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Cyclic Structure of Dynamical Systems

Associated with 3x + d Extensions of Collatz Problem.

E. G. Belaga M. Mignotte

Université Louis Pasteur 7, rue René Descartes, F-67084 Strasbourg Cedex, FRANCE

Abstract. We study here, from both theoretical and experimental
points of view, the cyclic structures, both general and primitive, of dy-
namical systems Dd generated by iterations of the functions Td acting,
for all d ≥ 1 relatively prime to 6, on positive integers :

Td : N −→ N; Td(n) =

{ n
2 , if n is even;

3n+d
2 , if n is odd.

In the case d = 1, the properties of the system D = D1 are the subject
of the well-known 3x + 1 conjecture. For every one of 6667 systems
Dd, 1 ≤ d ≤ 19999, we calculate its (complete, as we argue) list of
primitive cycles. We unite in a single conceptual framework of primi-
tive memberships, and we experimentally confirm three primitive cycles
conjectures of Jeff Lagarias. An in-deep analysis of the diophantine for-
mulae for primitive cycles, together with new rich experimental data,
suggest several new conjectures, theoretically studied and experimen-
tally confirmed in the present paper. As a part of this program, we
prove a new upper bound to the number of primitive cycles of a given
oddlength.
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Chapter I. The 3x+ d Extention of Collatz Problem.

The present study is an experimental and theoretical sequel to our enquiry [Belaga,
Mignotte 1998] into the cyclic structure of 3x+d extensions of the 3x+1 conjecture (cf. §1
below), the extensions remarkably simple in form, but very rich and powerful in substance,
§§2-4, 7, 8. We describe and study this cyclic structure, §§3, 4, in terms of primitive cycles,
§§4, 6, 7, introduced in [Lagarias 1990], the building blocks of the general cyclic structure
of 3x+ d dynamical systems, §§2, 3, 10.

For 6667 such systems Dd, with the shift number d relatively prime to 6, 1 ≤ d ≤
19999, we have found experimentally on the whole 42765 primitive cycles and have con-
firmed three “Primitive Cycles Existence” conjectures of Jeff Lagarias, §5, as well as few
others theoretically predicted phenomena, §10. The new rich experimental data, Tables
1-6, Figures 1-9, delivered by an exteremely effective searching engine, §12, and coupled
with an in-depth analysis of the diophantine formulae for primitive cycles, §§7-10, have led
to the discovery of new, mostly unexpected and sometimes rather spectacular phenomena,
- the subjects of several new conjectures, §§5, 6, 10, 11, which are introduced, theoretically
studied, and experimentally confirmed in the present paper.

Our theoretical contibutions include the discovery of (a formal framework for) the
disparated duality between shift numbers d and member numbers n of primitive cycles.
In the framework of this duality, based on the primitive membership concept, finds its
natural place and interpretation of experimentally discovered here irreducible and strongly
irreducible memberships, §11.

We have also improved, both in form and substance, our upper bound [Belaga,
Mignotte 1998] to the number of primitive cycles of the given oddlength, §10.

We have attempted to make the presentation of our results as full and accessible to
the general mathematical public, as possible. In this regard, the present paper can be
viewed as a tutorial-like, both theoretical and computational introduction into dynamical,
recursive, and diophantine aspects of the 3x+ d conjecture.

1. Preamble : the 3x + 1 Conjecture, or Collatz Problem.

We remind the reader the well-known and still open 3x + 1 conjecture, or Collatz
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problem [Lagarias 1985]. The reminder is concentrated around, and gives the reader a
foretast of, the central topics persued in this study. We also lay down in this introductory
section the basic conceptional and notational groundwork of this study. (The numerations
of conjectures, tables, and figures are thorough : Conjecture 1, §1, Conjecture 7, §2. Other
declarative items, such as definitions, lemmas, etc., bear the number of a corresponding
section and are enumerated in the order of their appearence : Note 5.1, Aside 5.2, Notation
5.3, Lemma 5.4.)

Conjecture 1 : The 3x + 1 Conjecture. For any positive integer m, define :

T : N −→ N; T (m) =

{ m
2 , if m is even;

3m+1
2 , if n is odd.

(1 : 1)

Then, for any positive integer n, the T−trajectory τ(n) of iterates of T starting at m,

τ(m) = {T 0(m) = m,T (m), T 2(m) = T (T (m)), T 3(m), . . .} (1 : 2)

runs ultimately into the cycle

Co = 〈1→ 2→ 1〉. (1 : 3)

The problem has many mathematical facets [Wirsching 1998]. But first and foremost
it represents an intricate interplay between algorithmic (or recursive), dynamic, and dio-
phantine insights. The embedding of Collatz problem into a wider 3x+d context [Lagarias
1990], [Belaga, Mignotte 1998] both sheds new light on this interplay and reveals new and
remarkably deep phenomena.

(I) The 3x + 1 Dynamical System. As a mapping defined on the set N of positive
integers, the function T (1:1) generates a dynamic system D with the only known cycle Co

(1:3). From the dynamical point of view, the 3x+ 1 conjecture might fail for two reasons :
(i) Either there exists a divergent T−trajectory,

lim
k→∞

T k(m) =∞.

Thus, the no-divergent-trajectories conjecture :

Conjecture 2 : (NDTC)3x+1 T has no divergent trajectories.

(ii) Or the cycle Co is not unique. Hence, first, the finite-number-of-cycles conjecture,
discarding the possibility of an infinite number of cycles :

Conjecture 3 : (FCC)3x+1 T has only a finite number of cycles.

And then its (probably, most difficult to prove) refinement, the one-cycle conjecture :

Conjecture 4 : (UCC)3x+1 T has one and only one (for short, unique) cycle, Co (1:3).

(II) The 3x + 1 Algorithm. The 3x+ 1 conjecture can be naturally interpreted as
a halting problem for the algorithm :

3



         

A3x+1 :





m := n
while m > 1 do
m := T (m)

endwhile .

(1 : 4)

Hence, the unsolvability option, either in its strongest (and absolute) form of algorith-
mical undecidability, or in a weaker (and relative) sense of unprovability in an appropriate
axiomatic setting [Belaga 1998] :

Note 1.1 : On Undecidability and an Eventual 3x+ 1 Paradox. (1) It is true that
the remarkable wealth of vast numerical checks and a host of plausible heuristic arguments
[Lagarias 1985], [Wirsching 1998] leave little doubt in the veracity of the 3x+1 conjecture.

(2) However, Conway’s example of a periodically linear function naturally generalizing
(1:1) and simulating a universal Turing machine [Conway 1972] demonstrates how extraor-
dinary close are we here to the unsolvability realm. (See also [Maslov 1967], [Matijasevič
1967] for similar earlier, albeit less accessible results.)

(3) The sets Ncyclic and Nucyclic of integers m ∈ N with, respectively, cyclic and
ultimately cyclic trajectories τ(m) are effectively enumerable ([Enderton 1977] and [Davis
1977] are good recursion theory and solvability reference sources). This can be shown by
the standard universal argument of recursion theory, namely : if R(n, q) is the value of m
after the the q−th iteration of the loop while of the algorithm A3x+1 (we assume R(n, q) =
m = 1, if the loop terminates on an earlier step 1 ≤ q′ < q), then any effective enumeration
of the set N2 of pairs of positive integers will permit us to effectively enumerate all n with
at least one case of equality R(n, q′) = R(n, q), 1 ≤ q′ < q.

(4) Moreover, the diophantine interpretation of the cyclic part of the 3x+1 conjecture
(see the subdivision (III) of this section and Chapter III below) gives rise to a much more
transparent, pure diophantine enumeration procedures.

(5) However, nothing is known about recursive enumerability of the set N∞ of integers
where divergent trajectories start, and therefore, about the recursive decidability of the
no-divergent-trajectories conjecture (Conjecture 2).

(6) It might even happen that, on the one hand, a proof would be available of the
recursive undecidability of Conjecture 2, whereas, on the other hand, one could be “abso-
lutely certain” that, “in reality,” the set N∞ is empty : see [Belaga 1998] for the precise
sense, implications and a plausible “ways out” of such a paradox.

(III) Exponential Diophantine Machinery. Iterating the arithmetic procedure
(1:1), one gets explicit exponential diophantine formulae for iterations T i. These cumber-
some formulae are apparently of not much use in studying the no-divergent-trajectories
conjecture, Conjecture 2. Not so with the cyclic conjectures, Conjectures 3, 4, with their
beautiful arithmetical equivalents, Lemma 1.4 and Conjecture 5. (See more about this
arithmetical connection below, §§7-10.)

The following definition is a considerably simplified and trimmed version of the below
Definition 7.1.

Definition 1.2. For any pair (k, `) ∈ N ×N of positive integers, satisying the inequality
k · log2 3 < `, we define the corresponding Collatz number B = Bk,` and its Collatz corona
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A = Ak,`, which is a finite set of positive integers, as follows.
(1) Collatz (k, `)−number :

B = Bk,` = 2` − 3k . (1 : 5)

By definition, a Collatz number is an odd positive integer not divisible by 3.
(2) Collatz (k, `)−corona A = Ak,` of the Collatz number B = Bk,` :
(a) If k = 1, then

A1,` =
{

1
}
. (1 : 6)

(b) If k > 1, then for any aperiodic (k − 1)−tuple P =
{
p1, . . . , pk−1

}
of positive

integers (for a definition of the term “aperiodic,” see Definition 7.1(2)) satisfying the
inequality

p1 + . . .+ pk−1 < ` , (1 : 7)

the following number belongs to A :

A = A(P) = 3k−1 + 3k−2 · 2p1 + . . .+ 3 · 2p1+...+pk−2 + 2p1+...+pk−1 . (1 : 8)

By definition, members of Collatz corona are odd positive integers not divisible by 3.

Lemma 1.3. (1) Collatz corona Ak,` is a one-element set iff k = 1 (1:6)
(2) Otherwise, Collatz corona A of a Collatz number B is a finite set, #A > 1 of

mutually distinct positive integers not equal to B.
(3) Moreover, if ` > 1 + k · log2 3, then A extends both below and above B.

See Lemma 7.2 for more general and detailed assertions, with explicitly calculated values
of #A, inf A , and supA .

Here is a diophantine interpretation of the T−cyclicity condition (see Corollary 8.4(2)
for a proof) :
Lemma 1.4. A T−trajectory τ(m) (1:2) starting at a positive odd integer n is a cycle of
the length ` iff there exists such Collatz number B = Bk,` (1:5) that for some A ∈ Ak,`,

B | A , n =
A

B
. (1 : 9)

Note that any cycle has at least one odd member, so the oddness condition on n is not
restictive.

Thus, the following pure diophantine conjecture implies Conjecture 4 :

Conjecture 5. Excluding the case

B2,1 = 22 − 31 = 1 , (1 : 10)

no Collatz number divides a number from its Collatz corona.
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Note 1.5. (1) According to Lemma 1.4, the Collatz number B2,1 corresponds to the cycle
(1:3), with the values n = A = 1.

(2) A Collatz number Bk,`, k ≥ 2, equal to 1 would be a divisor of any member of its
Collatz corona. According to [Ribenboim 1994], already some mediaeval mathematicians
knew that the number (1:10) is the only Collatz number equal to 1. (This is a particular,
completely resolved case of still open Catalan’s conjecture [Ribenboim 1994]; see also below
Conjecture 6.)

Conjecture 5 suggests the following diophantine hypothesis (see Conjecture 13, §2, for
its d extension) :

Conjecture 6. For any pair of nonequal prime numbers r, q, 2 ≤ r < q and any pair (k, `)
of positive integers, with the exception of the following two cases,

r = 2, q = 3, k = 2, ` = 1 and r = 2, q = 3, k = 3, ` = 2 , (1 : 11)

there exist either no, or at most a finite number of (k − 1)−tuples of positive integers
p1, . . . , pk−1, p1 + . . .+ pk−1 < `, satisfying the congruence

qk−1 + rp1 · qk−2 + rp1+p2 · qk−3 + . . .+ rp1+...+pk−2 · q+rp1+...+pk−1

≡ 0 (mod |r` − qk|) .
(1 : 12)

Note that if |r` − qk| = 1, then the divisibility in (1:12) would be assured for any k−tuple
p1, . . . , pk. This scenario (which generalizes the plot of Note 1.5(2)) is excluded by the
above condition (1:11), according to the following special (and also completely resolved
[Ribenboim 1994]) case of Catalan’s conjecture :

Catalan’s Conjecture. The only solutions in positive integers r, q, `, k of the equation
| r` − qk |= 1 are listed in (1:11).

(IV) A Preliminary Sample of the Diophantine (3x+ d) Extension. To give
the reader a foretast of Diophantine version of the coming (3x + d) extension of Collatz
conjecture (before its precise definition in §2), let us call a positive odd integer d not
divisible by 3 a key to a Collatz number B, if B divides some members of the set d · A,
with A being Collatz corona of B (since B and members of A are odd and not divisible
by 3, the key can be restricted to numbers of the same type).

Any Collatz number B = Bk,` has at least one key : for any A ∈ Ak,`, take d =
A

gcd(A,B) . Now, the other way around, is any positive odd integer d not divisible by 3 a key

to some Collatz number ?
The below (3x+d) conjectures imply (and our calculations strongly confirm) that any

number d is a key for at least one and at most a finite number of Collatz numbers. And,
as our calculations show, in many cases “relatively small” d are keys to “very big” Collatz
numbers (a phenomenon conjectured in [Lagarias 1990]; see for details §10).

Thus, for d = 3299, k = 1000, ` = 1992 and some “very big” A ∈ A1000,1992 (cf. also
Example 2.4),
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B = 21922 − 31000 > 10577 and B divides 3299 ·A (1 : 13)

These new, surprizing, and absolutely nontrivial insights into arithmetic of simple
combinations of exponents of 2 and 3 represent a unique contribution of Collatz problem
and its 3x+ d generalization to number theory.

2. The 3x+ d Conjecture.

It was with the purpose of better understanding of the interplay of dynamic, algorith-
mic, and diophantine factors in the 3x+ 1 case that its 3x+ d generalization, for all d ≥ 1
relatively prime to 6, has been proposed in [Lagarias 1990] and, independently, in [Belaga
1995] and [Belaga, Mignotte 1998] 1. One can now say with hindsight that this quantum
d−increment of the 3x + 1 conjecture turned out to be its most natural and elucidative
extension :

(i) dynamically, only the 3x+ 1 cycle uniqueness claim, Conjecture 5(UCC)3x+1, has
to be withdrawn in the general 3x + d context, with two other conjectures, no-divergent-
trajectories (Conjectures 6(NDTC)3x+d and 7(URCC)3x+d below) and finite-number-of-
cycles (Conjecture 8(NDTC)3x+d), upholded;

(ii) algorithmically, the respective change boils down to the replacement of the con-
stant 1 in the algorithm (1:4) by an appropriate positive integer, see (2:5) below;

(iii) as it has been already mentioned above, §1(IV), the corresponding 3x + d dio-
phantine interpretation extends the problem of divisibility (1:6) of the number A by B
(1:5) to the problem of divisibility of d ·A by B.

Define the 3x+ d transform, with the shift number d being a positive odd integer not
divisible by 3 (or, in other words, d ≥ 1 relatively prime to 6), as follows :

Td : N −→ N ; Td(m) =

{ m
2 , if m is even;

3m+d
2 , if m is odd.

(2 : 1)

Then, for any positive integer n ∈ N, define a Td−trajectory and Td−cycle starting at m,
as follows :





τd(m) =
{
m = T 0

d (m),m1 = Td(m),m2 = T 2
d (m) = Td(Td(m)), . . .

}

τd(m) is a Td−cycle of the length ` ⇐⇒





∃` ≥ 1 , m` = T `d(m) = m

∀r(1 ≤ r < `) ,

mr = T rd (m) 6= m .

(2 : 2)

1 We are grateful to the anonymous referee of [Belaga, Mignotte 1998], who brought
our attention to the important paper [Lagarias 1990].

It is worth to mention here that, in [Belaga, Mignotte 1998], we also study the case
d = −1. It has been dropped here, to avoid too much techincal particalurization of our
notations and claims.
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The last condition (T rd (m) 6= m, if r 6≡ 0 (mod `)) guarantees that a cycle of the length
` is not a cycle of a smaller length.

(I) The 3x + d Dynamics. We use the shorthand notations D, {ξ, η}, and Dd for,
respectively, the set of positive odd integers not divisible by 3, its enumeration functions,
and its subset of integers relatively prime to d :





D =
{
n ∈ N | gcd(n, 6) = 1

}
= 1, 5, 7, 11, 13, 17, 19 . . . ;

Dd =
{
n ∈ D | gcd(n, d) = 1

}
;




∀t ∈ N , ξ(t) = 6 ·
⌊ t

2

⌋
− (−1)t ∈ D ; ∀n ∈ D , η(n) =

⌈n
3

⌉
∈ N ;

N
ξ−→ D

η−→ N
ξ−→ D ; ξ ◦ η = idD , η ◦ ξ = idN .

(2 : 3)

For any d ∈ D, the dynamical system Dd has a cycle closely resembling Co (1:3) :

Co
d = {d→ 2d→ d} (2 : 4)

(cf. also Example 4.5 below). However, according to the first of the three conjectures
of Lagarias, this cycle is never unique if d 6= 1 (4:12). Moreover, in all 6667 dynamical
systems, experimentally studied in the present paper, we have found at least two, and
in many cases, much more cycles. Thus, for instance, for d = 6487 and d = 14303, the
systems D6487 and D14303 have at least 596 and 944 primitive cycles, respectively : cf.
Examples 8.7(1), 10.5(2) and Table 5, §10.

This loss of the unique cyclic attractor, similar to Co (1:3) in the 3x + 1 case, does
not apparently affect the general dynamical pattern. In the 3x + d case, too, heuristic
arguments and numerical checks carried in this study lead us to believe that, for all d ∈ D,
both no-divergent-trajectories and finite-number-of-cycles conjectures hold :

Conjecture 7 : (NDTC)3x+d For any d ∈ D, Td has no divergent trajectories.

Or equivalently, but in the affirmative form :

Conjecture 8 : (URCC)3x+d For any d ∈ D, a Td−trajectory runs ultimately into a
cycle.

The existence of at least one Td−cycle being guaranteed (the cycle Co
d (2:4)), the total

number is conjecured to be finite :

Conjecture 9 : (FCC)3x+d For any d ∈ D, Td has only a finite number of cycles.

The total number of Td−cycles will be the subject of our formula (4:12) and conjectures,
old and new, §§5,6.

Taken together, the above conjectures imply that any Td−trajectory collapses into a
bounded vicinity of 1. We define below, §§3, 10, three numerical characteristics of systems
Dd implicit in this assumption. One of these characteristics, the recurrence threshold Rd,
appears in the below 3x+ d extension (2:7) of the 3x+ 1 halting problem (1:4).

An important dynamical insight into the 3x + d conjecture represents the technique
of primitive cycles [Lagarias 1990] and the related conjectures, old and new, §§4-6, 9. It is
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noteworthy, however, that at least seven of the new conjectures, presented below, cannot
be properly formulated and understood in the pure dynamical context : they are inspired
by, and substantially rely on the diophantine interpretation and analysis of the conjecture
Conjecture 9(FCC)3x+d, §§7, 8; see also the subsection (III) below.

(II) The 3x + d Conjecture as a Halting Problem. Taken together, the above
conjectures are equivalent to the following halting problem :

Conjecture 10 : Algorithmic Version of Conjectures 7-9. For any d ∈ D, there
exists such a positive integer R, that the following algorithm halts for all input (positive
integer) values of n :

A3x+d :





m := n
while m > R do
m := Td(m)

endwhile .

(2 : 5)

Note that in the special case d = R = 1, the procedure (2:5) becomes the 3x + 1
algorithm (1:4). Note also that the minimal value of R, for a given shift number d, is the
recurrence threshold Rd mentioned in the subsection (II) above and defined below, §3.

The affirmative version of the no-divergent-trajectories conjecture can be naturally
interpreted as the following separate halting problem. (For the proof, see §12, Lemma
12.2.) We do not know a similarly transparent interpretation for the finite-number-of-
cycles conjecture.

Conjecture 11 : Algorithmic Version of Conjecture 8. For any d ∈ D, the following
algorithm always halts :

Acyclic
3x+d :





m := n := j
while m 6= n do
m := Td(m); n := Td(n); n := Td(n);

endwhile .

(2 : 6)

For a proof that Acyclic
3x+d detects all Td−cycles, see Proposition 12.2.

This equivalence intimates the idea of a simple algorithm for checking both Conjectures
7(NDTC)3x+d and 9(FCC)3x+d and, in the case they hold, for computing all Td−cycles.
Namely, starting with m = 1, and then going on and on, follow the Td−trajectory τd(m)
(2:2), until it runs ultimately into a Td−cycle. Using enhanced versions of this algorithm,
§11, we will experimentally confirm (cf. Tables 1-6, Figures 1-9, and the searching algo-
rithm, §12) several well-known and new 3x+ d related phenomena and conjectures, §§3-6,
8-11.

(III) The Exponential Diophantine Paraphrase of the Cyclic Part of the
3x + d Conjecture. The diophantine formalism turns out to be strictly complementary
to the algorithmic one : it becomes effective where the algorithmic approach fails, and
vice versa. Namely, as in the 3x + 1 case, explicit arithmetic formulae for Td iterations
are apparently of no help in studying the no-divergent-trajectories conjecture, in either
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of its two forms (Conjectures 7, 8). Not so with the cyclic part of the 3x + d conjecture
(Conjecture 9) :

Lemma 2.3. [Belaga, Mignotte 1998] For any d ∈ D, there exists a Td−cycle meeting an
odd positive integer n iff, there exists such a Collatz number B = Bk,` (1:5) that for some
A ∈ Ak,`,

d ·A ≡ 0 (mod B) , n =
d ·A
B

. (2 : 7)

(A similar result has been proved in [Lagarias 1990].) Cf. these formulae with their 3x+ 1
version (1:9), Lemma 1.4.

Hence, the following exponential diophantine version of the above finite-number-of-
cycles conjecture (cf. §1(IV) and see for details §§7, 8) :

Conjecture 12 : (DFCC)3x+1 For any d ∈ D, the total number of Collatz numbers
satisfying (2:7) is finite.

Our computations show that even for relatively small values of the shift number d ∈ D,
some Td−cycles are very long, with the corresponding Collatz number B and its counter-
part A from Collatz corona of B rather big.

Example 2.4. The biggest found in this study Collatz number corresponds to a T16819–
cycle of the length 4686 (see below Table 5, §10) :

B = B2292,4686 = 24686 − 32292 > 101409 and B divides 16819 ·A′ (2 : 8)

This should be expected [Lagarias 1990], if each system Dd has at least one primitive
Td−cycle. Now, the experimental data show the pervasiveness of this phenomenon on a
scale far surpassing the available theoretical expectations; cf. Table5, §9.

Finally, the 3x+d−extention (2:7) of the diophantine version (1:5-9) of Collatz problem
suggests the following 3x+ d−extension of our Conjecture 6 (1:12) :

Conjecture 13. For any pair of nonequal prime numbers r, q, 2 ≤ r < q and any positive
integer d relatively prime to both p and q, gcd(d, p · q) = 1, the exist either no, or at
most a finite number of k−tuples of positive integers p1, . . . , pk, 1 ≤ k <∞, satisfying the
following congruence :

d ·
(
qk−1 + rp1 · qk−2rp1+p2 · qk−3 + . . .+ rp1+...+pk−2 · q + rp1+...+pk−1

)

≡ 0 (mod |r` − qk|) .
(2 : 9)

3. More of 3x+ d Dynamics : Recurrence, Collapse, and Attraction.

Taken together, Conjecture 7(NDTC)3x+d and Conjecture 9(FCC)3x+d are obviously
equivalent to each one of the following three conjectures (the second and third conjectures,
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united in a single, less elaborated and slightly different hypothesis, can be found in [Belaga,
Mignotte 1998] under the name of Termination Set Conjecture) :

Conjecture 14 : Recurrence Threshold Conjecture. For any d ∈ D, there exists
such a positive integer R that any Td−trajectory (2:2) enters the interval 1 ≤ m ≤ R
infinitely many times. The minimal of such numbers R is denoted by Rd and called the
Td−recurrence threshold.

Conjecture 15 : Collapse Threshold Conjecture. For any d ∈ D, there exists
such a positive integer L that any Td−trajectory τd(m) runs ultimately into the interval
1 ≤ m ≤ L, and there it remains. The minimal of such numbers L is denoted by Ld and
called the Td−collapse threshold.

Conjecture 16 : Termination Set, or Attractor Conjecture. For any d ∈ D, there
exists such a finite set U of positive integers, that any Td−trajectory τd(m) runs ultimately
into U , and there it remains. The intersection of all such sets is denoted by Ud and called
the Td−termination set, or Td−attractor.

Cf. also the below 4.7(3) (4:14).
These equivalent re-formulations have at least three advantages. First, they spell

explicitly out the existence of a “collapsing” phenomenon observed in all studied until now
systems Dd, - the possible “key” to understanding of other Td−phenomena.

Second, they define three important characteristics of the cyclic structure of the system
Dd. Namely, assuming Conjectures 7(NDTC)3x+d and 9(FCC)3x+d hold,

(i) Td−recurrence threshold Rd is the maximal of minimal members of Td−cycles;
(ii) Td−collapse threshold Ld is the maximal of maximal members of Td−cycles;
(iii) Td−attractor Ud is the union of members of all Td−cycles.

These characteristics can be computed from their respective primitive Td−analogues, §4
(4:11-14).

Finally, algorithmic re-formulations of the above conjectures makes manifest in a most
transparent way the “halting” nature of 3x+d related problems. In particular, Conjecture
12 is the precise equivalent of the halting problem (2:5), §2.

Chapter II. Primitive Cyclic Structure.

Further progress in studying the fine cyclic structure of systems Dd becomes possible
thanks to the technique of primitive cycles [Lagarias 1990]. Intuitively, a primitive cycle
is a Td−cycle which is not a q−multiple of a Tr−cycle, with q · r = d, r < d.

One of the main purposes of the present paper is to theoretically and experimentally
explore the primitive cyclic structure of dynamical systems Dd. In particular, for 6667
dynamical systems Dd, in the interval d ∈ D, d ≤ 19999, we calculate (as we argue, §13,
all) their primitive cycles.

The analysis of this experimental data permits us to confirm with different degrees of
certainty (which should, and will be made exact below, Note 5.2, §13) the aforementioned
no-divergent-trajectories conjecture and, via the conjectures of Jeff Lagarias [Lagarias
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1990], the finite-number-of-cycles conjecture, §11. Our dual interpretation of Lagarias
conjectures is new, §§5,7. So are the insights which lead inextricably to our shift num-
ber and member number conjectures, §§10, 11. All our new conjectures, §§6,8-11, are
solidly confirmed by the experimental data, cf. Tables 1-6, Figures 1-9, and the searching
algorithm, §12.

4. Primitive 3x+ d Cycles.

We start with a few trivial technical observations.

Notation 4.1. We remind that the shift number d ≥ 1 is relatively prime to 6, d ∈ D
(2:3). For any positive integer m ∈ N, define the number odd(m) obtained by factoring
out of m the highest possible power of 2; thus odd(m) is odd and m = odd(m) · 2j , for
some j. Hence the notations :

∀m ∈ N , ν2(m) = max
{
j ≥ 0

∣∣ m · 2−j ∈ N
}
, m = odd(m) · 2ν2(m) . (4 : 1)

Lemma-Definition 4.2. (1) Any Td−trajectory passes by an odd number, and whatever
might be m ∈ N, all other members Td(m), T 2

d (m) , . . . of a Td−trajectory τd(m) (2:2) are
not divisible by 3 :

∀m, r ∈ N ∀d ∈ D , gcd(3, T rd (m)) = 1 . (4 : 2)

Thus, all odd members of the trajectory τd(m) different from m (and, in the case of a
Td−cycle, all its odd members), n, n1, . . ., are relatively prime to 6, n, n1, . . . ∈ D.

(2). In particular, the minimal member n of a Td−cycle is odd and n ∈ D. And
without the loss of generality, we can assume that any Td−traectory starts at an integer
relqtively prime to 6. Then, the full sequence of odd members, in the order of their
appearance in a Td−trajectory τd(n) starting at m = n0 ∈ D (cf. (2:2), (4:1)), is denoted
by Odd(n, d), and the full sequence of the corresponding exponents of 2, by Even(n, d) :

∀n, d ∈ D





(1) τd(n) =
{
m0 = n,m1,m2, . . .

}
;

(2) Even(n, d) =
{
e1, e2, . . .

}
⊂ N ,

∀j ≥ 1 , ej = ν2(3nj−1 + d) ;

(3) Odd(n, d) =
{
n0 = n, n1, n2, . . .

}
⊂ D ,

∀j ≥ 1 , nj = odd(3nj−1 + d) = mrj , rj =
∑

1≤i≤j
ei .

(4 : 3)

(3) In the case of a Td−cycle C of the length ` (2:2), the periodic sequence (4:3(3))
is called the oddcycle associated with C and denoted by Odd(C), with the period k < `
called the oddlength of the cycle, with the minimal member n = n0 ∈ D listed as the
first member of the cycle C (cf. (4:4(2) below), and with the respective list Even(C) of
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exponents defined as above (4:3(2)). The sets of members and of odd members of a cycle
are denoted by Set(C) and Oddset(C)), respectively :





(1) C = 〈m0, . . . ,m`−1〉; m0 = min
0≤j≤`−1

{mj} ;

Td(m`−1) = m0 , Td(mi) = mi+1 6= m0, 0 ≤ i ≤ `− 2 ;

(2) Odd(C) = 〈n0, . . . , nk−1〉;
n0 = m0 = min{m0, . . . ,m`−1} 6= nj , 1 ≤ j ≤ k − 1 ,

nj = odd(3nj−1 + d), 1 ≤ j ≤ k − 1 ;n0 = odd(3n`−1 + d) ;

(3) Even(C) = 〈e1, . . . , ek〉;
ej = ν2(3nj−1 + d), 1 ≤ j ≤ k; e1 + . . .+ ek = ` ;

(4) Set(C) =
{
mi | 0 ≤ i ≤ `− 1

}
; Oddset(C)) =

{
nj | 0 ≤ j ≤ k − 1

}
.

(4 : 4)

Thus, e. g., a T2r−3−cycle Co
2r−3, r > 1, of the length r+ 1, starting at (the odd number)

1, has no other odd members (4:4), oddlength(Co
2r−3)1 :

Co
2r−3 = 〈1, 2r−1, 2r−2, . . . , 2〉 ; Odd(Co

2r−3) = 〈1〉 ; Even(Co
2r−3) = 〈r〉.

(4) For any odd q > 1, the q−multiple of a Td−trajectory τd(m) is identical to the
Tq·d−trajectory starting at q ·m (2:2) :

τq·d(q ·m) = q · τd(m) =
{
q ·m, q · Td(m), q · T 2

d (m), q · T 3
d (m), . . .

}
. (4 : 5)

In particular, if C = τd(m) is a Td−cycle of the length ` and oddlength k, then q · C =
τq·d(q ·m) is a Tq·d−cycle of the same length and oddlength.

(5) And vice versa, if , for some odd q > 1, gcd(d,m) = q ≥ 1, then the Td−trajectory
τd(m) is the q−multiple of a T d

q
−trajectory :

gcd(d,m) = q > 1 ⇐⇒ τd(m) = q · τ d
q

(m
q

)
. (4 : 6)

Proof : Straightforward verification. End of the Proof.

Definition 4.3. (1) A Td−cycle C = τd(m) is called primitive, if

gcd(d,m) = gcd(d, T rd (m) = 1, for all r ≥ 1 .

Or, in other words, if for any divisor q > 1 of d, C is not a q−multiple of a T d
q
−cycle.

(2) For any d ∈ D, let C(d), P(d〉, and P〈n) be, respectively, the sets of all Td−cycles,
all primitive Td−cycles, and all primitive cycles meeting an integer n (we postpone the
detailed definition of sets P〈n) till §6) :

∀d ∈ D , P(d〉 ⊂ C(d) ;
⋃

d∈D

P(d〉 = P ⊂ C =
⋃

d∈D

C(d) . (4 : 7)
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A priori, all three sets might be finite (in particular, empty) or infinite, with P(d〉 6= C(d)
for all d > 1 : cf. Example 4.5(2). And so might be their cardinalities :

∀d ∈ D , $(d) = #P(d〉 < ς(d) = #C(d). (4 : 8)

Corollary 4.4. (1) An odd member n of a primitive cycle belongs to Dd (2:3). Conversely,
a non-divergent trajectory τd(m) starting at n ∈ Dd either is a primitive cycle, or ultimately
enters such a cycle.

(2) If a cycle C = τd(m) is not primitive, gcd(d,m) = q > 1, then the cycle 1
q ·C =

τ d
q

(
m
q

)
(4:6) is primitive.

Example 4.5. (1) The T−cycle Co (1:3) is primitive.
(2) According to (2:4), for any d > 1, d ∈ D, the Td−cycle Co

d is a d−multiple of the
primitive T−cycle Co (1:3).

(3) Keith Matthews asserts in [Matthews 1999] that, in our terminology, the system
D371 has four cycles, with the minimal members 25, 265, 371, 721 and lengths 222, 4, 2,
29, respectively, or for short,

[25(222)]371, [265(4)]371, [371(2)]371, [721(29)]371.

Note that 371 = 7 · 53 and that only the T371−cycle [25(222)]371 is primitive. The other
three cycles are 53−, 371−, and 7−multiples of, respectively, the primitive T7−, T1−, and
T53−cycles

[5(4)]7, [1(2)]1, [103(29)]53.

Our calculations confirm Matthews assertion. We have found that each one of the systems
D7, D53, and D371 has only one primitive cycle, presented above.

The following claims avout basic structural properties of the set C(d) of all Td−cycles
(Definition 4.3) formalize intuitive insights gained with the above examples. These propo-
sitions do not depend on any of assumptions or conjectures concerning the dynamical
systems Dd. In particular, the below formulae are valid when the set C(d) is infinite.

Lemma 4.6. For any d ∈ D, let C(d) and P(d〉 be, respectively, the sets of all Td−cycles
and all primitive Td−cycles, P(d〉 ⊂ C(d) (Definition 4.3(2)). For any positive integer q ∈ D
and any Td−cycle C (4:1) define the Tq·d−cycle q · C as the collection of q−multiples of
members of C (4:2). Define further

q · P(d〉 =
{
q ·C

∣∣ ∀C ∈ P(d〉
}
⊂ C(q · d) . (4 : 9)

Then the followingequality hods :

C(d) =
⋃

d=q·r
q,r ∈ D

q · P(r) . (4 : 10)

Proof : Straightforward verification. End of Proof.
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Corollary 4.7. (1) Let $(d) and ς(d) be the total numbers of primitive and, respectively,
all Td−cycles (4:8). If for some d ∈ D, the set C(d) is infinite, then so is the set P(r) for
at least one divisor r of d (r|d, 1 ≤ r ≤ d) :

∀d ∈ D , ς(d) =∞ ⇐⇒ ∃ r | d (1 ≤ r ≤ d) , $(d) =∞. (4 : 11)

(2) Moreover, the equality (4:9) implies the following formula (which, according to
(4:11), becomes the trivial identity ∞ =∞, if the set C(d) would be infinite) :

ς(d) =
∑

d=q·r
q,r ∈ D

$(r) = 1 +
∑

d=q·r,r≥2
q,r ∈ D

$(r) . (4 : 12)

(3) Let

no(C) = min(m,m1, . . . ,m`−1), mo(C) = max(m,m1, . . . ,m`−1) (4 : 13)

be the minimal, respectively, maximal member of a Td−cycle C of the length `. Clearly,
no is odd and ∈ D, and mo is even. If, for a given d ∈ D, the combination (NDTC)3x+d +
(FCC)3x+d of conjectures holds, §2, then the Td−recurrence and Td−collapse thresholds
Rd, Ld, and the Td−attractor Ud, §3, are given by the formulae :





(1) Rod = max
{
no(C)

∣∣ C ∈ P(d〉
}

;

(2) Rd = max
{
q ·Ror

∣∣ d = q · r & q, r ∈ D
}

;

(3) Lod = max
{
mo(C)

∣∣ C ∈ P(d〉
}

;

(4) Ld = max
{
q · Lor

∣∣ d = q · r & q, r ∈ D
}

;

(5) Ud =
{
m ∈ C)

∣∣ C ∈ P(d〉
}
.

(4 : 14)

Note 4.8. (1) For all d ∈ D, 1 ≤ d ≤ 19999, denote by

P̃d, C̃d, R̃od, R̃d, L̃od, L̃d, Ũd, $̃(d), ς̃(d), (4 : 15)

respectively, the sets of primitive and general cycles found experimentally in this study, as
well as the corresponding T̃d−characteristics calculated according to the formulae (4:11-
14), with P(d〉 everywhere replaced by P̃d.

(2) This tilde-device will be used throughout the paper, to distinguish between theo-
retical (or absolute) values of parameters and their experimental estimates.

(3) It is clear that all tilde-parameters represent experimental lower bounds to their
respective original counterparts, as, e. g., R̃d, L̃d, Ũd, $̃(d), and ς̃d :

R̃d ≤ Rd, L̃d ≤ Ld, Ãd ⊆ Ad, $̃(d) ≤ $(d), ς̃(d) ≤ ς(d). (4 : 16)

Conjectural Claim 4.9. In the interval d ∈ D, 1 ≤ d ≤ 19999 of values d experimentally
studied in the present paper, the inequalities and inclusion of (4:16) are, in fact, equalities.
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We justify this claim below, §12, where we will privide the evidence that, in this study,
we have actually found all primitive Td−cycles (and, thus, all general Td−cycles, too), for
all d from the above interval.

Example 4.10. (1) We have found only two primitive T1715−cycles, with the minimal
and maximal members 941, 773, and 28,876, 55,876, respectively. On the other hand, the
calculated T1715−recurrence and -collapse threshods are, respectively,

R̃1715 = 886, 685 = 5 · 177337 , L̃1715 = 795268030 = 5 · 159053606 .

Both these numbers are coming from a non-primitive T1715−cycle (remark that 1715 =
5 · 343), the 5-multiple of a primitive T343−cycle. The minimal and maximal members of
this T343−cycle are also the T̃343−recurrence and -collapse thresholds,

R̃343 = R̃o343 = 177337 , L̃343 = L̃o343 = 159053606 .

5. Three Basic Primitive Cycles Conjectures.

But do primitive cycles exist in all systems Dd ? And what are the chances of an
integer n ∈ D (cf. Lemma 4.2(1), Corollary 4.4(1)) to be met by such a cycle, for some
d ∈ D, gcd(d, n) = 1 ? These are the subjects of three original conjectures of Lagarias
[Lagarias 1990].

The two first conjectures of Lagarias are straightforward restrictions to primitive cycles
of, respectively, the no-divergent-trajectories and finite-number-of-cycles conjectures, §2.
Conversely, the second conjecture implies, according to Corollary 4.7(1,2), (4:12), the
finite-number-of-cycles conjecture.

The no-divergent-trajectories conjecture (in its “ultimately-cyclic” form, Conjecture
8, §2), together with Corollary 4.4 (1) (a non-divergent trajectory τd(m) starting at n ∈ Dd

(2:3) either is a primitive cycle, or ultimately enters such a cycle) immediately imply the
first conjecture of Lagarias :

Conjecture 17 : Existence of a Primitive Td−cycle. For any d ∈ D, there exists at
least one primitive Td−cycle (cf. (4:8)) :

∀d ∈ D , $(d) ≥ 1. (5 : 1)

The second conjecture of Lagarias is a formal restriction of the finite-number-of-cycles
conjecture (Conjecture 9, §2) to primitive cycles. In fact, according to (4:12), Corollary
4.7(1.2), both conjectures are equivalent :

Conjecture 18 : Finiteness of the Set of Primitive Td−cycles. For any d ∈ D, the
number $(d) (4:8) of primitive Td−cycles is finite :

∀d ∈ D , $(d) <∞ . (5 : 2)
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The third conjecture of Lagarias has no immediately apparent 3x + 1 analogue. We
interpret it here and in §§6, 8, as a double conjecture, dual to the first and second conjec-
tures, with the emerging disparate duality between d− and n−related phenomena being
an important new and all-pervading intuition behind the present study.

Conjecture 19 : Any Suitable Integer Is a Member of at Least One Primitive
Td−cycle. For any n ∈ D, there exists at least one d ∈ D with a primitive Td−cycle
meeting n. Or, in other words, the the set of odd members of all primitive Td−cycles
covers the set D of odd positive integers not divisible by 3 (cf. the notations (4:4)) :

⋃

d∈D

⋃

C∈P(d〉
Set(C) = D . (5 : 3)

Conjecture 20 : Any Suitable Integer Is, in Fact, a Member of an Infinite
Number of Primitive Td−cycles.

Of course, Conjecture 20 tautologically implies Conjecture 19. Still, it is worth to
state explicitely both conjectures, and for the following reasons :

Note 5.1. (1) The apparently weaker Conjecture 19 might be more amenable to a proof.

(2) On the other hand, as it has been proved in [Lagarias 1990], an integer n ∈ D
belonging to a primitive cycle of the oddlength k, belongs to an infinite series of primitive
cycles of the same oddlength and with an almost identical diophantine structure (see
for details §11, Theorem 11.3(3)). Thus, Conjecture 19 formally implies the apparently
stronger Conjecture 20.

(3) However, as our experimental data (which stronly confirm Conjecture 19 and
provide a reasonable, in fact, the best possible in the circumstrances, Note 5.2, confirmation
of Conjecture 20 : cf. Figure 2 below) show, the prolifiration of primitive cycles with the
same values of length and oddlength does not account for the actual abundance of recurring
memberships of a given number n ∈ D in primitive cycles, §11.

Note 5.2 : Cogency of Experimental Confirmation. (1) The experimental search
for primitive Td−cycles, for 6667 systems Dd, within the range 1 ≤ d ≤ 19999, confirm
Conjectures 17-20, albeit, inevitably, with different degrees of certainty.

(2) In fact, to fully experimentally confirm, in the chosen range of input parameters,
the claims of Conjectures 17, 19 (the existence of at least one primitive cycle with a fixed
shift number or member), it is necessary and sufficient to find such a primitive cycle, with
d or n from the chosen range : cf. Figures 3,4 and, respectively, 2.

(3) Another matter, however, is to experimentally confirm a conjecture which claims
that some set of primitive cycles is not just nonempty (Conjectures 17, 19), but is finite (i.
e., not infinite, - Conjecture 18) or even infinite (Conjecture 20). Here the confirmation
depends on the quality of available evidence that the search was exhaustive. We postpone
this discussion to §12.

We start with some preliminary notations.

Notation 5.3. For any pair of odd integers Q,R ∈ D, define an interval IQ,R ⊂ D, as
follows :
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Q,R ∈ D =⇒ IQ,R = [Q,R] ∩D . (5 : 4)

By definition, IQ,R = ∅ if Q > R.

Lemma 5.4. According to (2:3), the number ι(Q,R) of integers in the interval IQ,R (5:4)
is equal to

ι(Q,R) = #IQ,R =

{⌊
R
3

⌋
−
⌊
Q
3

⌋
+ 1, if Q ≤ R ;

0 , otherwise .
(5 : 5)

In these notations, the range of our experimental study becomes:

d ∈ I1,19999 , ι(1, 19999) = 6667 , (5 : 6)

Proof : Straightforward verification. End of the Proof.

Experimental Evidence 5.5. (1) Conjecture 17. We have found at least one primitive
cycle, for any d from the chosen range. With the above notation $̃(d) (4:15,16), we have :

∀d ∈ I1,19999 , $(d) ≥ $̃(d) ≥ 1 . (5 : 7)

Table 1 lists the first 500 values of the function $̃(d), d ∈ I1,1499.

(2) Conjecture 18. As it has been mentioned above, Note 5.2, the experimental
evidence for this conjecture can be only circumstantial. The experimentally found sets
P̃d of primitive cycles and their cardinalities $̃(d) (4:15) cannot be but finite. We will
argue below, $12, why the sets and numbers, experimentally found in this study, are not
just experimental samples, providing us with the lower bounds (4:16), but, in fact, are the
actual sets and numbers of primitive cycles in the given range of shift numbers d. What
follows, is a digest of our experimental findings.

(a) The total number of found here primitive Td−cycles is 42765, with the maximal
value $̃(d) = 944 attained at d = 14303 :

∑

d∈I1,19999

$̃(d) = 42765 ; max
d∈I1,19999

$̃(d) = 944 = $̃(14303). (5 : 8)

(b) More than a half of 6667 dynamical systems Dd explored in this study have less
than 3 primitive cycles. To describe the distribution of these systems according to the
values $̃(d), let us define δD,E(r) as the total number of systems Dd, with d ∈ ID,E and

with exactly r primitive cycles; then the corresponding function δ̃ will be its experimentally
found lower bound to :

δD,E(r) = #
{
d ∈ ID,E

∣∣ $(d) = r
}
. (5 : 9)

The below table (Table 3) gives the values of the experimental function δ̃1,19999 in the
interval 1 ≤ P ≤ 160. We have found only eleven systems Dd with the numbers of
primitive cycles bigger than 160, see Table 2.
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Table 1. The numbers $̃(d) of the primitive Td−cycles traced in this study,
for 500 values of d from 1 to 1499. For a given d ∈ I1,1499, find

d′ ∈ I1,59, d
′ ≡ d (mod 60) and q = d−d′

60 . The value $̃(d) can be
found on the intersection of the q−th row and d′−th column.

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59

1 5 1 2 9 2 1 3 2 4 1 2 3 1 1 7 1 1 3 7
2 1 1 7 3 1 4 3 1 1 3 3 2 7 2 1 1 1 2 5
2 4 2 3 2 5 1 3 3 2 2 1 1 4 2 3 2 2 7 1
3 1 2 3 4 1 2 2 1 4 1 3 2 1 2 1 8 19 3 4
2 2 6 2 3 3 7 3 3 18 1 1 1 7 3 6 2 1 17 3
2 3 7 2 4 2 1 1 2 4 2 3 8 2 3 2 2 5 20 11
10 4 1 1 2 2 3 2 3 3 4 5 1 1 1 4 3 3 1 2
2 4 1 23 4 3 10 5 2 1 1 4 4 1 1 3 1 1 2 4
13 15 2 2 1 7 52 7 5 2 5 2 12 1 3 3 3 1 3 2
1 2 3 10 3 4 1 1 2 1 2 2 10 1 1 3 2 4 3 3
12 2 5 5 3 3 1 2 2 3 1 2 1 1 6 3 3 1 1 2
2 2 10 6 3 2 4 1 2 1 1 2 11 1 2 2 1 2 4 6
3 4 5 2 3 1 1 3 13 2 1 8 2 1 2 2 3 2 1 3
31 6 2 2 2 2 2 9 2 1 5 4 4 1 2 7 2 4 6 4
1 1 1 4 1 1 2 3 7 2 1 1 1 6 2 4 8 23 2 2
3 2 3 4 2 1 4 2 8 3 2 2 7 1 24 1 2 1 2 6
2 9 4 1 3 1 1 3 4 3 6 1 13 2 1 5 2 3 6 1
4 1 6 2 4 2 1 3 7 2 4 2 3 1 2 6 2 2 3 7
6 4 3 2 7 10 1 3 6 1 1 1 1 1 4 5 4 2 1 1
6 2 3 2 7 3 1 1 1 4 1 3 6 2 2 2 2 1 3 2
33 5 4 2 1 2 2 6 2 1 2 10 1 6 1 3 2 1 1 5
10 9 17 3 2 3 2 3 1 1 1 9 5 10 3 1 3 1 3 53
3 3 10 1 5 3 2 3 15 3 9 2 7 2 5 3 1 1 4 2
1 1 3 5 17 2 22 12 1 5 2 3 7 2 3 1 1 2 2 3
3 2 1 2 1 3 2 4 3 2 1 1 1 2 2 5 4 4 9 1

Table 2. Eleven systems Dd with the numbers of primitive cycles bigger than 160.

d 7463 18359 7727 15655 10289 9823 17021 14197 13085 6487 14303

$̃(d) 162 164 198 207 214 241 258 329 335 534 944

These data strongly suggest the following new conjectures :

Conjecture 21. (1) The number of primitive cycles attains all positive integer values :

$(d) : D −→ N is an onto mapping ⇐⇒ ∀r ∈ N ∃d ∈ D , $(d) = r. (5 : 10)

(2) For any D ∈ D and any sufficiently big E ∈ D, E À D, the distribution function
δD,E(r) (5:9) attains its maximal values for r = 1 and/or 2, and exponentially descends
with r ≥ 2 growing.
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Table 3. The number δ̃1,19999(P ) of systems Dd with exactly P, 1 ≤ P ≤ 160,
experimentally found primitive Td−cycles. On the intersection of
i−th row (1 ≤ i ≤ 16) and j−th column (1 ≤ j ≤ 10) is the number
of systems with P = j + 10 · (i− 1) primitive cycles.

j = 1 2 3 4 5 6 7 8 9 10

i=1 1481 1507 1005 605 392 259 216 172 121 121
2 87 72 45 53 48 42 35 19 30 24
3 25 20 17 19 13 16 11 8 13 11
4 5 7 7 8 3 3 8 6 2 4
5 2 5 3 3 3 2 4 0 1 3
6 3 3 3 4 4 2 4 0 2 2
7 2 1 4 2 4 1 4 3 2 2
8 0 0 1 1 0 3 0 1 2 1
9 2 0 2 3 1 1 0 0 2 0

10 2 0 0 0 0 0 2 0 0 1
11 0 0 0 0 0 1 1 0 0 0
12 1 0 0 1 0 0 1 0 0 1
13 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 2 1 0
15 0 2 0 0 0 0 0 0 0 0
16 0 0 1 0 0 2 0 0 1 0

Experimental Evidence 5.6 : Conjecture 21. Figure 1 displays two distributions δ
of numbers $̃(d) of primitive Td−cycles, as well as the logariphms υ = log(δ) of these
distributions.

The first distribution (cf. Figure 1(A) and, for its logarithm, Figure 1(C)) describes
all 6667 systems experimentally studied in this paper, 1 ≤ d ≤ 19999. The second one
deals with the portion of 1333 systems correponding to the (arbitrary chosen) interval
12001 ≤ d ≤ 15997 (Figure 1(B,D)).

Both distributions count only systems Dd with the numbers of cycles ranging from
1 to 120. (We remind the reader that the maximal number $̃(d) of cycles found in this
study is 944 (5:8), and, according to Table 3, only twenty out of 6667 systems have more
than 120 primitive cycles).

∀r (1 ≤ r ≤ 120) ,

{
δ = δ1,19999(r), υ = ln(δ1,19999(r)) ;

δ = δ8003,11999, υ = ln(δ8003,11999(r)) .
(5 : 11)

Experimental Evidence 5.7 : Conjecture 19. (1) The conjecture has been strongly
confirmed for all n ∈ D, 1 ≤ n ≤ 59999 (altogether, 20000 values) in the band d ∈ I1,19999.
We have found that any n from the chosen range is a member of at least 18 primitive
Td−cycles. Or, using a version of the notations (4:8) :
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Figure 1. The distributions of numbers of primitive cycles (see Experimental
Evidence 5.6 for explanations). Note that systems with 1 to 2 cycles predominate.

∀n ∈ D ∀D,E ∈ I1,19999 , $̃〈n)
∣∣E
D

= #
{
d ∈ ID,E | ∃C ∈ P̃(d〉 | n ∈ C

}
, (5 : 12)

it has been found that

∀n ∈ I1,59999 , 18 ≤ $̃〈n)
∣∣19999

1
≤ 452 . (5 : 13)

(2) To present this statistic handily in a graphic form, Figure 2, we number the 20000
values of n ∈ I1,59999 by the parameter q ∈ [1, 20000], according to (2:3), and denote by
t(q) the number of primitive Td−cycles meeting n = ξ(q), d ∈ I1,19999:





t(q) = $̃
〈
ξ(q)

)∣∣19999

1
= $̃

〈
6 ·
⌊q

2

⌋
− (−1)q

)∣∣∣∣
19999

1

;

1 ≤ q ≤ 20000 ⇐⇒ n = ξ(q) ∈ I1,59999 .

(5 : 14)

(3) We give here also a more detailed sample of the experimental data, the first twenty

values of the function t(q) = $̃〈n)
∣∣19999

1
, 1 ≤ n ≤ 59, Table 4.
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Table 4. The first twenty values of the function t(q) = $̃〈n(q))
∣∣19999

1
, 1 ≤ q ≤ 20. Thus,

for example, among 42765 primitive cycles discovered here, 452 cycles start at
the first value of n, n = 1, and 440 meet the 18−th value, n = 53.

q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n 1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59

t(q) 452,354,359,414,396,410,423,399,324,409,426,265,407,415,418,422,395,440,300,406

Figure 2. The graph of the function t(q) = $̃〈n(q))
∣∣19999

1
, 1 ≤ q ≤ 20000. Notice

three distinct and mysterious “depressions”˙

6. Shift Number – Member Number Disparate Duality.

In this section, we lay down a groundwork for the study of (disparate) duality between
related shift number and member number properties. The impetus for this approach
comes from the comparison between two sets of conjectures of §5 (Conjectures 18,19 versus
Conjecture 20). The true meaning of this duality will become apparent, and the adequate
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diophantine formalism for its study will emerge in the next section.
The three conjectures of Lagarias can be viewed as a dual conjecture about projections

of the set of memberships, as follows :

Definition 6.1. (1) If a primitive Td−cycle C meets a number n ∈ D, then gcd(n, d) = 1
(Corollary 4.4(1)) and the pair 〈n, d〉 is called a primitive membership pair, or primitive
membership, or simply membership. We denote by P the set of all primitive cycles and
by M the set of all memberships.

(2) Since, for a given membership 〈n, d〉, the corresponding primitive Td-cycle meeting
n is unique, C = τd(n) (2:2), one can extend to memberships the cyclic notations of
length and oddlength, Lemma-Definition 4.2 (4:4). A membership of the length ` and

oddlength k will be sometimes referred to as a (k, `)-membership, withM(k)
` being the set

of (k, `)−memberships :





∆ =
{

(n, d) ∈ D2
∣∣ gcd(n, d) = 1

}
;

M =
{

(n, d) ∈ ∆
∣∣ ; 〈n, d〉 is a membership ⇐⇒ C = τd(n) ∈ P(d〉

}
;

ζ : M−→ P ; ∀〈n, d〉 ∈ M , ζ〈n, d〉 = C ∈ P(d〉 ;

length〈n, d〉 = length(C) = ` ; oddlength〈n, d〉 = oddlength(C) = k ;

M(k)
` =

{
〈n, d〉 ∈ M

∣∣ ; oddlength〈n, d〉 = k , length〈n, d〉 = `
}

;

µ
(k)
` = #M(k)

` .

(6 : 1)

A diophantine interpretation of sets M(k)
` , §§7-9, (8:6), will result in a simple formula for

their cardinalities (9:2).
(3) For the same reason, the setM〈n) of all memberships with a fixed first component

(or, member number) n can be identified with both the set P〈n) of all primitive cycles
meeting n and the (sub)set of all shift numbers d ∈ Dn (2:3), with a Td−cycle (always
exactly one) meeting n :

∀n ∈ D , M〈n) =
{
C ∈ P〈n)| n ∈ Set(C)

} ∼=
P〈n) =

{
d ∈ Dn | C = τd(n) ∈ P(d〉

}
.

(6 : 2)

(4) On the other hand, the setM(d〉 of all memberships with a fixed second component
(or, shift number) d can be identified with the set of members of all Td−cycles (cf. the
notations (4:4)) :

∀d ∈ D , M(d〉 =
⋃

C∈P(d〉
Set(C) . (6 : 3)

(5) Through the mapping ζ (6:1) and natural projections of the set M of memberships,

D
∇memb←− M ∇shift−→ D , ∀〈n, d〉 ∈ M , ∇memb〈n, d〉 = n , ∇shift〈n, d〉 = d , (6 : 4)
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the four above sets are formally related, as follows :





∀n ∈ D , M〈n) = ∇−1
memb(n) ⊂M ; ζ

(
M〈n)

)
= P〈n)

ζ : M〈n)
∼=−→ P〈n) ;

∀d ∈ D , M(d〉 = ∇−1
shift(d) ⊂M ; ζ

(
M(d〉

)
= P(d〉 .

(6 : 5)

Lemma 6.2. (1) If ` < k · log2 3, then the set M(k)
` is empty.

(2) For any d ∈ D, the sets M(d〉,P(d〉 are simultaneously either empty, finite, or
infinite, with their cardinalities µ(d〉 and $(d) (4:8) related by the following formula (cf.
the notations (4:4)) :





∀d ∈ D , M(d〉 = ζ−1(P(d〉) =
⋃

C∈P(d〉
Oddset(C) ;

µ(d〉 = #M(d〉 =
∑

C∈P(d〉
oddlength(C) ;

$(d) ≤ µ(d〉 ≤ $(d) · max
C∈P(d〉

oddlength(C) .

(6 : 6)

Proof : (1) See below Theorem 8.3(1). (2) Straightforward verification. End of the
Proof.

Assuming $(d) and µ(d〉 are finite, the second numerical characteristics of dynamical
systems Dd, as our calculations show, is less volatile and, on the average, steadily growing
one : cf. Figures 3,4.

Now, the three basic conjectures of §5 can be summed up, as follows :

Conjecture 22. (1) All sets M〈n) are infinite. (2) On the other hand, all sets M(d〉
are non-empty and finite :

{
(1) ∀n ∈ D , 1 < µ〈n) = #M〈n) = #∇−1

memb(n) =∞ ;

(2) ∀d ∈ D , 1 ≤ µ(d〉 = #M(d〉 = #∇−1
shift(d) <∞ .

(6 : 7)

Corollary 6.3. If, for a given d ∈ D, the system Dd has no divergent trajectories and if,
according to the conjecture (6:7), µ(d〉 = #M(d〉 <∞, then M(d〉 is the Td−attractor of
Dd (cf. Conjecture 16, §3, and formula (4:14)) :

Ud =M(d〉 . (6 : 8)

Diophantine insights of the next chapter will shed new light on this disparate duality
between the member-number– and shift-number–projections.

Chapter III. Cyclic Diophantine Formalism.
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Figure 3. The graph of the function $
(
ξ(t)

)
, $(d) being the number of primitive

cycles, with d = ξ(t) ranging from 1 to 19999 over D (2:3) when 1 ≤ t ≤ 6667.

We introduce here and in the next section some well-known, but still very poorly
understood diophantine formulae for primitive Td−cycles [Lagarias1990], [Belaga, Mignotte
1998], and we extend them to primitive memberships (Definition 5.4). These formulae are
an indispensable tool in our analysis, §§9,10, of the above old and new conjectures, §§5, 6,
as well as of the related experimental data. This analysis will result, in particular, in both
the refinement of some known 3x+ d conjectures and the introduction of a few new ones,
§§9,10.

Note that all our previous theoretical and experimental constructions, facts, claims,
and observations, §§2-6, are restricted to, or derived from the study of (numerical results
of) iterations of the algorithms (2:1,5,6).

The strength of our diophantine machinery is best illustrated by the fact that it
permits to effectively construct (which means here, to produce a simple, transparent, and
straightforward procedure for computation of) all primitive memberships and cycles, – and
not just effectively enumerate primitive cycles, Note 1.1(3,4), – which means in recursion
theory, to prove by “recursive trial and error” that there exists a recursive, or more strongly,
primitively recursive one-to-one mapping from the set of natural numbers onto the set of
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Figure 4. The graph of the function µ(d〉 majorizing the function $(d) (6:6).

primitive cycles.

To be sure, the specific “recursive trial and error” procedure developed in this study
turns out to be very effective in localizing (as we belieive, all) primitive Td−cycles in the
rather extensive range 1 ≤ d ≤ 19999, d ∈ D, cf. §§13,14. On the other hand, many
important questions concerning primitive cycles and memberships remain out of reach
even for the diophantine formalism.

It is true that it is only using this formalism that one is able not only to directly con-
struct primitive cycles and memberships, but also to effectively evaluate the cardinalities
of sets of such cycles or memberships with given lengths and/or oddlengths, §9.

Yet, no such formulae are known either for the number µ(d〉 (6:6) of primitive member-

ships with a given shift number d, or for the numbers µ
(k)
` (d〉, µ(k)(d〉, µ`(d〉 and µ

(k)
` 〈n),

µ`〈n) of such memberships with either second, or first component fixed and of the given
length and/or oddlength, cf. §9 (according to Conjecture 22 (6:7), the cardinalities µ〈n)
and µ(k)〈n) are presumed to be infinite). Moreover, one cannot as yet discard the option
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[Belaga 1998] that the very existence of such a formula is an unsolvable problem, - in the
spirit of the negative solution [Jones, Matijasevic 1991] of Hilbert’s Tenth Problem.

The actuality of the unsolvability option is best illustrated by the fact that many (3x+
d)−related question actually depend on intricate properties of exponential diophantine
polynomials involving the numbers 2 and 3. Take, for example, the erratic behaviour,
depending on the obscure rate of diophantine approximations of the logarithm log2 3, of
marginal Collatz numbers, Definition 7.1(5). As our calculations show (Figure 6, §10), such
numbers are responsible for a disproportionally big chunk of primitive cycles with relatively
small shift numbers d. This is why their unpredictable diophantine oscillations (Lemma
7.2(4), (7:13)) represent one of the most explicitly mysterious facets (and, probably, the
most formidable single technical challenge in our search for a solution) of the 3x + 1 and
3x+ d problems.

7. Collatz Configurations, Numbers, and Coronas.

We describe in this and the next sections a simple diophantine procedure which,
from a given k−tuple P of positive integers (satisfying some elementary supplementary
conditions and called here Collatz configuration), constructs a primitive membership of
the oddlength k and length ` = |P|, with the norm | . . . | (or length) of a k−tuple defined
as the sum of its components. And we show that this construction yields a natural one-
to-one correspondence between the sets of primitive (k, `)−memberships (Definition 6.1,
above) and Collatz (k, `)−configurations (Definition 7.1, below).

Most of the formulae of these two sections are well known (cf., e. g., Corollary 8.5),
but their extensions to primitive memberships (Definition 7.1, Lemma 7.2, Theorems 8.1,3,
Lemmas 8.4, 8.9) are new and carry some important theoretical and methodological im-
plications.

In this section, we give precise definitions and detailed treatment of Collatz numbers
and coronas, mentioned already in §1. Our notations follow those of [Belaga, Mignotte
1998], with some modifications and extensions.

Definition 7.1. (1) Let Λ ⊂ N2 be the set of all pairs of positive integers (k, `), satisfying
the following equivalent inequalities :

λk,` = `− dk · log2 3e ≥ 0 ⇐⇒ 2` − 3k > 0 , (7 : 1)

with the number λk,` called the (k, `)−margin.
(2) Let σk be the circular (counterclockwise) permutation on k−tuples of objects from

a given domain. In this paper, we deal only with k−tuples of positive integers omit the
subscript k when its value is implied by the context) :

∀P = 〈p1, . . . , pk〉 ∈ Nk , σ(P) = σk(P) = 〈p2, . . . , pk, p1〉. (7 : 2)

For any k ≥ 1, a k-tuple Pk of positive integers is called aperiodic, if all k outcomes of its
circular permutations are different :

σj(P) 6= P = σk(P) , 1 ≤ j < k . (7 : 3)
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(3) An aperiodic k-tuple P, satisfying the condition (cf. (7:1))

` = |P| = p1 + . . .+ pk ≥ dk · log2 3e , (7 : 4)

is called a Collatz (k, `)−configuration, or (Collatz) k−configuration of the length `. We

denote by Π
(k)
` the set of all Collatz (k, `)–configurations, and by Π their (disjoint) union :

∀(k, `) ∈ Λ , Π
(k)
` ⊂ Nk , π

(k)
` = #Π

(k)
` ; Π =

⊎

(k,`)∈Λ

Π
(k)
` . (7 : 5)

(4) For any Collatz configuration P (7:1-5), define the integers A,B, F,G,H ∈ D, as
follows :

a, b, f, g, h : Π −→ D ;

∀(k, `) ∈ Λ ∀P = 〈p1, . . . , pk〉 ∈ Π
(k)
` ,





A = a(P) , B = Bk,` = b(P) , F = f(P) , G = g(P) , H = h(P) ;

A =

{
1, if k = 1 ;
3k−1 + 2p1 · 3k−2 + . . .+ 2p1+...+pk−2 · 3 + 2p1+...+pk−1 , otherwise ;

B = 2` − 3k ; H = gcd(A,B) ; F =
A

H
; G =

B

H
; gcd(F,G) = 1 .

(7 : 6)

(5) According to (7:1), the integer B = Bk,` is positive; it is called here Collatz
(k, `)−number. A Collatz number Bk,` is called marginal, if ` = dk · log2 3e or, equivalently,
if the (k, `)−margin is zero, λk,` = 0 (7:1).

(6) The set of values A for all Collatz (k, `)−configurations,

Ak,` = Image
(
a
∣∣
Π

(k)

`

)
= a

(
Π

(k)
`

)
⊂ D , (7 : 7)

is called Collatz (k, `)−corona, or Collatz Bk,`−corona, or simply corona.

Lemma 7.2. (1) The total number χk,` of Collatz (k, `)−configurations can be calculated
according to the following formula :

∀(k, `) ∈ Λ





χk,` = #Π
(k)
` =

{(`−1
k−1

)
, if gcd(k, `) = 1 ,

∑
r| gcd(k,`) µ(r) ·

( `
r−1
k
r−1

)
, otherwise ,

χk,` ≡ 0 (mod k) ,

(7 : 8)

where µ is the Möbius function [Nathanson 2000] :

µ(m) =

{
1 , if m = 1 ,
(−1)q , if m is the product of q distinct primes ,
0 , if m is divisible by a square of a prime .
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The low part of the formula (7:8), defined for pairs (k, `) with the property gcd(k, `) > 1,
is universal and covers – but also obscures – the special upper case gcd(k, `) = 1. (See
[Lagarias 1990] for an analogue of the formula (7:8).)

(2) The below lower and upper bounds to members A of Collatz corona are sharp :

∀(k, `) ∈ Λ

∀A ∈ Ak,`

} {
Ak,` = 3k − 2k , Ak,` = 2`−k+1 ·

(
3k−1 − 2k−1

)
+ 3k−1 ;

3k−1 < Ak,` ≤ A ≤ Ak,` < 2`−k+1 · 3k−1 .
(7 : 9)

(3) The function a does not actually depend on the k−th component pk of a Collatz
configuration (7:2-4), and its values for two k−configurations of different lengths can be
equal. More precisely,

∀(k, `) ∈ Λ ∀j ≥ 1 , (k, `+ j) ∈ Λ & Ak,` ⊂ Ak,`+j . (7 : 10)

(4) With the exception of the trivial case (corresponding to the primitive T1−cycle
(1:3) : cf. Corollary 8.5)

k = 1, ` = 2, A1,2 = {1}, B = 1 ,

a Collatz number never belongs to the respective Collatz corona and, if k ≥ 4, is located
below the upper bound (7:9) of the corona,

∀(k, `) ∈ Λ , B = Bk,` < 2`
(
< Ak,` , if k ≥ 4

)
. (7 : 11)

Non-marginal Collatz numbers (Definition 7.1(5)) are located above the lower bound (7:9)
to Collatz corona (cf. (7:1)) :

∀(k, `) ∈ Λ , λk,` = `− dk · log2 3e ≥ 1 =⇒ Bk,` > 3k · 2λk,`−1 > Ak,`. (7 : 12)

Some marginal Collatz numbers“descend” far below this limit, with the following (appar-
ently, the best known and absolutely) nontrivial lower bound (10:25) [Rhin 1987] :

∀(k, `) ∈ Λ , ` = dk·log2 3e =⇒





Bk,` = 3k ·
(
2` · 3−k − 1

)
= 3k ·

(
2εk − 1

)
,

0 < εk = dk · log2 3e − k · log2 3 < 1 ,

3k−1 · k−13.3 < Bk,` < 20 · εk−1 ·Ak,`
(7 : 13)

(5) The mappings





∀(k, `) ∈ Λ , a
(k)
` : Π

(k)
` → D ;

b : Λ→ D ;

β = (a, b) : Π→ D2 ; γ = (f, g) : Π→ D2 ,

(7 : 14)
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are injective. The injectivity of a
(k)
` implies, according to (7:8),

∀(k, `) ∈ Λ , #Ak,` = #a
(
Π

(k)
`

)
= #Π

(k)
` = χk,` . (7 : 15)

(6) The Collatz number B = Bk,` (7:6) depends only on the dimension k and length
` of its Collatz configuration. In particular, the mapping b is invariant under the action of
the circular permutation σ (7:2),

∀(k, `) ∈ Λ ∀P ∈ Π
(k)
` , b(P) = b

(
σ(P)

)
. (7 : 16)

(7) As to the mapping a, its injectivity implies that its actions on all k iterations of
the permutation σ of any Collatz k−configuration are different :

∀(k, `) ∈ Λ ∀P ∈ Π
(k)
` , a

(
σi(P)

)
6= a

(
σj(P)

)
, 0 ≤ i < j ≤ k − 1 . (7 : 17)

This property justifies the following shorthand notation (cf. Definition 7.1(2)) :

{
∀(k, `) ∈ Λ ∀A ∈ Ak,` ∃ ! P = a−1(A) ∈ Π

(k)
` , A = a(P) ;

define : σ(A) = a
(
σ(P)

)
.

(7 : 18)

(8) The numbers A ∈ Ak,`, σ(A), and B = Bk,` are related by the formulae :

∀(k, `) ∈ Λ

∀P = 〈p1, . . . , pk〉 ∈ Π
(k)
`

} {
A = a(P)

B = b(P)

}
=⇒

{
3A+B = 2p1 · σ(A) ;

σ(A) = odd(3A+B) .
(7 : 19)

(9) The last identity implies that, according to (7:6),

∀(k, `) ∈ Λ ∀A ∈ Ak,` , H = gcd(A,B) = gcd
(
A, σ(A), σ2(A), . . . , σk−1(A), B

)
.

(7 : 20)
(10) In particular, according to (4:1), (7:16-18,19), the mapping h is invariant under

the action of σ, albeit it substantially depends on P ∈ Πk,`, and not just, as b, only on its
dimension parameters k, `. And so is the mapping g :

∀P ∈ Π





σ(H) = h
(
σ(P)

)
= gcd

(
a
(
σ(P)

)
, b
(
σ(P)

))
= gcd

(
σ(A), B

)
= H ;

σ(G) = g
(
σ(P)

)
=
σ(B)

σ(H)
=
B

H
= G .

(7 : 21)

(10) Respectively, the action of σ on f is described by the formula similar to that for
a (7:19) :

∀P ∈ Π , σ(F ) = f
(
σ(P)

)
=
σ(A)

σ(H)
= odd

(
3A

H
+
B

H

)
= odd(3F +G) , (7 : 22)
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with all k numbers σj(F ) = f
(
σj(P)

)
being different :

∀(k, `) ∈ Λ ∀P ∈ Π
(k)
` , σi(F ) 6= σj(F ) , 0 ≤ i < j ≤ k − 1 . (7 : 23)

Proof : (1) (A binary version of the formula (7:8) can been found in [Lagarias 1990])
We omit first the aperiodicity condition and prove the upper part of the formula (7:8) :
the number of different representations of a positive integer ` as a sum of k < ` positive
integers, p1 + . . . + pk, with the fixed order of summands pj , is equal to

(
`−1
k−1

)
. A pure

combinatorial proof is to decompose a `−tuple of ones in k consequitive (say, from left to
right) non-empty segments of ones, by choosing the ends of these segments, with the end
of the k−th (rightmost) segment being the rightmost one of the `−tuple. This leaves us
with the choice of k − 1 remainging ends out of `− 1 free ones.

Now, if gcd(k, `) = 1, all such representations are aperiodic. Otherwise, gcd(k, `) =
q > 1, with a periodic representation appearing, for any divisor r | q, as the concatenation
of r identical aperiodic representations of `

r by k
r summands. The rest is the ususal

techniques of Möbius inclusion-exclusion formula.
(2-10) Straightforward verification. End of the Proof.

8. Exponential Diophantine Criteria for Memberships and Cycles.

The recursive formulae (7:21,22) for the action of σ on the pair of mappings f, g
mirrors the iterative formulae (4:4(2,3)) for calculation of an odd member of a primitive
cycle from the previous one. This mirroring is at the heart of the following pair of dual
constructions.

The first construction builds, from any Collatz configuration, a primitive membership,
Theorem 8.1. The second one, inversely, reconstructs from any primitive membership its
unique Collatz configuration prototype, Theorem 8.3.

Theorem 8.1. (1) For any Collatz configuration P, the pair γ(P) of positive integers
(7:14) is a primitive membership :

γ : Π −→M ; ∀(k, `) ∈ Λ

{
∀P ∈ Π

(k)
` , γk,` : Π

(k)
` −→M(k)

` ;

γk,`(P) = 〈f(P), g(P)〉 = 〈F,G〉 ∈ M(k)
` .

(8 : 1)

(2) The corresponding primitive TG−cycle with the odd member number F,C =
ζ〈F,G〉 (6:1) is constructed, as follows. According to (7:23), for any k-configuration P, all
components of the k−tuple

Φ(P) =
{
F = f(P), σ(F ) = f

(
σ(P)

)
, . . . , σk−1(F ) = f

(
σk−1(P)

)}
∈ Dk (8 : 2)

are different. Suppose n0 = σj(F ), for some j, 0 ≤ j ≤ k − 1, is the minimal member of
the k−tuple Φ(P) (8:2). Then the k−tuple σj

(
Φ(P)

)
is the odd-part Odd(C) (4:4(2)) of

a primitive TG−cycle C.
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According to Lemma 7.2(5), the mapping γ is injective : to different Collatz configura-
tions correspond different primitive memberships. It is also surjective, and thus, represents
a natural one-to-one correspondence between Collatz configurations and memberships. We
shall prove it by displaying a procedure θ, inverse to γ, which assigns to a membership its
unique Collatz configuration counterpart.

The procedure θ will be initially defined on the set M̃ of lowermost primitive member-
ships (Definition 8.2, Theorem 8.3(1-4)), and then extended to all mamberships (Theorem
8.3(5)) :

Definition 8.2. (1) A primitive membership 〈n, d〉 is called lowermost if its left com-
ponent n is the minimal (odd) member of the corresponding primitive cycle. Thus, in
accordance with the notations (4:4(2)),

〈n, d〉 is lowermost ⇐⇒ C = ζ〈n, d〉 =
{
n = m0,m1, . . . ,m`−1

}
. (8 : 3)

(2) Respectively, Collatz (k, `)−configuration P is called lowermost if the primitive
membership γ(P) (8:1) is lowermost. We use tilde sign for notations for sets of lowermost

primitive memberships and Collatz configurations : M̃, Π̃
(k)
` , etc.

(Some basic properties of lowermost memberships and configuration will be the subject of
the below Lemma 8.7, and their applications to Conjecture 20, §5, can be found in §9.)

Theorem 8.3. (1) Let C be a primitive Td-cycle (4:4) of the length ` and oddlength k,
and let Pk` be the set of all such cycles. Then (k, `) ∈ Λ.

(2) Let Pk` be the set of all primitive cycles of the length ` and oddlength k.

Let C be a primitive Td-cycle, and let n0 be its minimal member. Then, tautologically,
the pair (n0, d) = ω(C) is the lowermost primitive membership uniquely characterising C,
and this one-to-one correspondence is inverse to ζ, Definition 6.12 (6:1) :

P
ω
−→
←−
ζ

M̃ : ∀(k, `) ∈ Λ , Pk`
ω
−→
←−
ζ

M̃(k)
` . (8 : 4)

(3) For any C ∈ Pk` , let the k−tuple Even(C) be defined as above, (4:4(3)). Then,
Even(C) is Collatz (k, `)−configuration.

(4) Moreover, Even(C) is a lowermost configuration, such that γ
(
Even(C)

)
= ω(C).

Accordingly, the construction θ can be defined for the subsets M̃, Π̃ of lowermost mem-
berships and configurations, as follows :

P
ω
−→
←−
ζ

M̃

Even ↘ ↗ γ θ|M̃ = Even ◦ ζ : M̃ ω−→ P Even−→ Π̃ .

Π̃

(8 : 5)
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(5) Let now, for some (k, `) ∈ Λ, 〈n, d〉 ∈ M(k)
` be a primitive (not necessary, low-

ermost) membership, and let C = ζ〈n, d〉 be the corresponding primitive Td-cycle (6:1)
meeting n, of the length ` and oddlength k. Being an odd member of C, the integer n can
be identified with some nr ∈ Odd(C), 0 ≤ r ≤ k− 1 (4:4(2)). The k−tuple Even(C) being
Collatz configuration, so is its σr−permutation. Define θ〈n, d〉 = σr

(
Even(C)

)
and verify

that θ is inverse to γ :

Π
γ
−→
←−
θ

M :





∀〈n, d〉 ∈ M̃ ⊂M , θ〈n, d〉 = Even
(
ζ〈n, d〉

)
; cf. (8 : 5)

∀〈n, d〉 ∈ M ,





θ〈n, d〉 = σr
(

Even
(
ζ〈n, d〉

))
,

n = nr ∈ Odd
(
ζ〈n, d〉

)
;

γ
(
θ〈n, d〉

)
= 〈n, d〉 ;

∀P ∈ Π , θ
(
γ(P)

)
= P ;

∀(k, `) ∈ Λ , Π
(k)
`
∼=M(k)

` : Π
(k)
`

γ
(k)

`−→
←−
θ

(k)

`

M(k)
` ;

µ
(k)
` = #M(k)

` = π
(k)
` = #Π

(k)
` .

(8 : 6)

Or at greater length,

∀(k, `) ∈ Λ

∀〈n, d〉 ∈ M(k)
`

}





C = ζ〈n, d〉 , k = oddlength(C) , ` = length(C) ,

n = nr ∈ Odd(C), 0 ≤ r ≤ k − 1 ;

θ〈n, d〉 = P = 〈p1, . . . , pk〉 = σr
(
Even(C)

)
=

σr〈e1, . . . , ek〉 ∈ Nk ;

∀j (1 ≤ j ≤ k) , pj =

{
ej+r , if 1 ≤ j ≤ k − r
ej+r−k , otherwise

;

|P| = p1 + . . .+ pk = e1 + . . .+ ek = ` .

(8 : 7)

Proof : Straightforward verification based on the assertions of Lemma 7.2. End of the
Proof.

The constructions of Theorems 8.1, 8.3 imply the following well-known diophantine
criteria [Lagarias1990], [Belaga, Mignotte 1998] for the existence of primitive cycles with
given parameters n and/or d :

Corollary 8.4. (1) Given a shift number d and an integer n (d, n ∈ D), there exists
a (not necessary primitive) cycle Td−cycle of the length ` and oddlength k meeting n iff
there exists a member A of Collatz Bk,`−corona, A ∈ Ak,`, such that

d ·A = n ·Bk,` . (8 : 8)
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(2) Given a shift number d ∈ D, there exists a primitive Td−cycle of the length ` and
oddlength k, iff there exists a member A of Collatz Bk,`−corona, such that

d =
Bk,`

gcd(A,Bk,`)
. (8 : 9)

Using (8:9), one can “translate” Conjectures 17, 18 into their diophantine equivalent,
Conjecture 23 below.

(3) The formula (8:9) implies the following congruences :

d =
Bk,`

gcd(A,Bk,`)
=⇒

{
(1) Bk,` ≡ 0 (mod d) ;

(2) d ·A ≡ 0 (mod Bk,`) .
(8 : 10)

The first congruence is a necessary condition for a Td−cycle to be of the length ` and
oddlength k. The necessary condition provided by the second congruence is also sufficient,
if d = 1 or if d is prime. In particular, if d = 1, then Bk,` | A. Which implies the
equivalence between the cyclic part of the 3x + 1 conjecture, Conjecture 4, §1, and its
diophantine version, Conjecture 5, §1.

(4) According to (8:10), below Conjecture 24 is formally stronger than to the finite-
number-of-primitive-cycles conjecture (Conjectures 18, 22(2) (6:7(2 right))), but, in fact,
is equivalent to it.

(5) Similarly, given an integer n ∈ D, there exists a primitive cycle of the length `
and oddlength k meeting n iff there exists a member A of Collatz (k, `)−corona, such that

n =
A

gcd(A,Bk,`)
. (8 : 11)

Thus, Conjectures 19, 20 are equivalent to the below diophantine Conjecture 25.
(6) The formula (8:9) implies the following congruence :

n =
A

gcd(A,Bk,`)
=⇒

{
(1) A ≡ 0 (mod n) ;

(2) n ·Bk,` ≡ 0 (mod A) .
(8 : 12)

In particular, if n = 1 or n ≥ 5 is prime and (k, `) ∈ Λ, there exists a primitive
(k, `)−membership with the member number n, iff the congruence (8:12(2)) holds for
some A ∈ Ak,`.

(7) For composite n ∈ D, the member–number analogue, based on the condition
(8:12), of below Conjecture 24 does not imply the infinite-number-of-member-numbers
Conjecture 20. In fact, an assumption that the congruence in (8:12) has an infinite number
of solutions formally implies only that (i) n is a member of an infinite number of cycles,
not necessary primitive, and (ii) that some divisor q of n, 1 < q < n, belongs to an infinite
number of primitive cycles.

(8) Finally, the combination of the above claims (8:9,11) yields the following criterion.
A pair of integers (n, d) ∈ D2 is a primitive membership of the length ` and oddlength k
iff gcd(n, d) = 1 and there exists a member A of Collatz (k, `)−corona, such that
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n =
A

gcd(A,Bk,`)
, d =

Bk,`
gcd(A,Bk,`)

. (8 : 13)

Conjecture 23. For any d ∈ D, there exists (1) at least one and (2) at most finite
number of pairs (k, `) ∈ Λ, such that the equlity (8:9) holds for at least one A ∈ Ak,` .
Moreover (cf. the notations (6:6)),

∀d ∈ D ∀(k, `) ∈ Λ , µ
(k)
` (d〉 = #

{
P ∈ Π

(k)
`

∣∣ Bk,` = d · gcd(a(P), Bk,`)
}
. (8 : 14)

Conjecture 24. For any d ∈ D, there exists only finite number of pairs (k, `) ∈ Λ, such
that the congruence (8:10) holds for some A ∈ Ak,` .

Conjecture 25. For any n ∈ D, there exists an infinite number of pairs (k, `) ∈ Λ, such
that the congruence (8:11) holds for some A ∈ Ak,` . Moreover (6:6),

∀n ∈ D ∀(k, `) ∈ Λ , µ
(k)
` 〈n) = #

{
P ∈ Π

(k)
`

∣∣ a(P) = n · gcd(a(P), Bk,`)
}
. (8 : 15)

Proof of Corollary 8.4 : Only the claim (4) needs a hint of a proof (by induction).
According to the above claim (3), Conjectures 18, 23 are equivalent in the case of a prime
shift number d = 5, 7, 11, . . .. Let now d ∈ D, d ≥ 5 be composite, and suppose there exists
an infinite set of triples

{
k, `, Ak,`

}
, with (k, `) ∈ Λ, Ak,` ∈ Ak,`, satisfying the congruence

(8:10). Then, for any such triplet, the pair

nk,` =
Ak,`

gcd(Ak,`, Bk,`)
, dk,` =

Bk,`
gcd(Ak,`, Bk,`)

,

defined according to (8:13), is a primitive membership, with dk,` < d being a divisor of d.
The number of divisors of d being finite, at least one of those divisors < d should be the
shift number for an infinite number of primitive memberships (cf. also Corollary 4.7(10),
(4:10-12)). Contradicts the inductive assumption clause. End of the Proof.

Example 8.5. (1) The shift number d = 6487 = 13 · 499 has the representation
6487 = 216 − 310. Thus, any combination of parameters p1, . . . , p10, such that

p1 + . . .+ p10 = 16 > 10 · log2 3 = 15.8496 , gcd
(
a(p1, . . . , p10), 6487

)
= 1 ,

is a solution of the equation

d = g(p1, . . . , p10) =
B10,16

gcd(a(p1, . . . , p10), B10,16)
= 6487 ,

and thus, corresponds to a primitive T6487-cycle of the length 16 and oddlength 10. It
is feasible to check even by hand that there are 456 such solutions. We have found also
78 solutions (among 534 primitive T6487-cycles altogether), corresponding to the below
congruences,

35



      

232 − 320 ≡ 248 − 330 ≡ 264 − 340 ≡ 296 − 360 ≡ 0 (mod 6487) .

But “why” are elimintated an infinite number of other possible candidates for the
congruence Bk,` ≡ 0 (mod d) (8:10(1)) ? (2) In the case d = 827, the smallest congruence
of the type (8:10(1)) is :

15 182 893 = 224 − 313 ≡ 0 (mod 827),

with experimentally found 4 solutions. Two more solutions correspond to the pair (`, k) =
(48, 26), with one solution corresponding to (72, 39). But, again, “why” not others ? Say,
296 − 352, or maybe 282 − 310, with its prime factorization :

282 − 310 = 4 835 703 278 458 516 698 765 655 =

5 · 827 · 3 557 · 6 793 · 91 009 · 531 807 317.

(3) The answer, suggested by the last example, might be that the prime factorization
“signature” of numbers 2` − 3k cannot be “captured” in the congruence (8:10(2)), beyond
a certain finite limit, by numbers of the type A ∈ Ak,`. In other words, relatively big
prime factors are, apparently, common to all Collatz numbers above certain limits, and
such factors are beyond the prime factorization “power” of members of respective Collatz
coronas.

(4) On the other hand, as Conjectures 20, §5, and 28, 29, §11, suggest, there ex-
ist no similar obstacles in solving the congruence (8:12(2)), probably because there exist
enough Collatz numbers with relatively big divisors whose prime factorizations comprise
only relatively small prime factors. These insights show the apparent importance of sur-
prising sporadic properties of numbers 2`− 3k in an eventual solution of 3x+ 1 and 3x+ d
problems.

Notations 8.6. The mutually inverse isomorphisms γ, θ (8:6) between the corresponding
(sub)sets of Collatz configurations and primitive memberships permit us to extend to
Collatz configurations the notations (6:5,6) for the sets of Collatz configurations yielding
either n, or d, as, respectively, the corresponding member- or shift-number :
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(1) ∀n ∈ D , Π〈n) = θ
(
M〈n)

)
; π〈n) = #Π〈n) ;

(2) ∀(k, `) ∈ Λ , Π
(k)
` 〈n) = θ

(k)
`

(
M(k)

` 〈n)
)

;

(3) π
(k)
` 〈n) = #Π

(k)
` 〈n) = µ

(k)
` 〈n) = #M(k)

` 〈n) ;

(4) ∀ ≥ 1 , Π(k)〈n) = θ(k)
(
M(k)〈n)

)
;

(5) π(k)〈n) = #Π(k)〈n) = µ(k)〈n) = #M(k)〈n) ;

(6) ∀d ∈ D , Π(d〉 = θ
(
M(d〉

)
;π(d〉 = #Π(d〉 ;

(7) ∀(k, `) ∈ Λ , Π
(k)
` (d〉 = θ

(k)
`

(
M(k)

` (d〉
)

;

(8) π
(k)
` (d〉 = #Π

(k)
` (d〉 = µ

(k)
` (d〉 = #M(k)

` (d〉 .
(9) ∀k ≥ 1 , Π(k)(d〉 = θk

(
M(k)(d〉

)
;

(10) π(k)(d〉 = #Π(k)(d〉 = µ(k)(d〉 = #M(k)(d〉 .

(8 : 16)

Chapter IV. The Primitive Cyclic Structure of Systems Dd .

The diophantine formalism of Chapter III, with its fundamental isomorphism between

sets of Collatz configurations and primitive memberships, Π
γ
−→←−
θ

M (8:6), can be used in

two ways to extract new information about properties of (sets of) primitive memberships
and/or cycles.

Namely, the formalism can be applied either directly, by constructing (sets of) primi-
tive memberships/cycles as γ−images of some well-defined (sets of) Collatz configurations.
Or inversely, one can study properties of ω−images of well-defined (sets of) primitive mem-
berships/cycles.

The direct approach will be the main subject of the next two sections. The inverse
procedure will be instrumental in the study of (sets of) primitive memberships/cycles with
a given, first, shift number, §10, and then, member number n, §11.

9. Memberships and Cycles with Fixed Shift Number and/or Member
Number.

A fine example of the effectiveness of the direct approach mentioned above represent
elementaty solutions of the following problems (see also [Lagarias 1990]) :

Problem 9.1. (1) For a given pair (k, `) ∈ Λ, find the number of all primitive cycles of
the length ` and oddlength k.

(2) Find the number of all primitive cycles of the length ` ≥ 2.

According to the below notations (9:1), we need actually to calculate the parameters

$
(k)
` and $` :
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Notations 9.2. Let Z,Z(k), Z`, Z
(k)
` and be the generic notations for the sets of primi-

tive memberships M, Collatz configurations Π, or primitive cycles P, respectively, of the

length ` and/or oddlength k, and let z, z(k), z`, z
(k)
` and z(x), z(k)(x), z`(x), z

(k)
` (x) be the

correspondingc notations for the cardinalities of such sets, µ〈n), µ(d〉, π〈n), π(d〉, $(d) (de-
fined in (6:6), (8:16), and (4:8), respectively). These sets and cardinalities are related by
the following obvious equalities :





Z` =

b`·log3 2c⋃

k=1

Z
(k)
` , Z(k) =

∞⋃

`=dk·log2 3e
Z

(k)
` , Z =

⋃

k≥1

Z(k) =
⋃

`≥2

Z` ;

z` =

b`·log3 2c∑

k=1

z
(k)
` , z(k) =

∞∑

`=dk·log2 3e
z

(k)
` , z =

∑

k≥1
`≥dk·log2 3e

z
(k)
` =

∑

k≥1

z(k) =
∑

`≥2

z` ;

z`(x) =

b`·log3 2c∑

k=1

z
(k)
` (x) , z(k)(x) = . . . , z(x) = . . . .

(9 : 1)
In the above notations, the following lemma solves Problem 9.1 (a different solution

can be found in [Lagarias 1990]) :
Lemma 9.3. (1) According to Theorems 8.1, 8.3, Lemma 7.2(1), and the formulae (8:6)
the number of primitive memberships of the length ` and oddlength k (6:1) is equal to χk,`
(7:8) :

∀(k, `) ∈ Λ , µ
(k)
` = π

(k)
` = χk,` ≡ 0 (mod k) . (9 : 2)

Respectively, the number $
(k)
` of primitive cycles of the length ` and oddlength k is equal

to :

∀(k, `) ∈ Λ , $
(k)
` = #P(k)

` =
χk,`
k

. (9 : 3)

(2) The number $` of primitive cycles of a fixed length ` ≥ 2 is equal to (cf. the
summation formulae (9:1)) :

∀` ∈ N, ` ≥ 2 , $` =

b`·log3 2c∑

k=1

χk,`
k

. (9 : 4)

Example 9.4 : Case ` = 14, k = 3 < 8 = b` · log3 2c. According to (7:8), gcd(3, 14) = 1
implies :

$3
14 =

χ3,14

3
=

1

3

(
2

13

)
= 26 .

We have found experimentally all these 26 primitive cycles, namely : two T1487−cycles,
starting at n = 11, 13, respectively, and 24 T16357−cycles, starting at, respectively,
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n = 19, 23, 29, 31, 37, 47, 49, 53, 65, 79, 85, 89, 97,

149, 161, 169, 185, 277, 233, 271, 289, 313, 361, 569 .

This example is representative of one of the series of (successful) controlling checks of the
exhaustiveness of our search procedure. In fact, according to the below limits (9:5) on
values of shift numbers of primitive cycles with given length and oddlength, the possible
values of d for a cycle C ∈ P3

14 belong to the range of this study, d ≤ B3,14 = 16357 < 19999,
and a really thorough search should locate all 26 candidates.

As to the “full” cardinalities µ〈n), µ(d〉 and $(d) (the subjects of Conjectures 17-22,
§§5, 6), or even their “oddlength” versions, µ(k)〈n), µ(k)(d〉, $(k)(d), there do not ap-
parently exist as elementary or, at least, as transparent formulae for their (k, `)− and
`−refinements, as the above (9:2-4). Still, the below basic diophantine reductions of Con-
jecture 22, §6, provide us with new insights, otherwise unavailable, into the properties of
the parameters in question : see Conjecture 23, §10, and Conjecture 25, §11.

The following, only partially understood phenomena, illustrate the underlying arith-
metical difficulty : the absense of almost any predictable correlation betweeen the pair of
parameters (k, `) and the values of components of the corresponding primitive membership
〈n, d〉. Another salient feature of the emerging picture is the pervasiveness of the disparate
(n, d)−duality, §5 : not only are the corresponding (n, d)−properties complementary, the
levels of difficulty of their existing and/or prospective proofs are complementary, too.

Problem 9.5 The bounds (7:9) and (7:11-13) to values of, respectively, A ∈ Ak,` and
B = Bk,` imply the following, a priori exponentially wide bounds to the components
n = f(P), d = g(P) (7:6) of a primitive membership of given length and oddlength :

∀(k, `) ∈ Λ ∀P ∈ Π
(k)
` ,

{
1 ≤ n = f(P) ≤ Ak,` < 2`−k+1 · 3k−1 ;

1 ≤ d = g(P) ≤ Bk,` < 2` .
(9 : 5)

Are these bounds sharp or, at least, “relatively” sharp?

Note that if some of those bounds are (relatively) sharp, and remain so with ` growing,
it would imply, in particular, that to relatively “small’ pairs (k, `) correspond sometimes
exponentially big values of n and/or d, whereas for some relatively “big” (k, `), the values
of n and/or d are (absolutely or relatively) small. See §§10-11 for the study of these and
related phenomena for, respectively, shift numbers d and member numbers n.

10. Shift Number Conjectures and Claims.

The shift number conjectures 17, 18, §5, or equivalently, 22(2), §6, 23, §8, assert
that, for any d ∈ D the number $(d) (5:1,2) (or equivalently, µ(d〉 (6:7(2))) of primitive
Td−cycles (respectively, memberships) is a positive integer (cf. the above generic notations
(9:1)) :
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∀d ∈ D





1 ≤ $(d) =





∑

`≥2

∑

1≤k<`·log3 2

$
(k)
` (d) =

∑

`≥2

$`(d)

∑

k≥1

∑

`>k·log2 3

$
(k)
` (d) =

∑

k≥1

$(k)(d)





< ∞ ;

1 ≤ µ(d〉 =





∑

`≥2

∑

1≤k<`·log3 2

µ
(k)
` (d〉 =

∑

`≥2

µ`(d〉

∑

k≥1

∑

`>k·log2 3

µ
(k)
` (d〉 =

∑

k≥1

µ(k)(d〉





< ∞ .

(10 : 1)

We are concerned in this section with the finite-number-of-primitive-cycles conjec-
ture (Conjectures 18, §5, 23, §8,), or, in other words, with the finiteness of the sums in
(10:1). The double summations of (10:1) suggest two similar strategies : in each case, first
prove that every summand is finite (which either have been already done above, for the
`−summunds, or will be done in this sections, for their k−counterparts), and then prove
that the number of non-zero summands is finite (the most difficult, and still open parts of
the problem).

In the first case, the summands are $`(d) or µ`(d〉 (i. e. the numbers of Td−cycles
or memberships of the given length `), and the task to prove the finiteness of summands
(which are themselves sums of a finite number of finite summands) is quite easy. In the
first, and longest, part of this section, we study the dependence of the numbers of primitive
cycles and memberships with a given shift number on their lengths and margins (Corollary
10.1, Lemmas 10.2, 10.5, 10.7, Conjectures 26, 27).

In the second case, the summands are, by definition, sums of infinite number of finite

summands $
(k)
` (d) or µ

(k)
` (d〉, and their finiteness cannot be taken for granted. We con-

clude this section with an improved (both in substance and in methodology) version of the
upper bound [Belaga, Mignotte 1998] to the numbers of primitive cycles and memberships
with given shift number and of the given oddlength.

Corollary 10.1. According to (9:1-4),

∀(k, `) ∈ Λ





M(k)
` =

⋃

d∈D

M(k)
` (d) =⇒





µ
(k)
` (d〉 ≤ χk,` <∞ ;

µ`(d〉 ≤
b`·log3 2c∑

k=1

χk,` <∞ ;

Pk` =
⋃

d∈D

Pk` (d) =⇒





$
(k)
` (d) ≤ χk,`

k
<∞ ;

$`(d) ≤
b`·log3 2c∑

k=1

χk,`
k

<∞ .

(10 : 2)

In other words, the number of primitive memberships (cycles) with a given shift number
and of a given length is finite.
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This fact implies (Lemma 10.2 below) that the following conjecture is equivalent to
the finite-number-of-primitive–Td−cycles conjecture (Conjectures 18, 22(2) (6:7(2 right)))
:

Conjecture 26. For any d ∈ D, there exists an upper bound L(d) ≥ 2 to the lengths of
primitive Td−memberships and cycles :

∀d ∈ D ∃L = L(d) ≥ 2 ∀` > L , µ`(d〉 = $`(d) = 0. (10 : 3)

Lemma 10.2. Conjecture 26 is equivalent to Conjectures 18, 22(2) (6:7(2 right)), 24.

Proof : (1) If $(d) < µ(d〉 < ∞ (Conjectures 18, 22(2) (6:7(2 right))), then only finite
number of summands in the following sums can be positive, – which is equivalent to (10:3)
:

$(d) =
∑

`≥2

$`(d) < µ(d〉 =
∑

`≥2

µ`(d〉 <∞. (10 : 4)

(2) According to Corollary 10.1, all summands in two sums of (10:4) are finite. If,
starting with some ` = L(d)+1 (Conjecture 26), they are equal to zero, then the parameters
$(d), µ(d〉 are finite. End of the Proof.

Problem 10.3. (1) How small can be the minimal length of a primitive Td−membership
or cycle?

(2) How big can be its maximal length ?

Definition 10.4. (1) Assuming Conjectures 17 and 18, §5, i. e. (cf. (6:5,6(2))),

1 ≤ $(d) < µ(d〉 <∞ ,

define, for any d ∈ D, its upper and lower length limits, `(d) and `(d), as follows :

∀d ∈ D , `(d) = max{` ≥ 2
∣∣ µ`(d〉 6= 0} , `(d) = min{` ≥ 2

∣∣ µ`(d〉 6= 0} . (10 : 5)

(2) Wild fluctuations of the functions `(d) and `(d) (Figure 5) are cancelled, and their
occasional, but steady grows is preserved, by the following upper and lower length limit
threshold functions :

∀d ∈ D ,

{
L(d) = max{`(d′)

∣∣ d′ ∈ I1,d} ;

L(d) = max{`(d′)
∣∣ d′ ∈ I1,d} .

(10 : 6)

(For the definition of the lower length limit `(d) (10:5) to be sound, one needs Con-
jecture 17 : there exsists at least one primitive Td−membership. For the soundness of the
defintion of the upper length limit `(d), one needs both conjectures : cf. Conjecture 26,
with L = L(d) = `(d) chosen as the upper bound in (10:3).)

The below solution of Problem 10.3(1) gives a trivial but rather realistic universal
lower bound to lengths of Td−memberships (Lemma 10.5(1)), and demonstrates that in
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an infinite number of cases this universal lower bound can be considerably strengthened
(Lemma 10.5(2) [Lagarias 1990]).

Neither upper, nor nontrivial lower bounds to the upper length limit `(d) are known
(according to Conjecture 26 and Lemma 10.2, any universal upper bound would prove
the finite-number-of-primitive-cycles conjecture, Conjecture 18). However, since, trivially,
`(d) ≥ `(d), the below lower bounds (10:8) for an infinite series of shift numbers provide
the only available now nontrivial lower bounds to the upper length limit for at least some
shift numbers.

Lemma 10.5. (1) The following lower bound to the lower length limit is universal :

∀d ∈ D , `(d) ≥ log2 d . (10 : 7)

(2) For an infinitely growing series of shift numbers, d1, d2, . . . , dj , . . ., the lower length
limit has the following lower bound :

∃f : N −→ N , i < j ⇐⇒ f(i) < f(j) & ∀j ∈ N , `
(
df(j)

)
≥ 5

4
· (df(j))

1
3 . (10 : 8)

Proof : (1) According to (8:9), :

∀` ≥ 2 ∀(k, `) ∈ Λ ∀P ∈ Π
(k)
` , d =

Bk,`

gcd
(
a(P), Bk,`

) ≤ Bk,` < 2` , (10 : 9)

which implies the bound (10:7). As our calculations show, in many cases, the bound (10:7)
is very close to be sharp.

(2) See [Lagarias 1990]. End of the Proof.

Comments and Experimental Evidence 10.6. (1) The smaller is the cancellation
factor gcd(

(
a(P), Bk,`

)
) ≥ 1 in (10:9), the closer is the corresponding lower length limit

`(d) to the lower bound (10:7). Thus, for example, the primitive membership 〈1, 16381〉
has the length ` = 14 > log2 16381 = 13.9997.

(2) However, as Lagarias has discovered, in some cases, this factor is necessary very
huge : this is the phenomenon behind the lower bounds (10:8). Cf. (1:13) and Example
2.4.

(3) The problem of evaluating the precise (or sharp) rate of growth of the functions
L(d),L(d) remains open. However, the experimental data (cf. (10:10) and Table 5) suggest
that this rate is, most probably, much higher than that suggested by (10:8), and as high
as d log d : cf. (10:10), Table 5, Conjecture 27, and Figure 5 below.

(4) Moreover, excluding probably an infinite, but “very scarce” subset of shift num-
bers, the functions L(d) and L(d) are identical : an overwhelming majority of experimen-
tally studied here systems Dd with at least one “very long” primitive cycle have only one
cycle, $(d) = 1; see (10:10), subsection (7), and Table 5 below.

(5) There are only 61 pairs (k, `) ∈ Λ, with the corresponding Collatz numbers Bk,`
belonging to the range I1,19999. And there are only 106 values of d, out of the total number
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Figure 5. The graphs of the functions (10:6) L(d) (black) and L(d) (gray)
superimposed. Points (11), (16), (17) have the parameters `, d as given in the
corresponding columns of Table 6.

of 6667 explored here, with the corresponding primitive Td−cycles of such (k, `) lengths
and oddlengths.

(6) The last observation illustrates why the great majority of primitive cycles, exper-
imentally recovered in this study, should come from Collatz configurations of much bigger
values of lengths, oddlengths, and Collatz numbers. Among them there are 11 primitive
cycles of lengths varying from 2004 to 2604, one cycle of the length 3918 and one of the
length 4531, Table 5. In particular, we have found (cf. Figure 6) :
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Table 5. 17 biggest values of lengths ` = `(d) of primitive Td−cycles, d ∈ I1,19999

(5:6), with shift numbers d, oddlengths k, margins λk,` (7:12), numbers
$(d) of primitive Td−cycles, decimal exponents log10B of their
Collatz numbers ( e. g., B982,1942 ≈ 10448 ), and the minimal odd
member n0.

1 2 3 4 5 6 7 8

`(d) 1942 1954 1956 1966 2004 2014 2088 2151

k 982 978 972 947 1024 1010 1044 1047

λk,` 385 403 415 465 380 413 433 491

d 14123 13187 13291 14627 16409 15683 15661 16411

$(d) 3 1 1 1 1 1 1 1

log10B 448 587 587 590 602 605 627 646

n0 37 17 5 19 119 11 103 53

9 10 11 12 13 14 15 16 17

`(d) 2155 2242 2254 2270 2588 2604 3918 4531 4686

k 1092 1146 1136 1166 1304 1356 1954 2253 2292

λk,` 424 425 453 421 521 454 820 960 1053

d 14303 10531 8431 13495 15563 16381 13829 11491 16819

$(d) 944 1 1 1 1 2 1 1 1

log10B 647 673 677 682 778 782 1178 1362 1410

n0 101 25 23 143 83 23 13 5 7





`(107) = `(107) = 106 ,

`(139) = `(139) = 136,

`(143) = 140 , `(143) = 16,

`(197) = `(197) = 141 , . . . ,

`(8431) = `(8431) = 2254 ,

`(11491) = `(11491) = 4531 .

`(16819) = `(16819) = 4686 .

(10 : 10)

(7) Only three out of 16 systems Dd, presented in Table 5, with at least one “long”
primitive cycle have more than one primtive cycle, $(d) > 1. (Curiously enough, one
of those systems, D14303, has the maximal number of primitive cycles with a given shift
number discovered in our experimental study, $(14303) = 944 : cf. Figure 3.) The other
13 systems fit into the pattern of the lower bound (10:8) : cf. the above subsection (4).

44



        

(8) All primitive cycles of Table 5 have rather big margins (7:1,12). The general
statistics belies this particular pattern, apparently, typical for cycles with “big” lengths and
“small” shift numbers. The graph of the distribution w(λ) (9:10) of values of the margin
λ = λk,` (Figure 6) shows that marginal Collatz numbers (Lemma 7.2(4) (7:12)) and, more
generally, Collatz numbers with small margins, account for a disproportionally big number
of primitive cycles with shift numbers d from a fixed interval, d ∈ D1,D. This should not
come as a surprise to us : for a given ` ≥ 2, to smaller margins correspond smaller Collatz
numbers and, finally, primitive cycles with smaller shift and member number which are
readily captured by our search procedure, §12.

(9) Figure 6 represents the graph of the function w, defined as follows (cf. (7:12)) :

∀λ ≥ 0





∀d1, d2 ∈ D





W (λ; d1, d2) =
{
C ∈ P(d)

∣∣ d1 ≤ d ≤ d2 & λk,` = λ
}
,

w(λ; d1, d2) = #W (λ; d1, d2) ;

w(λ) = w(λ; 1, 19999) .

(10 : 11)

(10) Similar phenomena characterize the distribution of values of “big” shift numbers
with cycles of a “small” length, as well (cf. Problem 9.5, (9:5)). Thus, the above Example
9.4 shows the attainability of the upper bound to d, with d equal to the corresponding
Collatz number B3,14. This question is more amenable to a theoretical analysis. In par-
ticular, the 3x + 1 conjecture implies that if d = Bk,` is prime, then there exist 1

kχk,`
primitive Td−cycles (Lemma 10.7 below). We have confirmed this implication for all 29
prime (out of the total number of 61) Collatz numbers B < 20000. This is another example
of successful controlling checks of the thoroughness of our search procedure.

Lemma 10.7. (1) According to (7:6), a primitive Td−cycle, d = Bk,`, exists iff at least
one member A of Collatz (k, `)−corona is relatively prime to Bk,` :

∀(k, `) ∈ Λ , P(Bk,`〉 6= ∅ ⇐⇒ 1 ∈
{

gcd(A,Bk,`)
∣∣ A ∈ Ak,`

}
. (10 : 12)

(2) The diophantine equivalent (Conjecture 5, §1, Corollary 8.4(2)) of the 3x + 1
conjecture implies that, if d = Bk,` is prime, then there exist 1

kχk,` (7:8), (9:2-4) primitive
Td−cycles.

Proof : Selfevident. End of the Proof.

The following conjectures formalize the above experimental insights (cf. Figure 5) :

Conjecture 27. (1) Define inductively the upper and lower length limit threshold sets
(cf. Definition 10.4) D,D, as follows :

{
D = {d1 < d2 < . . .} ⊂ D, d1 = 1, dk+1 = min

{
d ∈ D

∣∣ L(d) > L(dk)
}

;

D = {d1 < d2 < . . .} ⊂ D, d1 = 1, dk+1 = min
{
d ∈ D

∣∣ L(d) > L(dk)
}
.

(10 : 13)
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Figure 6. The graph of the functions w(λ) (10:11) and log(w). Thus, there are
3224 primitive (k, `)−cycles with the zero margin λ = ` − dk · log2 3e = 0 (7:1),
out of the total number of 42765 primitive Td−cycles calculated here.

The sets D,D ⊂ D (which, according to Lemma 10.5, are infinite) have density 0 (note
that the set D is of the density 1

3 ).

(2) The set D = D ∩D is infinite and has relative density 1 in both sets D and D.

(3) The set D
′ ⊂ D of shift numbers d with a single primitive cycle, $(d) = 1, is

infinite and has relative density 1 in D.
(4) The upper and lower length limit threshod functions L and L satisfy the following

inequalities, with some “relatively small” constants c1, c2, c3, c4 :

∀d ∈ D , c1 ·
d

log d
< L(d) < c2 · d ; ∀d ∈ D , c3 ·

d

log d
< L(d) < c4 · d . (10 : 14)

From the length-related aspects of the 3x+d conjecture, we turn now to the oddlength-
related ones. The finiteness of the number µ(k)(d〉 of primitive Td−memberships of the
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oddlength k, with an effective (but, in practice, very huge) upper bound, has been proved in
[Belaga, Mignotte 1998]. The proof used a general inequality of [Baker, Wüstholz 1993] on
diophantine approximations of linear Z−combinations of logarithms of natural numbers.

We improve here our finiteness result, both methodologically and quantitatively. More
precisely, the finiteness of the number µ(k)(d〉 is proved below in a quite elementary way,
without any allusion to diophantine approximation theory or any other nontrivial fact
outside our elementary diophantine formalism, §§7, 8.

On the other hand, we are able to improve our previous upper bound to µ(k)(d〉,
thanks to a more ancient, less general, but much more effective result from [Rhin 1987],
on diophantine approximation of linear combinations of the logarithms log 2 and log 3 (cf.
the inequality (10:25) below).

Note, finally, that the crucial common step in the below proofs of the upper bounds
(10:15,16) is based on the general diophantine cyclicity criterion (8:8) (or (10:17) below).
Thus, the below bounds hold also for the numbers ς(d) of all Td−cycles, not necessary
primitive ones : cf. (4:11,12).

Theorem 10.8. (1) For any d ∈ D and any k ≥ 1, an elementary proof yields the
following exponential upper bound to the number of primitive Td−memberships of the
oddlength k (or, equivalently, of Collatz configurations of the oddlength k yielding n as
the member number of the corresponding primitive membership (8:16(10))) :

∀d ∈ D ∀k ≥ 1 , µ(k)(d〉 < d · (4.5)k . (10 : 15)

(2) A non-trivial and, as a matter of fact, the best known at present improvement of
the above upper bound, based on a deep result [Rhin 1987] from diophantine approximation
theory, still remains, quite disappontingly, exponential :

∀d ∈ D ∀k ≥ 1 , µ(k)(d〉 < 3d · (1.5)k · k13.3 . (10 : 16)

Proof : (1) As in [Belaga, Mignotte 1998], we count the number of respective memberships,
using our combined formula (8:8) for shift and member numbers of primtive memberships,
with the shift number d and the oddlength k fixed :

n = d · A

Bk,`
. (10 : 17)

Define now the number (which, a priori, might be infinite, too)

N(d, k) = sup
{
d · A

Bk,`

∣∣∣ ∀` > k · log2 3 & ∀A ∈ Ak,`
}
. (10 : 18)

It is clear that n ≤ N(d, k) and that the same upper bound holds for the number of
different primitive Td− membership of the oddlength k :

µ(k)(d〉 ≤ N(d, k) . (10 : 19)
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(2) To evaluate from above N(d, k), we slightly modify the definition (10:18), evalu-
ating separately d · A

Bk,`
, first, for a marginal Collatz number Bk,dk·log2 3e, and then for all

other Collatz numbers Bk,`, ` > dk · log2 3e :





N(d, k) = max
(
N0(d, k), N1(d, k)

)
;

N0(d, k) = max
`=dk·log2 3e
A∈Ak,`

{
d
A

Bk,`

}
;

N+(d, k) = sup
`>dk·log2 3e
A∈Ak,`

{
d
A

Bk,`

}
.

(10 : 20)

Note that, since “sup” of the second line of (10:20) is defined on the finit set Ak,dk·log2 3e,
it is replaced here by “max”.

(3) According to (7:7,9),

N0(d, k) = d·Ak,dk·log2 3e
Bk,dk·log2 3e

; Ak,` = 2`−k+1 ·
(
3k−1−2k−1

)
+3k−1 < 2`−k+1 ·3k−1 . (10 : 21)

The trivial lower bound Bk,` ≥ 1 (in other words, 2` 6= 3k, for any (k, `) ∈ N) gives us :

N0(d, k) = d · Ak,dk·log2 3e
Bk,dk·log2 3e

< d ·Ak,dk·log2 3e < d · (4.5)k . (10 : 22)

On the other hand, for any ` > dk · log2 3e,




Bk,` = 2` ·
(

1− 3k

2`

)
> 2`−1 ;

N+(d, k) < d · 2`−k+1 · 3k−1

Bk,`
<

4

3
d · (1.5)k .

(10 : 23)

Hence,

N(d, k) < d · (4.5)k . (10 : 24)

(4) The trivial lower bound B ≥ 1 for marginal Collatz numbers can be improved.
According to [Rhin 1987], whose techniques lacks the generality of Baker’s method (cf.
[Baker, Wüstholz 1993] and the references there), but is more effective in the evaluation of
linear forms of several specific logarithms, including the case p+ q log 2 + log 3 (cf. (7:13)
for the definition of εk) :





∀p, q, r ∈ Z , |p+ q log 2 + r log 3| >
(

max(|p|, |q|, |r|)
)−13.3

⇓
∀k ≥ 1 , 2dk·log2 3e − 3k = 3k · (2εk − 1) > 3k−1 · k−13.3 .

(10 : 25)
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Together with (10:20,22), this inequality implies the bound (10:16). End of the Proof.

11. Member Number Conjectures and Claims.

We study here some theoretical implications of new experimental data concerning
distributions of member numbers in primitive cycles. This distributions are the subject of
Conjectures 19, 20, §5 [Lagarias 1990]. We remind the reader that Conjecture 19 claims
that any odd positive integer n not divisible by 3, n ∈ D, is met by at least one primitive
cycle, and Conjectures 20 strengthens this claim, asserting that n is met by an infinite
number of such cycles: cf. Experimental Evidence 5.7, Table 4, and Figure 2, §5.

Here, our main technical tool will be the formula (7:6), (8:11) for the member number
n of the primitive membership 〈n, d〉 corresponding to Collatz (k, `)−configuration P :

∀(k, `) ∈ ∆

∀P ∈ Πk,`

}
γ(P) = 〈n, d〉 , n = f(P) =

A

gcd(A,Bk,`)
=

a(P)

gcd
(
a(P), Bk,`

) . (11 : 1)

As we have already observed above (Lemma 7.2 (7:10)), the function a(P) (7:6) does
not actually depend on the rightmost component pk of a configuration P. This means that
the expression (11:1) for n carries pk only as a summand of the exponent ` = p1 + . . .+ pk
of the Collatz number Bk,` = 2` − 3k. Thus, one can vary pk in such a way that a value n
once attained will be recapitulated infinitely many times.

This is the idea behind the proof ([Lagarias 1990], Lemma 11.1 below) that Conjectures
19, 20 are, in fact, equivalent : if n is met by at least one primitive cycle, then it is met
by an infinite number of primitive cycles of the same oddlength and with an identical
diophantine structure. This makes the rather audacious infinity claim of Conjecture 20 as
plausible as that of Conjecture 19, dual to Conjecture 17 for shift numbers.

However, as our calculations show (cf. Experimental Evidence 5.7, Table 4, and Figure
2, §5, above and Table 6, Figures 7-9 below), the replicating mechanism of Lemma 11.1
accounts only for a tiny fraction of primitive memberships with a given member number
n.

The below analysis (Definition 11.2, Lemma 11.3) of Lagarias’ construction and of our
experimental data leads to the notions of irreducible and strongly irreducible Collatz con-
figurations, and, as the result, to two new infinity conjectures. Conjecture 28 strengthens
Conjecture 20 by asserting the existence of infinitely many irreducible configurations yield-
ing n. Conjecture 29 further strenghtens Conjecture 20, by claiming the same property for
strongly irreducible configurations yielding n.

In what follows, we assume that a positive odd integer not divisible by 3 is fixed,
n ∈ D, together with the set Π〈n) (8:18) of Collatz configurations yielding n as the
member number of the corresponding primitive membership (cf. (7:6), (8:1)) :

∀n ∈ D ∀P ∈ Π〈n) f(P) = n . (11 : 2)

The below re-statements of the original claim from [Lagarias 1990] is adapted to our aims
and notations.
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Lemma 11.1 (1) For any odd positive integer r > 1, there exists such a minimal integer
exponent m = m(r) ≥ 2, a divisor of Euler function φ(r), that 2r ≡ 1 (mod r) and, for
any integer t ≥ 1, if 2t ≡ 1 (mod r), then t ≡ 0 (mod r) :

∀r ∈ N ∃ m = m(r) ∈ N





φ(r) ≡ 0 (mod m) ;

2m ≡ 1 (mod r) ;

∀t ∈ N





2t ≡ 1 (mod r)

m
t ≡ 0 (mod m)





.

(11 : 3)

We remind that Euler function φ(r) is defined as the number of different divisors of r.
(2) For any Collatz configuration P corresponding to the primitive membership

γ(P) = 〈n, d〉 (8:6,16),

P = 〈p1, . . . , pk−1, pk〉 , p1 + . . .+ pk = ` , P ∈ Π
(k)
` , n = f(P) , d = g(P) , (11 : 4)

the below Collatz configuration P′, corresponds to the primitive membership γ(P′) =
〈n, d′〉 with the same member number, as follows :





(1) P′ = 〈p1, . . . , pk−1, pk + t〉 , t = q ·m(a(P)) , q ≥ 1 ;

(2) `′ = `+ t ;

(3) a(P′) = a(P) , (cf. Lemma 7.2 (7 : 10)) ;

(4) Bk,`′ = 2`+t − 3k = 2` · (1 + r · a(P))− 3k > Bk,` , r ∈ N (cf. (11 : 3)) ;

(5) gcd
(
a(P′), Bk,`′

)
= gcd(a(P), Bk,`) ;

(6) n′ = f(P′) =
a(P′)

gcd
(
a(P′), Bk,`′

) =
a(P)

gcd
(
a(P), Bk,`

) = f(P) = n ;

(7) d′ = g(P′) =
Bk,`′

gcd
(
a(P′), Bk,`′

) > Bk,`

gcd
(
a(P), Bk,`

) = g(P) = d .

(11 : 5)

(3) Moreover, for sufficiently large q, Collatz configurations (11:5) are lowermost,
Definition 8.2, i. e., n is the minimal odd member of the corresponding primitive cycle.

Proof : (1) This is an elementary number theoretical fact : see, e. g., [Nathanson 2000].
(2) The statement (11:5) claims, rather implicitly, that if (11:5) is a Collatz configu-

ration, then it yields n as the member number.
The last claim can be instantly verified, according to (11:5).
Now, for a k−tuple of positive integers, P′ ∈ N (11:5), to be a Collatz configuration,

two conditions need to be met : the inequality (7:4),
∣∣P′
∣∣ > k · log2 3, and the aperiodicity.

P being a Collatz configuration,
∣∣P
∣∣ > k · log2 3, we have :
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∣∣P′
∣∣ =

∣∣P
∣∣+ q ·m(a(P)) > k · log2 3 .

As to the aperiodicity of P′, it is obviously assured for all but, possibly, one value of
q; for example, the 6−tuple 〈1, 1, 4, 1, 1, 2〉 is marginal Collatz (6, 10)−configuration, and
all 6−tuples 〈1, 1, 4, 1, 1, 2 + t〉, t ≥ 1, but the periodic one, 〈1, 1, 4, 1, 1, 4〉, are Collatz
configurations, too.

In other words, there exists at most one q ≥ 1, such that the corresponding k−tuple
P′ is periodic and equal to the exponent vector Even(C) (4:4) of a nonprimitive cycle C
meeting n. This exceptional case has been, in fact, implicitly excluded from the claim (2),
which concerns only Collatz configurations of the form (11:5).

(3) If k = 1, the claim is trivially true : the only odd member of a primitive cycle is
always the lowermost (Lemma 4.2(2)). Consider now the following decomposition formulae
for the functions a(P) = ak(P), ak

(
σj(P)

)
, k ≥ 2, j ∈ [1, k − 1] (7:4,6) :

∀k ≥ 2

∀P ∈ Π(k)

∀j ∈ [1, k − 1]

∀t ≥ 1









(1) P = 〈p1, . . . , pk〉 , p1 + . . .+ pk = ` ;

(2) ak
(
σj(P)

)
= 3j · ak−j(pj+1, . . . , pk)+

2pj+1+...+pk · aj(p1, . . . , pj) .

(3) P′ = 〈p1, . . . , pk + t〉 , `′ = `+ t ;

(4) ak
(
σj(P′)

)
= 3j · ak−j(pj+1, . . . , pk)+

2t · 2pj+1+...+pk · aj(p1, . . . , pj) =

2t · Uj,k(P) + Vj,k(P) .

(11 : 6)

Applying now these formulae to Collatz configurations P′ = 〈p1, . . . , pk + t〉, `′ = ` + t,
and σj(P′), we find that, for all t ≥ 1, ak(P′) = ak(P) = A (the function ak does not
depend on the coordinate pk (7:4)), but, according to (11:6(4)), for t sufficiently big,

∀j ∈ [1, k − 1] , ak
(
σj(P′)

)
= 2t · Uj,k + Vj,k > A .

End of the Proof.

Experimental Evidence 11.2. (1) We have found altogether µ̃(d〉
∣∣19999

1
= 3584942

primitive memberships 〈n, d〉 in the band 1 ≤ d ≤ 19999 (cf. 6:6),

µ̃(d〉
∣∣19999

1
=

∑

d∈I1,19999

µ̃(d〉 =
∑

d∈I1,19999

∑

C∈P̃(d〉
oddlength(C) .

(As we argue in §12, this is the exhaustive list of primitive memberships in the above
interval of shift number values.) Figure 2 renders the graph of the distribution, according
to the value of the member number n,

t(q) = $̃(n
∣∣
n=ξ(q)

)
∣∣19999

1
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Table 6. The first twenty values of the functions t(q), i(q), s(q), r(q) = t(q)− i(q), i(q)
s(q) .

Cf the notations (11:15).

q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n 1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59

t(q) 452,354,359,414,396,410,423,399,324,409,426,265,407,415,418,422,395,440,300,406

r(q) 018,011,008,012,005,006,021,012,007,001,009,006,016,001,004,008,014,001,002,001

i(q) 434,343,351,402,391,404,402,387,317,399,417,259,391,405,414,414,381,430,298,405

s(q) 223,203,194,217,231,221,227,206,192,225,210,177,218,227,232,221,220,241,201,220

i
s (q) 1.9, 1.7, 1.8, 1.8, 1.7, 1.8, 1.9, 1.9, 1.6, 1.7, 2.0, 1.5, 1.8, 1.8, 1.8, 1.9, 1.7, 1.8, 1.5, 1.8

of primitive memberships found in this study (according to Note 4.8(2), the tilde-mark
indicates that we deal with the experimental value of the corresponding theoretically de-
fined parameter), for 20000 values n of their member number component, in the rectangle
R1,59999

1,19999 :

∀N,N ′, D,D′ ∈ D , RN,N
′

D,D′ =
{

(n, d) ∈ ∆
⋂{

IN,N ′ × ID,D′
}
. (11 : 7)

(Cf. also Experimental Evidence 5.7 and Table 4, §5.) We remind the definition (2:3)

of the function n = ξ(q) =
(

6 ·
⌊
q
2

⌋
− (−1)q

)
and the definition (6:1) of the set ∆ :

∆ = {(n, d) ∈ D2 | gcd(n, d) = 1}. See also the definition (5:4) of an interval IQ,R ⊂ D.

(2) In a smaller rectangle, R1,8249
1,19999, for 2750 values of the member number n, we have

calculated also the distribution of reducible memberships , i. e., memberships which are
(11:c,d)-type replicas of other memberships (see for details Definition 11.3). The below
sample (the third line of Table 6, which is an extension of the above Table 4, §5) of
experimentally found values of the number r(q) of reducible memberships demonstrates
that they account for only a tiny fraction of memberships. Thus, for example :

(i) out of 452 of experimentally discovered in the rectangle R1,8249
1,19999 memberships of

the form 〈1, d〉, only 18, or less than 4%, are reducible;

(ii) and out of the total number 823954 of calculated in this rectangle primitive
memberships, there are only 9383 reducible memberships , or less than 1.2%.

(3) Moreover, according to Table 7, for 173 values of n ∈ I1,8249, all memberships
are reducible (i. e., r = 0), in 428 cases there exists only one reducible membership, and
only in 463 cases the number of reducible memberships is 6 or more. These experimental
data are the motivation behind the below definitions of, and constructions associated with
irreducible and strongly irreducible memberships. (Cf. Definition 11.3, Figures 7-9 below.)

Definition 11.3. (1) To simplify and make uniform our notations, we define the empty
0−tuple 〈〉 of positive integers, N0 =

{
〈〉
}

and extend to it the definition (7:4) of the norm∣∣ . . .
∣∣ :
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Table 7. The number N(R) of values of n ∈ N1,19999 with R reducible memberships,

0 ≤ R ≤ 21, in the rectangle R1,8249
1,19999.

R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N(R) 173|428|568|521|359|238|167|103|60| 52 |29 |16 |16 | 4 | 7 | 3 | 3 | 0 | 1 | 1 | 0 | 1

∀k ≥ 0 ∀P = (p1, . . . , pk) ∈ Nk ,
∣∣P
∣∣ =

{
0, if k = 0 ,
p1 + . . .+ pk , otherwise .

(11 : 8)

(2) The trivial decomposition

Nk = Nk−1 ×N , k ≥ 1 ,

can be interpreted both as a breaking a given k−tuple into its (k− 1)−component prequel
and 1−component sequel, and as an assembling this k−tuple from given prequel and sequel.
Hence, the two following dual notations :

(1)

{ ∀k ≥ 1 ∀P = (p1, . . . , pk) ∈ Nk ,

P
∥∥
k

= 〈p1, . . . , pk−1〉 ∈ Nk−1 , P
∣∣
k

= pk .

(2)

{ ∀j ≥ 0 ∀P = (p1, . . . , pk) ∈ Nj ∀p ∈ N ,

P′ =
〈
P, p

〉
∈ Nj+1 .

(11 : 9)

(3) For any k ∈ N and n ∈ D, let Π(k)〈n) be the set of all Collatz configurations
P of the oddlength k yielding n = f(P). A Collatz configuration P ∈ Π(k)〈n) is called
irreducible if, for any p ∈ N, p < pk = P

∣∣
k
, the k−tuple P′ =

〈
P
∥∥
k
, p
〉

is either not Collatz

configuration, P′ 6∈ Π, or it yields a member number n′ different from n, P′ 6∈ Π(k)〈n).

(4) A membership 〈n, d〉 is called irreducible, if the corresponding Collatz configura-
tion P = θ〈n, d〉 (8:6) is irreducible. We denote by I(n) ⊂ M〈n) (8:16(1)) the set of all
irreducible primitive memberships with the member number equal to n.

(5) Let ≺ denotes the alphabetical order on the set Nk of k−tuples of positive integers
(in this order, for example, 〈1, 1, 3, 1, 1, 3〉 ≺ 〈1, 1, 3, 1, 1, 5〉). A Collatz configuration P ∈
Π(k)〈n) is called strongly (n, k)−irreducible (or, for short, if no ambiguity is in sight,
strongly irreducible), if it is ≺ −minimal in Π(k)〈n).

(6) A membership 〈n, d〉 is called strongly irreducible, if the corresponding Collatz
configuration P = θ〈n, d〉 is strongly irreducible. For any n ∈ D, we denote by S(n) ⊂
M〈n) the set of all strongly irreducible primitive memberships with the member number
equal to n. By definition, any two elements of S(n) have different oddlengths (cf. the
notations (8:16(1,4)) :
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∀k ≥ 1 ∀n ∈ D





Sk(n) = S(n)
⋂
M(k)〈n) ,

s(n, k) = #Sk(n) =

{
0 , if M(k)(n) = ∅ ,
1 , otherwise .

(11 : 10)

Note 11.5. (1) The above defintions (5, 6) of the ≺ −order and of strong irreducibility
imply :

∀k ≥ 1 ∀P ∈ Nk ∀p ∈ N , p < P
∣∣
k
, P′ =

〈
P
∥∥
k
, p
〉
≺ P . (11 : 11)

Thus, a strongly irreducible Collatz configuration is irreducible, and the following inclusions
hold :

∀n ∈ D , Π(n) 6= ∅ =⇒ S(n) ⊆ I(n) ⊂ Π〈n) . (11 : 12)

(2) The choice of the alphabetical order in the above definition of strongly irreducible
configuration is convinient and, probably, optimal for our goals, but not compulsory. What
we need, in fact, is the characteristic function (11:10), and to define it effectively, any choice
function choosing an element from every nonempty set Π(k)(n) of Collatz configurations
of the oddlength k yielding n would do..

As we have already mentioned above (Experimental Evidence 5.7, Table 4, Figure 2),
our calculations strongly confirm the existence conjecture for member numbers (Conjecture
19, §5). They present also a convincing circumstantial evidence in the favour of infinity
Conjecture 20, §5, which, as our experimental data suggest (Experimental Evidence 11.2),
cannot be explained away by the replicating mechanism of Lemma 11.1. Hence, two new
infinity conjectures :

Conjecture 28. For any n ∈ D, there exists an infinite number of irreducible memberships
〈n, d〉, or in other words (cf. the inclusion (11:12)),

∀n ∈ D , #I(n) = #Π〈n) =∞ . (11 : 13)

Conjecture 29. For any n ∈ D, there exists an infinite number of strongly irreducible
memberships 〈n, d〉, or in other words (cf. the inclusion (11:12)),

∀n ∈ D , #S(n) = #I(n) = #Π〈n) =∞ . (11 : 14)

Experimental Evidence 11.6. (1) We do not know the values of the parameters #S(n),
#I(n), and #Π〈n) (this last one, according to Conjecture 20, is infinite), but we are able
to calculate and compare the experimental lower bounds to these functions in the rectangle
R1,8249

1,19999 (11:7), for 2750 values of the member number n.
(2) Namely, define, similarly to the notations (2:3), (5:14),
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∀q ∈ [1, 2750]





n = ξ(q)

(
6 ·
⌊q

2

⌋
− (−1)a

)
∈ I1,8249 ,

t(q) = #M〈n)
∣∣n=ξ(q)

d∈I1,19999
= #Π〈n)

∣∣n=ξ(q)

d∈I1,19999
,

i(q) = #I〈n)
∣∣n=ξ(q)

d∈I1,19999
,

s(q) = #S〈n)
∣∣n=ξ(q)

d∈I1,19999
.

(11 : 15)

Thus, t(q), q ∈ [1, 2750] is the number of primitive Td−cycles d ∈ I1,19999 meeting n =
ξ(q) ∈ I1,19999.

(3) Table 6 presents these functions, together with the difference r(q) = t(q)− i(q) =

and the ratio i(q)
s(q) , in the interval 1 ≤ q ≤ 20.

(4) As we have already mentioned above (Experimental Evidence 5.7(2)), we were
able to calculate the function t(q) in a bigger interval (q ∈ [1, 20000], Figure 2) than other
functions. Figures 7-9 present, respectively, the graphs of the functions i(q), s(q), and a
superposition of the graphs t(q), i(q), and s(q) on the interval q ∈ [1, 2750]. The graphic
scenario of Figure 9 chosen here needs a short comment included in its caption.

(5) As Table 6 and Figure 9 show, the ratio i(q)
s(q) stays around 2, and with growing

q ∈ [1, 2750], actually slightly descents. Thus, for example,

q = 2437, n = 7309





t(2437) = min
q∈[1,2750]

t(q) = 133 ;

i(2437) = min
q∈[1,2750]

i(q) = 133 ;

s(2437) = min
q∈[1,2750]

S(q) = 118 ;

i

s
(2437) = min

q∈[1,2750]

i

s
(q) = 1.1 .

This means, that for any relevant n and k, there exists on the average 0 to 2 irreducible
memberships 〈n, d〉, d ∈ I1,19999, of the oddlength k. This observation suggest below
Conjecture 30.

We start by refining the notations (11:10,12) for irreducible and strongly irreducible
Collatz configurations and primitive memberships (Definition 11.4) :

Notations 11.7. For any k ≥ 1 and n ∈ D, define (cf. (8:16(4)) and (10:10)) :

∀k ≥ 1 ∀n ∈ D





Π(k) =
⋃

n∈D

Π(k)〈n) , M(k) =
⋃

n∈D

M(k)〈n) ,

Ik(n) = I(n)
⋂
M(k)〈n) , i(n, k) = #Ik(n) ,

Sk(n) = S(n)
⋂
M(k)〈n) , s(n, k) = #Sk(n) ,

Ik =
⋃

n∈D

Ik(n) , Sk =
⋃

n∈D

Sk(n) .

(11 : 16)
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Note that, according to Definition 11.4,

∀k ≥ 1

∀n ∈ D

}




Sk(n) = ∅ , s(n, k) = 0 ⇐⇒ Ik(n) = ∅ , i(n, k) = 0 ;

Sk(n) 6= ∅ , s(n, k) = 1 ⇐⇒ Sk(n) = {〈n, d〉} ⊂ Ik(n) ;

m
∀〈n, d′〉 ∈ Ik(n) \ Sk(n) , θ〈n, d〉 ≺ θ〈n, d′〉 .

(11 : 17)

The following hypthesis is suggested by the above distribution of ratios i(q)
s(q) (Table 6

and Figure 9) and is dual to the claim of Theorem 10.8 : as the sets M(k)(d〉 are finite,
for all k ≥ 1, d ∈ D, so should be the sets of irreducible memberships over n of the given
oddlength, Ik(n) (note that the sets of all memberships M(k)〈n) are infinite, due to the
replicating mechanism of Lemma 11.1) :

Conjecture 30. For any k ≥ 1 and any n ∈ D, the set Ik(n) ⊂ M(k)〈n) of irreducible
memberships is finite.

Chapter V. Calculating Primitive Cycles.

12. Searching Algorithm.

The motor of our experimental enterprise is an algorithm searching for primitive cycles.
It is powered by the iterative procedure implicit in the following “primitive” version of the
ultimately-running-into-a-cycle conjecture, (URCC)3x+d (Conjecture 8, §2), as implied by
Corollary 5.3 :

Conjecture 8a : (URPCC)3x+d. Any Properly Started Td-trajectory Runs Ulti-
mately into a Primitive Cycle : For any (n, d) ∈ ∆, the Td-trajectory τd(n) of iterates
of Td starting at n runs ultimately into a primitive Td−cycle.

Or, in other words (cf. Conjecture 11, §2) :

Working Assumption 12.1. For any u, v ∈ D, such that gcd(u, v) = 1, the following
algorithm halts :

Aprim.cycl
3x+d :





∀(u, v) ∈ ∆
d := u; m := n := v
while m 6= n do
m := Td(m); n := Td(n); n := Td(n);

endwhile .

(12 : 1)

The algorithm (12:1) computes at the j-th step the iterations T jd (n) and T 2j
d (n), and

then compares them. See Proposition 12.2 below for a proof that the non-primitive version
Acyclic

3x+d , (2:6), of this algorithm detects all Td−cycles.
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Figure 7. The graph of the function i(q), 1 ≤ q ≤ 2750, i(2437) = 133 ≤ i(q) ≤
435 = i(196). Thus, for example, n = ξ(1) = 1 and n = ξ(196) = 1187 (2:3),
Experimental Evidence 11.2(1), are the member numbers of, respectively, 434
and 435 irreducible primitive memberships. These two values are maximal ones
for the numbers of irreducible memberships in the rectangle R1,8249

1,19999 (11:7).

This classical cycle detection device, remarkable for its simplicity, has been invented
by Robert W. Floyd. (Never published by the author. The standard reference is [Knuth
1969], pp. 4-7, Exercise 7. See also [Cohen 1993], §8.5.2, for an update on cycles detection
methods.) :

Proposition 12.2. Let f : N −→ N be a function. A f -trajectory starting at a
positive integer m,

τ(m) =
{
f0(m) = m, f(m), f2(m) = f(f(m)), f3(m), . . .

}
(12 : 2)

is ultimately cyclic iff, for some j ≥ 1,
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Figure 8. The graph of the function s(q), 1 ≤ q ≤ 2750, s(2437) = 133 ≤ s(q) ≤
245 = s(36).

f j(m) = f2j(m) , (12 : 3)

Proof : (1) The if (or sufficiency) condition (12:3) is obvious.
(2) The only if (or necessary) condition. Suppose τ(m) runs at the point s = fz(m),

z ≥ 1, into a cycle of the length w, so that, for any x ≥ 0, fz+x(n) = fz+x+w(m).
Assuming t = z+x, the condition (12:2) will be satisfied if, for some positive integers

x, y ≥ 1, the equality holds :

2t = 2(z + x) = z + x+ y · w = t+ y · w.

The choice y =
⌈
z
w

⌉
and x = y · w − z would do. End of Proof.

The above Working Assumption has been verified in more than 75,000,000 cases within
the intervals (cf. the notations (5:4-6))
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Figure 9. (1) The graphic scenario of this superposition of the graphs of the
functions t(q), i(q), s(q) calls for an explanation. Since on the interval q ∈
[1, 2750] the difference between the functions t(q) and i(q) is almost imperceptible,
we have chosen to present t(q) as a white graph on the gray upper background.
(2) The comparison of the graphs i(q), s(q) makes almost palpable both the

remarkable stability and a slow growth of the ratio i(q)
s(q) .

d ∈ I1,19999 , n ∈ I1,600·d−1 . (12 : 4)

and separately (when we were running a huge controlling check), in more than 24 · 109

cases within the intervals

d ∈ I1,4999 , n ∈ I1,3000·d−1 . (12 : 5)

To speed the search, trajectories have been traced in the increasing order of the
starting number m ∈ D. Then, if the trajectory τd(m) fell at some point behind the initial
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point m, n = T jd (m) < m, the search along τd(m) was abandoned, since its continuation,
the trajectory τd(n) starting at n, has been already treated before. Every one of the thus
traced trajectories either run ultimately into a primitive cycle, or descended under m, and
thus, has been already traced to a cycle earlier.

We have carried out some additional controlling checks, too :
(1) In 82 cases, for all d ∈ I2755,2999, an independent search has been carried out, with

the bigger initial interval 1 ≤ n ≤ 5000 · d. No new primitive cycles have been discovered.
(2) In one particularly interesting case, d = 343, mentioned below, the chosen initial

controlling interval was 1 ≤ n ≤ 60, 000 · 343 > 2 · 107. The calculations have confirmed
the existence of only three primitive cycles discovered earlier.

(3) Cf. also the above examples of exhaustiveness of our experimental search : Note
5.2, Example 9.4, Comments and Experimental Evidence 10.6. (10).

Note also that the minimal members of all primitive cycles, discovered thus far, fall
under the upper limit 600 · d in (12:4), with only two cases coming relatively close to this
limit :

(1) d = 343; one of primitive T343-cycles (out of three discovered) has the minimal
member (cf. (10:3)) no = 177, 337; 517 ·343 < no < 518 ·343 < 600 ·343 (and the maximal
member mo = 159, 053, 606).

(2) d = 551; one of primitive T551-cycles (out of ten) has the minimal member no =
212, 665; 385 · 551 < no < 386 · 551 < 600 · 551 (with mo = 8, 332, 648).
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Alan Baker, Gisbert Wüstholz [1993] : Logarithmic forms and group varieties,

J. Reine Angew. Math. 442, 19–62.

[Belaga 1995]
Edward G. Belaga [1995] : Probing into the 3x+d World, Preprint 95/03, Univ.

Louis Pasteur, Strasbourg.

[Belaga, Mignotte 1998]
Edward G. Belaga, Maurice Mignotte [1998] : Embedding the 3x+1 Conjecture

in a 3x+d Context, Experimental Mathematica 7:2, 145-151.

[Belaga 1998]
Edward G. Belaga [1998] : Reflecting on the 3x +1 Mystery. Outline of a Scenario

- Improbable or Realistic ? Preprint, Université Louis Pasteur, Strasbourg.
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