 k 6 |n|, divide the interval {1, . . . , 2|n|} into 2k blocks (i.e. subintervals)
of length 2|n|−k. If η1 = . . . = ηk−1 = 1 and ηk = −1, then γnη1,...,η|n| sends every
element of the (2j+1)st block into the (2j+2)nd block and conversely (induction
on n and k, with |n| − k fixed, starting from k = 1 and |n| > 1). Consequently, if
(η1, . . . , η|n|) 6= (1, . . . , 1), the permutation γnη1,...,η|n| has no fixed point; and as its
square is Id (isomorphism with {−1, 1}|n|), its orbits form a partition of {1, . . . , 2|n|}
into 2|n|−1 classes of 2 elements each.
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Proof of Proposition 9. — Consider a quadruply infinite supply (En)n60,
(Cp)p>1, (E′n)n60, (C ′p)p>1 of independent standard normal random variables; let
f be a Borel function from R to A transforming the standard normal law into the
uniform law on the alphabet A. For n 6 0, define random variables εn in {−1, 1}
and Xn in Bn = A2|n| by

εn = sgnEn ; Xn = γnεn+1,...,ε0

(
f(C1) . . . f(C2|n|)

)

where γn is the same as in Lemma 28.
The first step of the proof consists in justifying this notation by showing that the

process (X, ε) has the same law as in the example studied in Theorem 4′. It is easy
to see that for each n the law of (Xn, εn) is uniform on Bn×{−1, 1}: just notice that
the random word W = f(C1) . . . f(C2|n|) is uniform on Bn and that Xn is obtained
from W by a random permutation independent of W . It is also straigtforward to
get Xn+1 as the first or second half of Xn according to the value 1 or −1 of εn+1:
just replace γnεn+1,...,ε0 by its definition. To complete the first step, it only remains
to verify that the r.v. εn is independent of (Xk, εk)k<n. This will be done later;
meanwhile, the first step is left uncompleted.

Call G (respectively G′) the centered Gaussian process (E,C) (respectively
(E′, C ′)); notice that G′ is an independent copy of G and that (X, ε) can be
written as ψ(G) for some Borel functional ψ. Define Gα = G cosα+G′ sinα, put
(Xα, εα) = ψ(Gα), call Fα the filtration generated by (Xα, εα), and H the filtration
generated by all processes (Xβ , εβ) when β takes all possible values. With the
notation used in the definition of G-cosiness, Fα is but Ψα(F). The second step
is to establish that each Fα is immersed in H; when both steps are done, the
proposition will be proved. Trivially, Fα is included in H. As Fα has the predictable
representation property with respect to εα, immersion amounts to saying that εαn
is independent of Hn−1. Showing it will a fortiori establish independence of εαn and
Fαn−1 and, taking α = 0, of εn and σ

(
(Xk, εk)k<n

)
; so by the same token step 1 will

also be completed.
Fixing n from now on, it only remains to prove independence of εαn and Hn−1;

this is equivalent to Ebdεαn|Hn−1ce = 0, or to

E
[
εαn h

(
(Xβ1

k )
k<n

, (εβ1

k )
k<n

, . . . , (X
βq
k )

k<n
, (ε

βq
k )

k<n

)]
= 0

for all q > 0, β1, . . . , βq ∈ R and for all bounded, Borel h.
The random variable inside the expectation is measurable for σ(E,E′, C, C ′);

therefore it is a functional

Φ(E,E′, C, C ′) = Φ
(
(Ek)k60, (E

′
k)k60, (Cp)p>1

, (C ′p)p>1

)

of infinitely many independent N(0, 1) random variables. To prove the claim, we
shall exhibit another Gaussian family (E,E′,C,C′) of random variables, with the
same law as (E,E′, C, C ′), but such that Φ(E,E′,C,C′) ≡ −Φ(E,E′, C, C ′); this
will imply EbdΦ(E,E′, C, C ′)ce = EbdΦ(E,E′,C,C′)ce = −EbdΦ(E,E′, C, C ′)ce, whence
EbdΦ(E,E′, C, C ′)ce = 0.

Define E and E′ by

Ek =

{
Ek if k < n
−Ek if k > n E′k =

{
E′k if k < n
−E′k if k > n
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and put Cp = Cs(p) and C′p = C ′s(p), where s is the deterministic permutation of

{1, 2, . . .} which globally preserves each interval {i 2|n|+1+1, . . . , (i+1) 2|n|+1}, but

completely reverses the order inside this interval. For instance, if n = −2, s is the

permutation
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .
8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 24 23 . . .

)
.

Observe the effect of replacing (E,E′, C, C ′) by (E,E′,C,C′) in the argument

of Φ. For k < n, εαk = sgn(Ek cosα+E′k sinα) does not change, whereas for k > n,

εβk = sgn(Ek cosβ+E′k sinβ) is replaced by sgn(Ek cosβ+E′k sinβ) = −εβk . And for

k < n,

Xβ
k = γk

εβ
k+1

,...,εβ
n−1

,εβn,...,ε
β
0

(
f(C1 cosβ+C ′1 sinβ) . . . f(C2|k| cosβ+C ′2|k| sinβ)

)

is replaced by

γk
εβ
k+1

,...,εβ
n−1

,−εβn,...,−εβ0

(
f(Cs(1) cosβ+C ′s(1) sinβ) . . . f(Cs(2|k|) cosβ+C ′s(2|k|) sinβ)

)
;

the claim will be established and the proposition proved if we show that the latter

is equal to Xβ
k itself. This is a particular instance of the general identity

γkηk+1,...,ηn−1,−ηn,...,−η0
(ws(1) . . . ws(2|k|)) = γkηk+1,...,ηn−1,ηn,...,η0

(w1 . . . w2|k|) ,

valid for all k < n 6 0. To show this identity, notice first that, since

γkηk+1,...,ηn−1,−ηn,...,−η0
= γkηk+1,...,ηn−1,ηn,...,η0

γk1,...,1,−1,...,−1

as a consequence of the group homomorphism (Lemma 28), the identity reduces to

γk1,...,1,−1,...,−1(ws(1) . . . ws(2|k|)) = w1 . . . w2|k| .

For k = n− 1, this is just the formula

γn−1
−1,...,−1(w2|n|+1 . . . w1) = w1 . . . w2|n|+1 ,

which can be verified by induction on n, using the definition of γn−1; for fixed n

and general k < n, it is proved by induction on n−k using the definition of γk and

the definition of s. The proof is now complete.

Remark. — Proposition 9 and its proof remain true if the finite alphabet A is

replaced with any separable probability space (A,A, π): it suffices to replace f by

a Borel function transforming the normal law into the probability π. This remark

is not interesting per se (the simpler the model, the better), but will be technically

useful in the next section.

Vershik’s Example 3

When showing that his example is not immersible into a standard filtration,

Smorodinsky’s aim was to explain the same property for Vershik’s example; indeed,

this property carries over immediately from the former to the latter. As we shall

see, G-cosiness also transfers easily.
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Vershik’s example is a Markov process indexed by the signed integers Z, with
state space the set AN made of all infinite words v = v0v1v2 . . . and endowed with
the product measure µ (the letters are independent and uniform). The transition
probability is

v0v1v2v3v4 . . . 7−→
{
v0v2v4 . . . with probability 1

2

v1v3v5 . . . with probability 1
2 ;

plainly, µ is invariant, so we have a stationary process V = (Vn)n∈Z with this
probability transition and with stationary law µ. Associated to it is the coin-tossing
(εn)n∈Z such that Vn is the “even half” of Vn−1 if εn = 1 and the “odd half” if
εn = −1. The process (V, ε) has the same natural filtration G as V , since both
halves of Vn−1 are almost surely different.

For n 6 0, consider the word Wn = V 0
n V

1
n . . . V

2|n|
n obtained from the infinite

word Vn by keeping only the first 2|n| letters. The process (W, ε) is very similar to
Smorodinsky’s (X, ε)-process: at each step, one half of the word is lost and one half
is retained, but these halves are not the left half and right half; they are the halves
consisting of letters in even or odd position. There exists for each n a (deterministic)
permutation σn of {0, 1, . . . , 2|n|− 1} such that the words Xn = Wn ◦ σn form a
process with the same law as in Smorodinsky’s example. The existence of those
σn is obvious by induction; an explicit description is also possible: σn(i) and i,
when written as binary numbers with |n| digits, are mirror-image from each other.
For instance, X−3 = W 0

−3W
4
−3W

2
−3W

6
−3W

1
−3W

5
−3W

3
−3W

7
−3. In this way, the process

X is immersed in the process V . This really is an immersion, in the sense that
the filtration F generated by (X, ε) becomes a sub-filtration of G, immersed in G;
consequently, non-standardness of G is a corollary of non-standardness of F.

It is almost as easy to get G-cosiness of G from Proposition 9. Given V , define
for n 6 0 and 0 6 k < 2|n| a random infinite word Zkn ∈ AN by

Zkn = V σn(k)
n V σn(k)+2|n|

n V σn(k)+2.2|n|
n V σn(k)+3.2|n|

n . . .

and put Yn = Z0
n . . . Z

2|n|−1
n . This Yn can be considered as a 2|n|-word with letters

Zkn in the new alphabet AN. This defines a process (Yn)n60 with two properties.
First, as the finite word Yn is just a rewriting of the infinite word Vn, the processes
(Yn)n60 and (Vn)n60 generate the same filtration. Second, by the choice of σn,
Yn is the first or second half of Yn−1 according to the value ±1 of εn; in other
terms, Y is an instance of Smorodinsky’s process, but with the infinite alphabet AN

instead of A. Consequently, by the remark following the proof of Proposition 9, the
filtration (Gn)n60 is G-cosy. And so is also the whole filtration (Gn)n∈Z, as can be
seen by inserting another Gaussian sequence (En)n>1 in the proof of Proposition 9,
and putting εn = sgnEn for n > 1 as well.

On a question by von Weizsäcker

The proof of Proposition 9 rests on a construction of the process X via certain
random permutations of a sequence of random letters. The same construction will
now be used to answer a question raised by H. von Weizsäcker during the Mini-
Symposium on the Classification of Filtrations at the ESI, Vienna, December 1998.
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It is well known that if F = (Fn)n60 is a filtration and B a σ-field, the equality⋂
n(Fn∨B) = F−∞∨B does not always hold true, but it sometimes does, for instance

when B and F0 are independent; see von Weizsäcker bd17ce for a necessary and

sufficient condition and for references. The question is, is equality always obtained

when F0 and B are “almost independent”? The hope for an affirmative answer relied

on the fact that all previously known examples of situations where the above formula

goes wrong, had a big intersection between the σ-fields F0 and B, which therefore

were far from independent.

By almost independence of F0 and B, we mean either a hypercontractivity

inequality:

∃p ∈ (1, 2) ∀B ∈ Lp(B) ∀F ∈ Lp(F0) EbdBF ce 6 ‖B‖Lp‖F‖Lp

with p close to 1, or a correlation inequality:

∃r ∈ (0, 1) ∀B ∈ L2(B) ∀F ∈ L2(F0)
∣∣Cov bdB,F ce

∣∣ 6 r
√

Var bdBce
√

Var bdF ce
with r close to 0. These inequalities are always satisfied with p = 2 and r = 1; they

become stronger when p and r decrease, and for p = 1 and r = 0 each of them is

equivalent to independence. The former was called H-separation in the remark after

Proposition 8; the latter could be called C-separation, and C-cosiness could then be

defined—but enough is enough!

Rotating a Gaussian process is an efficient way to generate σ-fields satisfying such

inequalities. (We also find it efficient in providing some intuition about “almost

independence”.) If G = (Gλ)λ∈Λ is a centered Gaussian process and if G′ is an

independent copy of G, recall that the rotated process is Gα = G cosα+G′ sinα. The

σ-fields σ(G) and σ(Gα) satisfy the above inequalities with exponent p = 1+ | cosα|
and correlation constant r = | cosα|; so G and Gα are almost independent when

α is close to π
2 . (On hypercontractivity, see for instance the references in and after

the proof of Proposition 2 of bd3ce. On the correlation inequality, called Gebelein’s

inequality in this case, see Exercise V.3.13 of Revuz-Yor bd11ce, or Dym-McKean bd6ce
page 66.)

The answer to von Weizsäcker’s question is negative:

Proposition 10. — For all δ ∈ (0, 1), there exist a filtration (Fn)n60 and

a σ-field B such that the σ-fields F0 and B satisfy the hypercontractivity and

correlation inequalities recalled above with p = 1+δ and r = δ, and such that

the germ σ-field
⋂
n

(Fn∨B) contains a non-constant r.v. independent of F−∞∨B.

Proof. — It is inspired from that of Proposition 9. As in that proof, start with

a a quadruply infinite supply (En)n60, (Cq)q>1, (E′n)n60, (C ′q)q>1 of independent

standard normal random variables; our alphabet will have two letters: A = {−1, 1}.
For n 6 0, define random variables εn in {−1, 1} and Xn in Bn = A2|n| by

εn = sgnEn ; Xn = γnεn+1,...,ε0

(
sgn(C1) . . . sgn(C2|n|)

)
,

where γ
|n|
εn+1,...,ε0 is the (random) cube automorphism associated to the (random)

signs εn+1, . . . , ε0 by Lemma 28. As was seen in the proof of Proposition 9, the
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process (X, ε) is a realization of the example studied in Theorem 4′; call F = (Fn)n60

its natural filtration. Now rotate the Gaussian process (E,C) by putting

Eαn = En cosα+ E′n sinα and Cαq = Cq cosα+ C ′q sinα

and fix α ∈ (0, π2 ) such that cosα = δ. The properties of rotated Gaussian processes

recalled earlier imply that, for α close to π
2 , the σ-fields σ(E,C) and σ(Eα, Cα) are

almost independent (hyercontractivity inequality with p = 1+ cosα and correlation

inequality with r = cosα). This property is immediately inherited by the sub-σ-field

B = σ
(
sgn(Cαq ), q> 1

)
of σ(Eα, Cα) and the sub-σ-field F0 of σ(E,C).

From now on, the parameter α is fixed in (0, π2 ). It should be considered as close

to π
2 (to make p close to 1 and r close to 0), but the sequel does not depend on that.

We have seen in Theorem 4′ that F−∞ is degenerate; to prove the proposition, it

remains to exhibit in the germ σ-field
⋂
n(Fn∨B) a non degenerate r.v. independent

of B. We shall show that the process (εn)n60 is measurable with respect to the germ

σ-field; this will prove the proposition, for this process is independent of (C,C ′),
and a fortiori of B. (Notice that E′ plays no rôle: all these σ-fields are included in

σ(E,C,C ′). The sequence E′ was introduced only as a phantom, to lubricate the

proof of hypercontractivity and correlation.)

So the rest of the proof will consist in showing that the knowledge of the sequence

sgn(Cα1 ), sgn(Cα2 ), . . . and of the remote past of (X, ε) is sufficient to recover the

whole process ε.

Set uq = sgn(Cq) and vq = sgn(Cαq ). The joint law of the random words

Un = u1 . . . u2|n| and Vn = v1 . . . v2|n| is easily described: uq and vq are positively

correlated bits, with Pbduq 6= vqce = α
π < 1

2 , and all pairs (uq, vq) are independent of

each other. Observe that the word Xn is obtained from Un by a random permutation

γnεn+1,...,ε0 independent of (Un, Vn). The idea of the proof is that it is possible to

recover this permutation γnεn+1,...,ε0 from the observation of the words Xn and

Vn with a probability of error that tends to 0 when n → −∞. The recipe to

get γnεn+1,...,ε0 is as follows: construct all the words γVn, where γ ranges in Hn,

match these words against Xn, and retain the γ giving the best fit, that is, the

largest number of matching letters. This works well for large |n| because, with high

probability, Un and Vn have more than half their letters in common, and the group

Hn is not too large. The main quantitative estimate is the following lemma, that

uses the distance δn defined above Lemma 24. (But all what follows remains valid

if the factor 2n in the definition of δn is dropped, that is, if δn(w′, w′′) is defined as

the number of non-matching letters in the words w′ and w′′.)

Lemma 29. — Given α ∈ (0, π2 ), there exists a constant cα ∈ (0, 1) such that, for

all n < 0 and all γ ∈ Hn \ {Id}, one has

P
[
δn(Un, γVn)6 δn(Un, Vn)

]
6 c2|n|α .

Proof of Lemma 29. — Put m = 2|n|. The event to be evaluated is {S> 0},
where

S =

m∑

i=1

1l{ui 6=vi} −
m∑

i=1

1l{ui 6=vγ−1(i)} .
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Now, since γ is in Hn \ {Id}, Lemma 28 gives a partition of {1, . . . ,m} into
m

2
pairs

{i, j} such that γ(i) = j and γ(j) = i. For such a pair {i, j}, set

Dij = 1l{ui 6=vi} + 1l{uj 6=vj} − 1l{ui 6=vj} − 1l{uj 6=vi} .

The sum S is also the sum of the m/2 r.v.’s Dij when {i, j} ranges over all these
pairs. These r.v.’s are independent and identically distributed, their law depends on
α only. This law could easily be computed; we shall not need it, we only retain
that EbdDijce = α

π + α
π − 1

2 − 1
2 < 0. The rest of the proof is Chernoff’s classical

argument of large deviations: Since the derivative at t = 0 of the Laplace transform
φα(t) = Ebdexp(tDij)ce is EbdDijce < 0, there exists tα > 0 such that 0 < φα(tα) < 1,
and it suffices to write

PbdS> 0ce = Pbdexp(tαS)> 1ce 6 Ebdexp(tαS)ce =
(
φα(tα)

)m/2
.

End of the proof of Proposition 10. — If x and v are two 2|n|-words,
define kn(x, v) as the element (η1, . . . , η|n|) ∈ {−1, 1}|n| that minimizes the dis-
tance δn(x, γnη1,...,η|n|v) if the minimum is uniquely achieved, and put for instance

kn(x, v) = (1, . . . , 1) if the minimum is not unique.
Consider the event Ωn =

{
kn(Xn, Vn) = (εn+1, . . . , ε0)

}
that the recipe described

before Lemma 29 gives the correct answer. On Ωc
n, there exists a (random) Γ ∈ Hn

such that Γ 6= γnεn+1,...,ε0 and δn(Xn,ΓVn) 6 δn(Xn, γ
n
εn+1,...,ε0Vn). As the distance

between two words is not modified when the same permutation is applied to both
of them, we may let γnεn+1,...,ε0 act on all four words in this inequality; the word Xn

becomes γnεn+1,...,ε0Xn = Un, the word γnεn+1,...,ε0Vn becomes Vn, and ΓVn becomes
Γ′Vn with a (random) Γ′ = γnεn+1,...,ε0Γ 6= Id. Consequently,

Ωc
n ⊂

{
∃γ ∈ Hn \ {Id} δn(Un, γVn) 6 δn(Un, Vn)

}
.

So, using Lemma 29 and remembering that Hn has 2|n| elements,

PbdΩc
nce 6

∑

γ∈Hn\{Id}
P
[
δn(Un, γVn)6 δn(Un, Vn)

]
6 2|n| c2

|n|
α ;

hence the series
∑
n PbdΩc

nce is convergent, and equality (εn+1, . . . , ε0) = kn(Xn, Vn)
holds for all n less than some N(ω). Consequently, for each fixed n < 0, the whole
process ε is a function of the sequence

(
k`(X`, V`), `6n

)
; it is therefore measurable

with respect to Fn∨B.

Remarks. — a) The filtration F in this proof can be replaced, with exactly the same
proof, by the smaller filtration X generated by X. The σ-field X−∞ is degenerate
because it is included in F−∞; and since (εn+1, . . . , ε0) = kn(Xn, Vn) for all but
finitely many n, the process ε is measurable for each of the σ-fields Xn∨B.

b) Since Fn∨B contains Xn and the whole process ε, it also contains F0, so
Fn∨B = F0∨B for each n and the germ σ-field

⋂
n

(Fn∨B) too is equal to F0∨B.

c) The filtration F in the proof of Proposition 10 is not standard (Theorem 4′); in
fact, it can be considered as an arch-example of a non standard filtration. One might
ask whether the situation changes when one imposes the restriction that F must
be standard. By Vershik’s lacunary isomorphism theorem (Theorem 3), the above
construction easily carries over to this case, simply by taking a subsequence. And
once this has been done, one can also get an example where F is standard non-atomic,
simply by replacing F by its product with a standard non-atomic filtration.
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d) The construction in the proof of Proposition 10 is a small modification of that
of Proposition 9, which features a whole family of processes (Xα, εα) isomorphic to
(X, ε), each of them immersed in the filtration H generated by all of them. To be in a
situation similar to Proposition 10, consider the setting of Proposition 9, but only in
the case when the alphabet has two letters −1 and 1, and f(x) = sgnx. Call Fα the
natural filtation of (Xα, εα) and put Fαβn = Fαn ∨Fβn and εαβn = εαnε

β
n. If α− β is not

a multiple of π
2 , the same argument as above yields (εαβn+1, . . . , ε

αβ
0 ) = kn(Xα

n , X
β
n )

with overwhelming probability when n is small, so for each n, the whole process εαβ

is measurable with respect to the σ-field Fαβn ; in other words, this process εαβ is
measurable with respect to the germ σ-field F

αβ
−∞ of the filtration Fαβ. Consequently,

still for α− β not a multiple of π
2 , the filtration Fαβ is dyadic:

Fαβn = F
αβ
n−1∨σ(εαn) = F

αβ
n−1∨σ(εβn) ,

and one has for all m 6 n 6 0 the identity Fαm∨Fβn = Fβm∨Fαn = Fαn ∨Fβn . But Fαβ

does not have the predictable representation property with respect to εα, nor to εβ ,
nor to any other coin-tossing, simply because F

αβ
−∞ is not degenerate: we just saw

that it contains εαβ .

Thus, for α 6= β mod π
2 , we have an example of two filtrations Fα and Fβ

immersed in Fα∨Fβ , arbitrarily close to independence as in Proposition 10, such
that the three filtrations Fα, Fβ and Fα∨Fβ are dyadic, Fα−∞ and F

β
−∞ are trivial,

and
⋂
n

(Fαn ∨Fβn ) is not trivial.

(When |α− β| = π
2 , the filtrations Fα and Fβ are independent, F

αβ
−∞ is degenerate,

and Fαβn = F
αβ
n−1∨σ(εαn, ε

β
n); this is just the product situation.)

Last, observe that the filtration H generated by all the (Xα, εα) is dyadic too,
because Hn = Hn−1∨σ(εαn) for any α. Indeed, H−∞ contains the products εαnε

β
n for

all α, β and n (if α−β = k π2 , write εαβ = εαγεγβ); the reason why H can be dyadic
and at the same time contain two independent coin-tossing processes ε0 and επ/2,
is simply that their product ε0επ/2 is H−∞-measurable.

Conversely, it looks likely that H−∞ = σ(ε0α, α∈R) and, for α−β /∈ Zπ2 ,⋂
n

(Fαn ∨Fβn ) = σ(εαβ); we have not investigated this question.
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