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For any positive odd integer d not divisible by 3, the arith-

otherwise generates on the set N of natural numbers a dynamical system D d . The 3x + d hypothesis, generalizing the well-known 3x + 1 conjecture, asserts that D d has a finite number of cycles and no divergent trajectories. We study here the cyclic structure of the system D d , and prove in particular an effective and sharp polynomial upper bound to the number of cycles in D d with a given number of odd members.

Introduction.

Let d be a positive odd integer not divisible by 3, and let T d be the function defined on the set of positive integers, as follows : T j d (m) = m (note that > 1, since the mapping T d (1:1) has no fixed points). The minimal member of a T d -cycle C is odd, and is called its perigee, n 0 = prg(C). Thus, the number k of odd members of a T d -cycle, called here its oddlength, is a positive integer, k ≥ 1. The length and oddlength of a cycle are related by the inequality ≥ k • log 2 3 [START_REF] Belaga | Embedding the 3x+1 Conjecture in a 3x + d Context[END_REF]] (see Theorem 3.2(1) below). Note also that no member of a T d -trajectory (1:2), excluding possibly the first one, is divisible by 3, and thus, all odd members of a T d -cycle belong to D.

∀m ∈ N T d (m) = 3m+d 2 , if m is odd ,
It has been conjectured that the dynamical system D d = N, T d has no divergent T d -trajectories (1:2), and that the number ς(d) of cyclic T d -trajectories is finite [Lagarias 1990], [START_REF] Belaga | Embedding the 3x+1 Conjecture in a 3x + d Context[END_REF]]. In the particular case d = 1, the well-known 3x + 1 conjecture [Lagarias 1985], [START_REF] Günther | The Dynamical System Generated by the 3n+1 Function, LNM 1681[END_REF]] is even more specific : any trajectory τ 1 (m) enters ultimately the (only

) 3x + 1 cycle {1 → 2 → 1}.
The present paper is concerned with the cyclic part of the above 3x + d conjecture, and more generally, with quantitative (and when available, numerical) characteristics of the cyclic structure of systems D d . Let C(d) and C k (d) be the sets of all T d -cycles and, respectively, of all such cycles with k odd members, or, in our terminology, of the oddlength k ≥ 1.

Technically, our main result is the following general upper bound to the perigee of a T d -cycle of the length and oddlength k :

∀d ∈ D ∀C ∈ C(d) , length(C) = , oddlength(C) = k, =⇒ n 0 = prg(C) ≤ d 2 k -3 .
(1 : 3)

The inequality (1:3) has three important implications. The first one is an upper bound to the ratio of the length of a T d -cycle to its oddlength, which, together with the well-known lower bound (2:5), Theorem 2.1(1), confines this ratio to the interval :

∀d ∈ D ∀C ∈ C(d) , log 2 3 ≤ ρ d (C) = length(C) oddlength(C) ≤ log 2 (d + 3) .
(1 : 4)

Second, the inequality (1:3) implies the following general and uniform upper bound to perigees of T d -cycles of the oddlength k ≥ 1 :

∀d ∈ D ∀k ∈ N ∀C ∈ C k (d) n 0 = prg(C) ≤ U d,k = d 2 k•log 2 3 k -3 .
(1 : 5)

The bound (1:5) has an effective polynomial numerical equivalent (see the estimate (1:8) below). It is also sharp in the following natural sense (Theorem 3.2, (3:11(1))) : the average value of an odd member of a T d -cycle of the oddlength k ≥ 1 is bigger than U d,k . Thus, for example, the T 5 -cycle C = {23 → 37 → 58 → 29 → 46} has 3 odd members, n 0 = prg(C) = 23 < U 5,3 ≈ 28.6038 < 29 < 37.

Third, since no two T d -cycles have a common member, any such cycle is fully determined by its perigee. Thus, the upper bound (1:5) not only implies that the set C k (d) is finite, but supplies us with an effective general upper bound to the number ς k

(d) = #C k (d) of T d -cycles of the oddlength k ≥ 1 : ∀d ∈ D ∀k ∈ N , ς k (d) ≤ 1 3 • U d,k = 1 3 • d 2 k•log 2 3 k -3
(1 : 6) (the factor 1 3 is due to the aforementioned inclusion n 0 ∈ D). Any numerical evaluation of the expression U d,k depends on the state of our knowledge of effective lower bounds to diophantine approximations of linear combinations of logarithms log 2 and log 3. The best known at present lower bound belongs to [Rhin 1987], whose techniques lacks the generality of Baker's method (cf. [Baker, Wüstholz 1993] and the references there), but is more effective in the evaluation of linear forms of a few specific logarithms, including our case :

∀r, s ∈ Z , t = max(|r|, |s|) , |r + s log 2 + log 3| > t -13.3 , (1 : 7)
The inequality (1:7) implies the following effective polynomial upper bound to U d,k :

∀d ∈ D ∀k ∈ N , U d,k ≤ 102 • d • k 14.3 . (1 : 8)
Historical Remarks. The present author is not aware of any previous effective (and in any sense sharp) upper bound to the minimal odd member of a T d -cycle. The following general exponential upper bound to the number ς k (d) of T d -cycles of the oddlength k ≥ 1 has been actually proved in [START_REF] Belaga | Embedding the 3x+1 Conjecture in a 3x + d Context[END_REF]] (even if not explicitly articulated) and refined in [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF] :

∀d ∈ D ∀k ∈ N , ς k (d) < d • 3 2 k • 2 k 2 k -1 , k = k • log 2 3 -k • log 2 3 . (1 : 9)
The bound (1:9) has been derived from an identical upper bound to the maximal odd member of a cycle, the corresponding numerical upper bound being based on the estimate of [Baker, Wüstholz 1993] :

∀d ∈ D ∀k ∈ N , ς k (d) < d • k C • 3 2 k ,
(1 : 10) with an effective but enormous constant C. Refining the proof of the inequality (1:9) and applying the estimate of [Rhin 1987] to (1:9), [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF]] have proved a better, but still exponential effective upper bound

∀d ∈ D ∀k ∈ N , ς k (d) ≤ 204 • d • 3 2 k • k 13.3 .
(1 : 11)

Comments and Future Prospects.

(1) The upper bound (1:4) to the ratio ρ d (C) implies in the 3x + 1 case that the length of a cycle with k odd members does not exceed 2k. Note that the only known at present 3x + 1 cycle {1 → 2 → 1} has one odd member, is of the length two, and has ratio two. More generally, the series of T d -cycles of the length ∈ N, d = 2 -3, n 0 = 1 and of the oddlength k = 1 demonstrates that the upper bound (1:4) is sharp.

(2) The bounds (1:5) and, especially, (1:6) can be apparently improved. In fact, the experimental discovery of 843 T 14303 -cycles of the oddlength 17, with perigees varying from 385057 to 1391321 < U 14303,17 = 2099280, suggests that the bound (1:5) is apparently sharp up to a one-digit constant, whereas the bound (1:6), ς 17 (14303) = 843 < 1 3 U 14303,17 = 699760, far from being sharp, is at least realistic : for some d, k, the dynamical system D d has "many" cycles of the oddlength k.

(3) At present, the bounds (1:3,4,6) look useless, or at least insufficient, for an eventual proof of the cyclic part of the 3x + d conjecture, i. e., of the finiteness of the number ς(d) of T d -cycles. At its best, the straightforward application of these bounds yields the trivial infinite upper bound :

∀d ∈ D ς(d) = k≥1 ς k (d) ≤ 102 • d • k≥1 k 14.3 = ∞ .
(1 : 12)

However, the obstacle of the infinite summation in (1:12) could be possibly circumvented by a refinement of the above scheme, to fit the purpose of yielding directly an absolute (i. e., not depending on k) upper bound to the number ς(d).

Acknowledgments. The author is grateful to Professor Maurice Mignotte for the permission to use here the aforementioned experimental results of our common project [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF]]. We remind the reader that, according to (1:1), the minimal member, or perigee of a T d -cycle, n 0 = prg(C), is odd, and that the total number k ≥ 1 of odd members of a cycle is called its oddlength. Moreover, if n is an odd member of a cycle, then n ∈ D (1:2), since no number divisible by 3 can belong to a cycle.

Exponential Diophantine

Note that if m = m is a member of a T d -cycle C = τ d (m), or in other words, if C meets m , one should view C = C(m , d) as just another name for the same cycle C = C(m, d). Since a T d -cycle is fully characterized by its minimal member, the following notation can be accepted as the canonical one :

C = C(n 0 , d) = C[n 0 , d] = τ d (n 0 ), n 0 = prg(C) .
(2 : 1)

In this case, we also say that C starts at n 0 .

For any positive integer m ∈ N, let odd (m) be the number obtained by factoring out of m the highest possible power of 2, say 2 j , and let ν 2 (m) = j. Thus odd (m) is odd and

m = odd (m) • 2 ν 2 (m) . Define S : D × D → D ; ∀n, d ∈ D . S d (n) = odd (3n + d) .
(2 : 2)

The function S d speeds up the action of T d (1:1), skipping even members of T d -trajectories. In particular, m = 1 becomes the fixed point of the function S 1 = odd (3n + 1), S 1 (1) = 1, corresponding to the (according to the 3x + 1 conjecture, only)

T -cycle C(1, 1) = {1 → 2 → 1}.
We associate with any T d -cycle C = C[n 0 , d] its odd frame, F = Odd (C), the list of odd members of the cycle, in the order of their appearance in τ d (n 0 ) (1:2), as the T d -iterations of n 0 proceed. By definition, the frame is a S d -cycle (2:2) starting at n 0 , and its length is called the oddlength of the cycle C :

           ∀C = C[n 0 , d] , n 0 , d ∈ D , = length(C) = min i ∈ N m i = T i d (n 0 ) = n 0 ; k = oddlength(C) = min j ∈ N n j = S j d (n 0 ) = n 0 ; F = Odd (C) = n 0 , n 1 , . . . , n k-1 ∈ D k .
(2 : 3)

The even members of the T d -cycle C = C[n 0 , d] can be recovered from its frame with the help of the cycle Collatz signature P = θ(C), the vector of exponents of 2 factoring out from the values of the function T d (1:1) at odd members of C, as follows :

                           ∀C = C[n 0 , d] , n 0 , d ∈ D , F = Odd (C) = n 0 , n 1 , . . . , n k-1 ; p 1 = ν 2 T d (n 0 ) , p 2 = ν 2 T d (n 1 ) , . . . , p k = ν 2 T d (n k-1 ) ; P = θ(C) = p 1 , p 2 , . . . , p k ∈ N k ; = length(C) = |P| = p 1 + p 2 + . . . + p k ; ∀j ∈ [1, k -1] ,
m p 1 +...+p j = n j ;

p j > 1 =⇒ ∀i ∈ [1, p j -1] , m p 1 +...+p j -i = 2 i • n j .
(2 : 4) Moreover, the Collatz signature

P = θ(C) of a cycle C = C[n 0 , d], n 0 , d ∈ D, com- pletely characterizes it :
Theorem 2.1. [START_REF] Belaga | Embedding the 3x+1 Conjecture in a 3x + d Context[END_REF]] (1) The Collatz signature P = θ(C) satisfies the inequality :

= |P| = p 1 + . . . + p k ≥ k • log 2 3 .
(2 : 5)

(2) Define the exponential diophantine function A = a k : N k -→ N, as follows :

         ∀k ≥ 1 ∀P = p 1 , . . . , p k ∈ N k , A = a k (P) = 1, if k = 1 ; 3 k-1 + 2 p 1 • 3 k-2 + . . . + 2 p 1 +...+p k-2 • 3 + 2 p 1 +...+p k-1 , otherwise .
(2 : 6) Let σ = σ k be the circular (counterclockwise) permutation on k-tuples :

∀P = p 1 , . . . , p k ∈ N k . σ(P) = σ k (P) = p 2 , . . . , p k , p 1 .
(2 : 7) d], n 0 , d ∈ D of the length , oddlength k ≥ 1, and with the frame F = n 0 , n 1 , . . . , n k-1 , then

If now P = θ(C) is the Collatz signature of a cycle C = C[n 0 ,
           (1) B = b k (P) = B k, = 2 -3 k > 0 ; (cf. (2 : 5)) (2) n 0 = d • A B , A = a k (P) ; (cf. (2 : 6)) (3) ∀j ∈ [1, k -1] , n j = d • a k σ j (P) B . (cf. (2 : 7))            (2 : 8)
3. Upper Bound to the Number of 3x + d Cycles of a Given Oddlength.

According to the formulae (2:8(2,3)), the odd members of a T d -cycle of the oddlength k satisfy the inequality

∀j ∈ [1, k -1] , n j ≤ W d,k = d• sup P∈N k |P|≥k log 2 3 a k (P) 2 |P| -3 k = d• sup ≥k log 2 3 max P∈D k |P|= a k (P) 2 -3 k . (3 : 1)
Simple calculations show that (cf. (1:9) above)

W d,k = d • 3 2 k • 2 k 2 k -1 , k = k • log 2 3 -k • log 2 3 . (3 : 2)
An analogue of this general upper bound and its more explicit version (1:11), have been, respectively, proved in [START_REF] Belaga | Embedding the 3x+1 Conjecture in a 3x + d Context[END_REF]] and refined in [START_REF] Belaga | Cyclic Structure of Dynamical Systems Associated with 3x + d Extensions of Collatz Problem[END_REF]].

We will be able to improve these bounds thanks, first, to a more careful analysis of the formulae (2:8), and then, to a remarkable inequality (3:5) proved below, Theorem 3.1. Namely, instead of evaluating from above all members of a T d -cycle of the oddlength k, we evaluate here its minimal member

n 0 = prg(C). Since the different T d -cycles have different perigees n 0 ∈ D, an upper bound n 0 ≤ V d,k would imply the bound ς k (d) ≤ 1 3 • V d,k to the number of T d -cycles of the oddlength k. More formally, if P = θ(C) (2:4) is the Collatz signature of the cycle C = C[n 0 , d], n 0 , d ∈ D, of the length = |P| and oddlength k ≥ 1, then, according to (2:8), n 0 ≤ min{n 0 , n 1 , . . . , n k-1 } = d • min j∈[0,k-1] a k σ j (P) 2 -3 k . (3 : 3)
Define for any k-tuple of positive integers P its average P, the arithmetical mean of all its counterclockwise permutations. This k-tuple of positive (generally speaking, rational) numbers depends only on the dimension k and length = |P| of P :

∀k ≥ 1 ∀P = {p 1 , . . . , p k } ∈ N k , = |P| , P = 1 k j∈[0,k-1] σ j (P) = k , . . . , k . (3 : 4)
Extending the definition of the function a k (2:6) to k-tuples of positive reals, we will prove below (Theorem 3.2) the inequality

∀k ≥ 1 ∀P ∈ N k , ãk (P) = min j∈[0,k-1] a k σ j (P) ≤ a k (P) = 2 -3 k 2 k -3 . (3 : 5)
The inequalities (3:3) and (3:5) imply the general upper bound (1:5), depending only on d and k, to the minimal member n 0 = prg(C) of any T d -cycle of the oddlength k :

∀n, d ∈ D , C = C[n, d] =⇒ n ≤ U d,k = d 2 k -3 , (3 : 6) 
and, finally, the upper bound (1:6).

Definition 3.1. (1) Let Λ be the set of pairs of positive integers (k, ) satisfying the inequality implied by (2:5),

Λ = (k, ) ∈ N 2 λ(k, ) = -k • log 2 3 ≥ 0 ; (3 : 7)
Extend the definition of the function A = a k (2:6) to k-tuples of positive reals from the (k -1)-dimensional tetrahedron T k, ,

∀(k, ) ∈ Λ , T k, = X ∈ R k |X| = x 1 + . . . + x k = ∧ ∀j ∈ [1, k] , x j ≥ 1 , (3 : 8) with k vertices V 1 , . . . S k , V 1 = { -k + 1, 1, . . . , 1}, V 2 = {1, -k + 1, . . . , 1}, . . . , V k = {1, 1, . . . , -k + 1} (3 : 9)
(2) The permutation σ (2:7) induces on T k, the rotation σ, with the center O of the tetrahedron being the only fixed point :

                 ∀X = x 1 , x 2 , . . . , x k-1 , x k ∈ T k, , σ(X) = x 2 , x 3 , . . . , x k , x 1 ; X = 1 k • j∈[1,k] σ j (X) = k , . . . , k = O , σ(O) = O ; a k (O) = k j=1 3 k-j • 2 k = 2 -3 k 2 k -3 .
(3 : 10) Theorem 3.2. For any k-tuple X from T k, , the inequalities hold : (3 : 11) with the equalities holding only in the case X = O.

∀X ∈ T k,            (1) a k (X) = 1 k • k-1 j=0 a k σ j (X) ≥ a k (O) = 2 -3 k 2 k -3 ; (2) ãk (X) = min j∈[0,k-1] a k σ j (X) ≤ a k (O) = 2 -3 k 2 k -3 ,
4.Proof of Theorem 3.2.

Note that, according to (2:6), if k = 1, then ≥ 2 and

∀X ∈ T 1, , X = X = O , a k (X) = ãk (X) = 2 -3 2 -3 = 1 . (4 : 1)
Thus, we can assume henceforth that k ≥ 2.

(1) The inequality (3:10(1)) is implied by the standard inequality

1 k (a + b + . . .) ≥ k √ a • b • . . ., as follows : ∀k ≥ 2 ∀(k, ) ∈ Λ ∀X ∈ T k, , 1 k 0≤j≤k-1 a k σ j (X) = 3 k-1 + 1≤j≤k-1 3 k-j-1 k 0≤r≤k-1 2 σ r (x 1 +...+x j ) ≥ 3 k-1 + 1≤j≤k-1 3 k-j-1 • 2 1 k 0≤r≤k-1 σ r (x 1 +...+x j ) = a k (O) = 2 -3 k 2 k -3 . cf. (3 : 10) (2) If X = O ∈ T k, , then (3:10(2)) becomes a trivial identity. Otherwise, O = X ∈ T k, (k ≥ 2, (k, ) ∈ Λ)
, and between the k k-tuples σ j (X), 0 ≤ j ≤ k -1, there exists at least two different ones :

∀k ≥ 2 ∀(k, ) ∈ Λ ∀X ∈ T k, \ {O} ∀j ∈ [0, k -1] , σ j (X) = X = O ; ∃j ∈ [1, k -1] , X = σ j (X) . (4 : 2)
Now the proof proceeds ad absurdum : the assumption a k σ j (X) > a k (O) for all j ∈ [0, k -1] would imply that a k (X) > a k (O) as well, -a contradiction, since X = O (3:10), (4:2).

The equation a k (X) = a k (O) induces a break up of the (k -1)-dimensional tetrahedron T k, (3:8) into three disjoint subsets : the closed (k -2)-dimensional submanifold T 0 = T 0 k, defined by this equation, and two (k -1)-dimensional and open in T k, submanifolds T + = T + k, , and T -= T - k, , defined by the inequalities a k (X) > a k (O) and a k (X) < a k (O), respectively :

∀k ≥ 2 ∀(k, ) ∈ Λ ,              T 0 = T 0 k, = X ∈ T k, a k (X) = a k (O) = 2 -3 2 k -3 ; T + = T + k, = X ∈ T k, a k (X) > a k (O) ; T -= T - k, = X ∈ T k, a k (X) < a k (O) .
(4 : 3)

We shall prove below the following properties of these three submanifolds : (A) T 0 is a smooth (in fact, analytical) submanifold.

(B) The submanifolds T 0 , T + , T -are connected and simply connected sets.

(C) The closed set T 0+ = T 0 ∪ T + is strictly convex : the convex closure P(S) of a finite set S of k-tuples from T 0+ belongs to T + , excluding, if necessary, the tuples from S belonging to T 0 .

The last property immediately implies the validity of the above argument ad absurdum.

To prove (A-C), one needs to look at the first and second partial derivaties of the function a k (X) :

                                         ∀k ≥ 2 ∀(k, ) ∈ Λ ∀X = x 1 , . . . , x k ∈ T k, , A k (X) = ∂a k ∂x 1 , . . . , ∂a k ∂x k-1 , ∂a k ∂x k (X) =
ln 2 • 2 x 1 a k-1 (x 2 , . . . , x k ), . . . , 2 x 1 +...+x k-1 a 1 (x k ), 0 ;

∂A k (X)

∂x i = ∂ 2 a k ∂x i ∂x j i,j∈[1,k] (X) ; ∀i, j ∈ [1, k] , r = max(i, j), 1 (ln 2) 2 • ∂ 2 a k ∂x i ∂x j
(X) = 2 x 1 +...+x r a k-r (x r+1 , . . . , x k ) .

(4 : 4)

The properties (A,B) of the submanifolds T 0 , T + , T -are immediately implied by the character of the first derivative A k (X). To prove the property (C), consider the second differential of the function a k , the quadratic form

                       d 2 a k (X) = i,j∈[1,k] ∂ 2 a k ∂x i ∂x j (X)dx i dx j = (ln 2) 2 r∈[1,k]
2 x 1 +...+x r a k-r (x r+1 , . . . , x k )

i,j∈ [1,r] dx i dx j = (ln 2) 2 r∈[1,k] 2 x 1 +...+x r a k-r (x r+1 , . . . , x k ) dx 1 + . . . + dx r 2 > 0 .

(4 : 5)

End of the Proof.
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