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Samuel Lelièvre, Robert Silhol
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0. Introduction.

To illustrate what this paper is about we first consider a classical example of
a translation surface. Consider two copies of a regular Euclidean pentagon as on
the left of figure 1. Identifying opposite parallel sides by translations one obtains
a Riemann surface with a natural locally flat metric with one cone type point of
total angle 6π. Since this is a compact Riemann surface it is also an algebraic curve
and in this case it is well known that this is the curve defined by y2 = x5 − 1.
Since the surface is of genus 2 it is also a hyperbolic surface. The hyperbolic
metric can easily be recovered by taking two copies of a regular hyperbolic pentagon
(with interior angle π/5) in the unit disk, attached as on the right of figure 1
and with opposite sides identified by appropriate hyperbolic transformations (this
construction is adapted from the one given in [Ku-Nä]).

Fig. 1

The important point here is that in fact these two decompositions into two
regular pentagons coincide exactly or otherwise said the pentagons are geodesic for
both the locally flat metric defined above and the natural hyperbolic metric. In
this case this follows easily from the fact that the edges of the pentagons are fixed
points of anti-conformal reflections.

This situation is unfortunately far from being the generic one and in general two
different metrics on a surface have no geodesic arcs in common. There are however
infinitely many families for which we have a decomposition into polygons, geodesic
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2 SAMUEL LELIÈVRE, ROBERT SILHOL

for two or more metrics. This is in particular the case for surfaces obtained by
taking finitely many copies of an Euclidean rectangle and identifying edges of the
rectangles pairwise, using translations or rotations of angle π (half-turns). These
are the surfaces we will explore in this paper.

The existence of a multi-geodesic tessellation on such surfaces has interesting
consequences. One of these is that it provides a mechanical way to reconstruct a
Fuchsian group for the surface (see Propositions 3.2 and 3.3).

Another consequence is that it allows for a description in terms of Fenchel-
Nielsen coordinates of the Teichmüller disk generated by a surface tiled by squares
(see Proposition 3.6). Moreover such a description allows for an interpretation
in terms of fractional Dehn twists of the natural PSL2(Z) action on the PSL2(R)-
orbit of such surfaces, Corollary 3.7 and section 5, where there are also examples of
fractional Dehn twists that connect surfaces in different PSL2(R)-orbits, or even in
different strata. These follow from the fact that actually not only is the tessellation
multi-geodesic but the medians of the rectangles (vertical or horizontal) extend to
simple closed curves that are geodesic for the different metrics.

Finally we note that in many cases one can use the tiling by rectangles to recover
an equation for the corresponding algebraic curve (see sections 4 and 5). Hence
the tiling by rectangles provides a bridge between the algebraic equation and the
hyperbolic structure deduced from the multi-geodesic tessellation. In other words
this solves the uniformization problem for such curves. In fact it also gives a scheme
to do uniformization for infinitely many families of curves (see section 4 for some
examples). Finally in section 6 and the Appendix we discuss some number theoretic
aspects.

The authors would like to thank Hugo Akrout and Peter Buser for many useful
discussions. The authors would also like to thank Le centre Bernoulli in Lausanne
for its hospitality while working on this paper.

1. Multi-geodesics in genus 1 and genus 0.

Let G1 be discrete subgroup of Aut(D) ∼= PSU(1, 1) of genus 1 and generated
by two hyperbolic elements A and B. The commutator [A, B] of A and B may be
either elliptic of order n or parabolic and hence the signature of the group is (1; n)
or (1;∞).

The quotient S1 = D/G1 is a hyperbolic genus 1 surface with a cone point of total
angle 2π/n. The surface has also a distinguished homology basis (α, β) given by the
images of the (oriented) axes of the transformations A and B. Replacing B by B−1

if necessary we may assume that this is a canonical basis. In this situation there
is a unique τ such that we have a conformal equivalence from S1 to C/Λ, where Λ
is the lattice generated by 2 and 2τ , and the image of [−1, 1] (resp. [−τ, τ ]) under
the canonical projection π2 : C → C/Λ = S1 is in the same homology class as α
(resp. β). The conditions define the equivalence up to a translation in C/Λ. We
make it unique by requiring that the intersection of the axes maps to π2(0) and
write S1 = C/Λ.

Call π1 the covering map D → S1. Since π2 : C → S1 is the universal cover of S1

and D is simply connected, π1 lifts to a map ϕ : D → C, and this lifting is unique
if we impose ϕ(0) = 0.

By construction the surface S1 comes equipped with two metrics, the natural flat
metric and the metric induced by the Poincaré metric on D. In the general situation
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the geodesic arcs for these two metrics bear no relations. A typical situation is
represented in figure 2 where on the left is a fundamental domain in the unit disk
and on the right are the images under ϕ of the hyperbolic geodesics shown on
the left. Although the difference is slight none of the arcs shown on the right are
straight line segments.

0

q1

q2

q3

q4

p1

p2

p3

p4

0 1

τ 1 + τ

Fig. 2

We have nevertheless the following elementary statement

1.1 Lemma. Let G1, S1, τ and ϕ : D → C be as above. Let q1 = ϕ−1(1 + τ), . . . ,
q4 = ϕ−1(1 − τ) be the pull-back of the vertices of the fundamental parallelogram
for S1. Then p1 = ϕ−1(1), p2 = ϕ−1(τ), p3 = ϕ−1(−1) and p4 = ϕ−1(−τ) are
the hyperbolic midpoints of (q4q1), (q1q2), (q2q3) and (q3q4) respectively. Moreover
ϕ−1(0) is the hyperbolic midpoint of (p1p3) and (p2p4).

Proof. By construction the pull-back via ϕ of z 7→ −z is the order two elliptic
transformation centered at ϕ−1(0) and the qi and pi are preimages of the fixed
points of the induced transformation in S1.

If the axes of A and B are orthogonal we have a much stronger statement. In
this case we may always assume that up to conjugation the axis of A is the real
axis and the axis of B is the pure imaginary axis. The reflections with respect
to the real axis and the pure imaginary axis induce anti-holomorphic involutions
on S1 or in other words define real structures on S1. See left of figure 3 where
a fundamental domain for G1 is represented. In order to avoid the denomination
“hyperbolic rectangle” we will call such a domain an equiquadrangle.

0
p1

q1
p2

0
1

1 + ττ

Fig. 3

These real structures obviously have two real components, one is the image of the
real (resp. pure imaginary) axis, the other is the image of two identified opposite
sides of the fundamental domain. Looking at the lattice Λ = 〈2, 2τ〉 introduced
above, this means that τ is pure imaginary, or in other words that the natural
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fundamental domain for Λ is a rectangle. By the uniqueness of the map ϕ, this
map commutes with complex conjugation on both sides, i.e. ϕ(z) = ϕ(z) and hence
maps D ∩ R to R and D ∩ i R to i R.

1.2 Lemma. Let G1 be a discrete subgroup of Aut(D) of signature (1; n) or (1;∞)
and generated by two hyperbolic elements A and B with respective axes the real axis
and the pure imaginary axis. Let A1 (resp. B1) be the unique hyperbolic element
such that A1

2 = A (resp. B1
2 = B).

Let cn be the images of the pure imaginary axis under A1
n and dn the image of

the real axis under B1
n. Let S1 = D/G1 and π1 the natural projection D → S1.

Then for all n, π1(cn) and π1(dn) are geodesic arcs in S1 for both the hyperbolic
metric induced by that of D and for the natural conformal flat metric on the torus
S1.

Proof: The real structure on S1 induced by complex conjugation in D has two
real connected components π1(R ∩ D) and π1(d1). Since these are the fixed points
of an anti-conformal reflection they are geodesic for any metric compatible with
the conformal structure and for which the reflection is anti-conformal. The same is
true for π1(iR ∩ D) and π1(c1). Since the cn and dn are just the images of c0, c1,
d0 and d1 under G1 we are done.

1.3 Corollary. Let S1 be as in 1.2 and let ϕ : D → C be the lifting of the projection
map π1 : D → S1 normalized as above. Let G be the group generated by A1 and B1

— see 1.2. Then the images of D ∩ R and D ∩ i R under G are mapped by ϕ onto
vertical lines through the integers and horizontal lines through n τ , n ∈ Z.

Another case where we have multi-geodesic arcs is the case of genus 1 surfaces
with a half-Dehn twist (see figure 4).

1.4 Lemma. Let A, B, A1, B1 and G1 be as in Lemma 1.2. Let G′
1 be the group

generated by A and B′ = A1 B. Then G′
1 has same signature as G1 (i.e. (1; n) or

(1;∞)). Let S′
1 = D/G′

1 and let π′
1 : D → S′

1 be the natural projection.

Then π′
1(iR∩D), π′

1(A1(iR∩D)) and π(B1
−1(R∩D)) are geodesic arcs in S′

1 for
both the hyperbolic metric induced by D and the natural flat metric on the torus.

Proof. Since A and A1 commute, the commutator [A, B′] is conjugate to the
commutator [A, B]. This proves the first assertion.

For the rest we note that S′
1 is obtained from S1 by applying a half-Dehn twist

along the image of the axis of A. Since this is a real component of S1, S′
1 also has

real structures, but with only one real component this time (see for example [Bu-
Se]). The real structures compatible with the hyperbolic metric must keep fixed
the elliptic point (or the cusp, depending on the signature). To describe these,
let σ be complex conjugation and let σ1 = B−1

1 · σ · B1 and σ2 = −σ. We have
B−1

1 · σ = σ · B1, hence we have σ1 = B−1 · σ = σ · B. We also have σ · A = A · σ
and similarly σ · A1 = A1 · σ. With these relations it is easy to prove that

(i) σ1 · A · σ1 = B′−1 · A · B′;

(ii) σ1 · B′ · σ1 = B′−1 · A.

In exactly the same way we can also prove

(iii) σ2 · A · σ2 = A−1;
(iv) σ2 · B′ · σ2 = A−1 · B′.
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To end the proof we only need to note that the fixed part of σ1 is B1
−1(R ∩ D)

and the fixed part of σ2 is iR ∩ D which has same image as A1(iR ∩ D).

Fig. 4

In general no other geodesic gets mapped in C onto a straight line. There are
however some noteworthy exceptions. Of particular interest are the quadrangles
corresponding to τ = i, τ = 1

2 + i
2 and τ = (1 + i

√
3)/2. In these cases the

existence of additional real structures implies that the arcs marked in figure 5 are
also geodesic for the hyperbolic metric.

Fig. 5

In the sequel we will need to use a genus 0 variant of 1.2. Let A be as above a
hyperbolic element with axis the real line. Let e1 be the elliptic element of order
2 with center 0 and let e2 be a second elliptic element of order 2 with center in a
point τ on the pure imaginary axis. This data being subject to the condition that
the group G0 = 〈A, e1, e2〉 is a discrete subgroup of Aut(D) with signature of the
form (0; 2, 2, 2, n) or (0; 2, 2, 2,∞). By construction the quotient D/G0 is of genus
0 and is naturally equipped with a singular hyperbolic metric with 4 cone points, 3
with total angle π and one with angle 2π/n or 3 cone points of angle π and a cusp.

0
p1

q1
p2

0
1

1 + ττ

Fig. 6

The fundamental domain described on the left of figure 6 is conformally equiva-
lent to a rectangle with vertices ±1 and ±1 + τ . Using this rectangle we can also
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equip S0 with a singular flat metric (see right of figure 6). For the same reasons as
those indicated for S1 the sides of the fundamental domain coincide with the sides
of the rectangle, and in particular are geodesic for both metrics. For further use
we write this formally.

1.5 Lemma. Let G0 be a discrete subgroup of Aut(D) of signature (0; 2, 2, 2, n) or
(0; 2, 2, 2,∞) and generated by an elliptic element e1 of order 2 centered at 0 and
two hyperbolic elements A and B with respective axes the real axis and the pure
imaginary axis.

Let S0 = D/G0. Then S0 decomposes into two copies of a geodesic hyperbolic
trirectangular quadrangle. The sides of this quadrangle are also geodesic for a nat-
ural singular flat metric.

We have just taken B = e1e2.

1.6 Remark. It will be useful in the sequel to reformulate the conditions on G1 and
G0 in terms of fundamental domains. For G1 the conditions are that a fundamental
domain in the disk be of the form given on the left of figure 3, with interior angles
all equal either to π/(2n) or to 0. For G0 the condition is that the fundamental
domain be of the form given on the left of figure 6, with two interior right angles
and two angles equal either to π/n or to 0.

2. Fuchsian groups and equations in genus 1.

For the applications we will need to have a more precise description of the hyper-
bolic transformations A and B introduced in Lemma 1.2 and their relations with
the rectangles.

2.1 Lemma. Let R be an equiquadrangle with interior angle π/n, n even, or
zero angle. Let ℓ be the hyperbolic length of the horizontal median of R and let
L = cosh(ℓ/2). Let

L′ =

√
cos(π/n)2 + L2 − 1

L2 − 1
or L′ =

L√
L2 − 1

if the angle is zero.

Then the transformations A, B of Lemma 1.2 generating G1 are represented in
SU(1, 1) by

(2.1.1) A =

(
L

√
L2 − 1√

L2 − 1 L

)
, B =

(
L′ i

√
L′2 − 1

−i
√

L′2 − 1 L′

)
.

In the more general situation of genus 1 with a twist parameter t along the axis
of A we can consider the group generated by A and B1 = T · B, where

(2.1.2) T =

(
Tw

√
Tw2 − 1√

Tw2 − 1 Tw

)

with Tw = cosh(t arccosh(L)).

The proof is a simple exercise in hyperbolic trigonometry (use for example [Bu],
p.454).

For the group G0 of Lemma 1.5 we have a very similar description.
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2.2 Lemma. Let G0 = 〈A, B, e1〉 be as in Lemma 1.5. Then A and B will have
the same expression as that given in (2.1.1), but with n even or odd this time.

In the presence of a twist t along the axis of A, A and B1 have the same expres-
sion as in Lemma 2.1 and e1 is just the conjugate of z 7→ −z by a matrix of the
same form as T but with Tw replaced by

√
(Tw + 1)/2.

For the special cases of quadrangles associated to the parallelograms of periods
i, 1

2 + i
2 or (1 + i

√
3)/2, we can be even more precise.

(2.3) For the “square” equiquadrangle we only need to take

(2.3.1) L =
√

cos(π/n) + 1 or L =
√

2 if the angle is 0.

(2.4) If τ = (1 + i
√

3)/2 the corresponding hyperbolic quadrangle is obtained
from two copies of a hyperbolic equilateral triangle with angle 2π/(3n). Using the
formulae in [Bu], p.454, one can compute the generators A and B for the group of
the genus 1 surface. This yields:

• A as in (2.1.1) with L = 1
2 + cos

(
2π
3n

)
;

• B = T A T−1,

where

T =

(
exp

(
i θ

2

)
0

0 exp
(
−i θ

2

)
)

with θ = arccos

(
2 cos(2π/(3n)) + 1

2 cos(2π/(3n)) + 3

)
.

If the angle is the zero angle these matrices become

A =

(
3
2

√
5

2√
5

2
3
2

)
and B =

(
3
2

(3+4 i)
√

5
10

(3−4 i)
√

5
10

3
2

)
.

(2.5) If τ = 1
2 + i

2 , then one has, with L as in (2.3.1),

A =

(
L2

√
L4 − 1√

L4 − 1 L2

)
, B =

(
L eiβ

√
L2 − 1

e−iβ
√

L2 − 1 L

)

where β = arcsin(1/
√

L2 + 1).

We will also need to associate an explicit equation for the elliptic curve defined
by a rectangle and conversely.

We do this as follows, given τ we use a variant of a classical Jacobi function

(2.6) Jτ (z) = −w

K

∞∏

k=0

(w − ζ2k)2(1 − ζ2k+2w)2

(w − ζ2k+1)2(1 − ζ2k+1w)2
,

where ζ = exp(πiτ), w = exp(πiz) and K = 4
∞∏

k=1

(
1+ζ2k

1+ζ2k−1

)4

(for more details see

for example Nehari [Ne], Chap. VI, Sec.3. See also [Bu-Si2]). We have Jτ (0) = 0,
Jτ (1) = 1 and Jτ (τ) = ∞. Letting µ = Jτ (1+ τ), an equation for the elliptic curve
is

(2.7) y2 = P (x) = x (x − 1) (x − µ) .
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For the converse choose a determination of
√

P (x) for x in the upper half plane.
Extend this determination to the real line. Then

τ = I2/I1 where I1 =

∫ 1

0

dx√
P (x)

and I2 =

∫ µ

1

dx√
P (x)

.

We have used here the convention that the vertices of the rectangle get mapped
to the Weierstrass point with x-coordinate 0, the midpoint of the vertical edges to
the one with x-coordinate 1 and the midpoint of the horizontal edges to the point
at infinity. We extend this convention to the case of parallelograms namely the
vertices will be mapped to 0, the midpoint of the horizontal edges to ∞ and the
midpoints of the other edges to 1.

With this convention we note that

2.8 Lemma. If µ > 1 corresponds to τ , then
µ

µ − 1
corresponds to −1/τ , 1 − µ

corresponds to τ − 1 and 1/µ to
τ

1 + τ
.

Proof. For the first assertion we note that the integrals along [−∞, 0] (resp.
[µ,∞]) are just minus the integrals along [1, µ] (resp. [0, 1]). Applying the change
of variable x 7→ x/(x − 1) proves the first assertion if in addition we note that the
integral along [0, 1] is real while the integral along [1, µ] is pure imaginary. For the
other assertions apply the change of variables x 7→ 1 − x and x 7→ 1/x.

2.9 Remarks. 1) If we are dealing with a parallelogram in place of a rectangle,
then the curve will also have an equation of the form (2.7) with µ computed using
the Jacobi function (2.6). We will also of course have an analogue of Lemma 2.8
but the exact correspondence will depend on the choice of the initial parallelogram.

2) Since for a given elliptic curve there are only six possibly different values of
µ, infinitely many values of τ will correspond to the same µ. This is in particular
the case for τ and 2 + τ .

3) For domains as in the second part of Lemma 2.1 we use a similar convention
that 0 is mapped to 0, 1 is mapped to 1 and τ is mapped to ∞. We will call µ the
image of 1 + τ .

A fundamental domain for a group generated A and B (resp. A and T · B) is
illustrated on the left (resp. right) of figure 7.

q3 q4

q2 q1

p4

p2

p3 p1

q3
p4 q4

q′2
p′2 q′1

Fig. 7

We will need the following straightforward result
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2.10 Lemma. Let L, n, A, B and T be as in Lemma 2.1 or Lemma 2.2. Then the
hyperbolic lengths of the upper and lower geodesic arcs of the fundamental domains
for 〈A, B〉 or 〈A, T · B〉 is arccosh(L sin(π/n)). Moreover the sum of the interior
angles at q′1 and q′2 is 2 π/n.

Proof. This follows immediately from the fact that q′1 and q′2 are the images
of q1 and q2 under T .

For the “square” equiquadrangle or the quadrangles corresponding to the period
1
2 + i

2 or (1+i
√

3)/2 we have the obvious values µ = 2, µ = 1/2 and µ = (1+i
√

3)/2
respectively.

In addition to these values there are other cases for which we can express µ in
terms of L and n. For some examples see the Appendix.

3. Multi-geodesic tessellation of surfaces obtained from rectangles.

Let R be an Euclidean rectangle in the complex plane. To simplify we assume
the edges of R are horizontal or vertical. Assemble r copies R1, . . . , Rr of R by
pasting along sides of same length so that not only the resulting polygon is simply
connected but it also remains simply connected when one removes the vertices of
the rectangles. We will say that such an arrangement of rectangles is an admissible
arrangement (the arrangement on the left of figure 8 is not admissible in this sense
but the one on the right is). This restriction on the arrangement is here for purely
technical reasons and could be in fact dispensed with.

non admissible admissible

Fig. 8

Identify the remaining edges by pairs, using translations or rotations of angle
π (half-turns), in a way that is compatible with the orientation of the rectangles,
i.e. the identifications by translation can be top edge to bottom edge and right edge
to left edge, and the identifications by half-turns can be top edge to top edge, left
edge to left edge, right edge to right edge and bottom edge to bottom edge. We
will call such surfaces surfaces obtained from rectangles.

We will distinguish the case when the identifications are only by translations and
the case when some identifications are by half-turns. Referring to the underlying
invariant differential we will call the first the Abelian case and the second the
quadratic case. This denomination comes from the fact that in the first case the
differential dz being invariant by translations it induces a holomorphic, or abelian,
differential ω on the surface S. In the second it is dz2 that induces a quadratic
differential q. In both cases the zeros of the differential are necessarily located at
images of vertices of the rectangles.
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3.1 Definition. Let S be as above and let q be the quadratic differential induced
by dz2 (in both the Abelian and quadratic case). Let d1, . . . , dk be the orders of the
zeros of q. Let mi = di + 2 and let m be the least common multiple of the mi. For
a positive integer n we will say that π/n (or by abuse simply n) satisfies the angle
condition for the differential if n is a multiple of m. We will always consider that
the zero angle satisfies the angle condition.

We consider first the Abelian case. Let E be the genus 1 surface corresponding to
the rectangle R that to fix notations we identify with R1 and let E∗ be the surface
obtained from E by removing the image of the vertices of the rectangle. Let p be
the center of R1 and let h and v be the elements of π1(E

∗, p), the fundamental
group of E∗, corresponding respectively to the horizontal median and the vertical
median of the rectangle oriented in the natural way. Since π1(E

∗, p) is isomorphic
to the free group in two generators, h and v can be thought of as generating a free
group.

Let S be as above and let S∗ be the surface obtained by removing the vertices of
the rectangles. Since the arrangement of rectangles we are starting with is admissi-
ble and in particular remains simply connected when the vertices are removed the
identifications of edges define a set of generators of the fundamental group of S∗.
On the other hand S∗ is an unramified covering of E∗. Hence we can consider the
fundamental group of S∗ as a subgroup of π1(E

∗, p). More precisely taking as base
point the center of the rectangle R1 the fundamental group of S∗ is generated by
words w1(h, v), . . .ws(h, v) in h and v. For example if we consider the surface ob-
tained from three rectangles (see upper left of figure 9) with the usual identifications
(by horizontal and vertical translations) then these words are h2, v2, hvh−1, vhv−1

(see [Sch] and section 4 for other explicit computations of this type).

Let S and ω be as above and let n be an integer satisfying the angle condition
for ω2. Then there exist hyperbolic elements A and B satisfying the conditions of
1.2 generating a group G1 of signature (1; n) or (1;∞) and such that D/G1 = E.

Fig. 9

3.2 Proposition. Let S, the Abelian differential ω, the words w1, . . . , ws and A
and B be as above. Let G be the group generated by w1(A, B), . . . , ws(A, B). Then

(i) G is a discrete subgroup of Aut(D);
(ii) D/G ∼= S as Riemann surfaces;
(iii) the edges of the rectangles are geodesic arcs for the hyperbolic metric induced

by the Poincaré metric on D;
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(iv) the horizontal and vertical medians of each rectangle are geodesic for the
hyperbolic metric and extend to simple closed geodesics on the surface.

Proof. Call R the equiquadrangle defined by A and B. We build a domain
in D starting with R and using the same combinatorics as the one that defines
the arrangements of rectangles, replacing everywhere the copies of the Euclidean
rectangle R by copies of R (see figure 9 for two examples). By construction G
identifies in pairs the remaining edges of the equiquadrangles.

Assume that the signature of G1 = 〈A, B〉 is (1; n). If x0 is a point of S where
ω has a zero of order di, the total angle at that point will be 2(di + 1)π and hence
corresponds to the identification of 4(di + 1) vertices. The interior angles of the
equiquadrangle are π/(2n) hence the sum of the hyperbolic interior angles of the
vertices identified by G with x0 will be 4(di + 1)π/(2n). Since by definition n is a
multiple of di+1 this is of the form 2π/p. This together with the pairing convention
means that we can apply Poincaré’s theorem (see for example [Bea] section 9.8) and
conclude that the group G is discrete and that the arrangement of equiquadrangles
we have constructed is a fundamental domain for this group. If the signature is
(1;∞) then we can directly apply Poincaré’s theorem (see [Bea], p.251). This proves
(i). One should think of G as an orbifold fundamental group.

Next we consider the conformal equivalence f from the interior of the equi-
quadrangle to the rectangle, extended by continuity to the boundary minus the
vertices. Using Schwarz’s reflection principle we can extend this conformal map to
the full arrangement of equiquadrangles. This yields a conformal equivalence from
the hyperbolic arrangement to the Euclidean arrangement. By construction of G
this conformal equivalence induces a conformal equivalence from D/G−{images of
vertices} to S∗ which extends naturally to a biholomorphic map from D/G to S.
This proves (ii) and (iii).

The median (horizontal or vertical) of a rectangle in S extends to a simple closed
curve which corresponds to the decomposition of S into cylinders (horizontal or
vertical). By 1.2 these are locally geodesic and since they intersect orthogonally at
midpoints the sides of the equiquadrangles (see 1.1) we obtain (iv).

In the quadratic case we have a very similar statement. Essentially only the
initial setup is different.

By changing the arrangement if necessary we may always assume that the iden-
tifications of the form z 7→ −z + c are between horizontal sides.

Let h be the translation that maps the left side of the rectangle R onto the right
side. Let r1 be the rotation of angle π centered at the center of R and let r2 be
the rotation of angle π centered at the middle of the upper side of R. Let S∗

0 be
the quotient of R−{vertices} under the identification induced by h, r1 and r2. We
consider S∗

0 as an orbifold with three cone points of order 2 and a cusp. The orbifold
fundamental group of S∗

0 is generated by three elements, two of order 2 and one of
infinite order. We may consider these generators as being r1, r2 and h. Let S∗ be
the surface obtained from S by removing the images of the vertices of the rectangles.
Identifying R with R1 we can, proceeding as in the Abelian case, write generators
for the orbifold fundamental group of S∗ as words in h, r1 and r2 or better as
words in h, v = r1r2 and r1. We choose these words w1(h, v, r1), . . . , ws(h, v, r1) to
correspond to side pairings of the arrangement defining S.

Let n be an integer satisfying the angle condition. Choose A hyperbolic, e1 and
e2 elliptic of order 2, as in section 1, such that the group G0 = 〈A, e1, e2〉 is discrete



12 SAMUEL LELIÈVRE, ROBERT SILHOL

of signature (0; 2, 2, 2, n) or (0; 2, 2, 2,∞) and such that D/G0 − {point of order n}
or D/G0, depending on the signature, is conformally equivalent to S∗

0 .

3.3 Proposition. Let S, the quadratic differential q, the words w1, . . . , ws, A, e1

and e2 be as above.
Let B = e1e2 and let G be the group generated by w1(A, B, e1), . . . , ws(A, B, e1).

Then properties (i) to (iv) of 3.2 hold also in this case.

The proof follows exactly the same lines as the proof of 3.2.

We end this section by describing the hyperbolic counterpart of the natural action
of PSL2(Z) on the Teichmüller disk orbit of a surface obtained from rectangles.

To avoid technical difficulties we need to restrict to surfaces for which the hy-
perbolic metric is non singular. To be more specific we need

3.4 Definition. Let (S, q) be a surface obtained from rectangles. We will say that
(S, q), or simply S, is balanced if all vertices correspond to zeros of the same order
of the quadratic differential q.

If (S, q) is balanced then choosing the hyperbolic equiquadrangle with interior
angle π/(n + 2), where n is the order of q at the vertices, leads to a non singular
hyperbolic metric on the surface.

3.5. For the remainder of this section we will consider balanced surfaces with this
hyperbolic metric in addition to the locally flat metric induced by the quadratic
differential.

Let S be a surface obtained from rectangles, then S has a natural decomposition
into horizontal cylinders C1, . . . , Cp (see for example [Hu-Le]). If a cylinder Ci is
formed of ni rectangles, we will say that it is of width ni. By Lemma 2.1 or Lemma
2.2 the horizontal medians of these cylinders are disjoint simple closed geodesics
γi.

3.6 Proposition. Let (S, q) be a balanced surface of genus g obtained from squares,
with the hyperbolic structure defined in 3.5. Let C1, . . . , Cp be its decomposition into
horizontal cylinders, Ci of width ni and let γ1, . . . , γp be the corresponding simple
closed geodesics. Let γp+1 . . . , γ3g−3 be geodesics such that γ1, . . . , γ3g−3 defines a
pants decomposition. Then there exist functions fp+1, . . . , f3g−3, defining lengths,
and tw1, . . . , tw3g−3, defining twist parameters, depending only on the combinatorics
of the decomposition into squares and the choice of the γj, j > p, such that the
surfaces in the PSL2(R) orbit of (S, q) have Fenchel-Nielsen coordinates of the form

(3.6.1)

(
n1ℓ, tw1(ℓ) +

t

n1
, . . . , npℓ, twp(ℓ) +

t

np
,

fp+1(ℓ), twp+1(ℓ), . . . , f3g−3(ℓ), tw3g−3(ℓ)

)

with ℓ = 2 arccosh(L), L as in 2.1 and t ∈ R.

Proof. We first consider the case when (S, q) is obtained from rectangles.
That the lengths of the γi, 1 6 i 6 k, is niℓ follows immediately from the

definition of the cylinders and the construction of the hyperbolic structure.



MULTI-GEODESIC TESSELLATIONS AND UNIFORMIZATION 13

Let γj , j > p, be one of the additional geodesics. Because of our convention 3.5,
Proposition 3.2 (resp. 3.3) implies that γj is the image in S of the axis of a word
w in A and B (resp. A, B and e1) and the length of γj is 2 arccosh(trace(w)/2).

Such a word depends only on the combinatorics of the decomposition into rect-
angles and the choice of γj. On the other hand the coefficients of A and B only
depend on n, which is fixed, and L = cosh(ℓ/2) (see Lemma 2.1). In particular
trace(w), and hence the hyperbolic length of γj, is a function of L.

Let P1 and P2 be two pairs of pants pasted along γi. Then the twist parameter
attached to γi can be computed in terms of the lengths of boundary components
of P1 and P2 and the length of a simple closed geodesic δi contained in P1 ∪P2

(see for example [Bu], Proposition 3.3.12).
Lift this geodesic to a curve di in the arrangement of rectangles (which we assume

as usual to have horizontal and vertical sides).
From the construction of this geodesic δi (see [Bu], Chap. 3, §3) the free ho-

motopy class of δi in the surface only depends on the the combinatorics of the
arrangement and the side identifications, and is independent of the choice of the
specific rectangle. Hence δi can be expressed as a fixed word in A, B and e1. The
same argument as above shows that the length of δi and the twist parameter for γi

are functions of L.

Let R0 be an equiquadrangle and let A and B be the hyperbolic left-right and
bottom-top side pairings. For each integer j denote by Rj the equiquadrangle
Aj(R0).

A cylinder C of width n is the quotient of the infinite union of the Rj by the
identification of each Rj to Rj+n+1 by An+1 (see left of figure 10 where we assume
that the horizontal middle geodesic is the real axis in the unit disk).

Now consider the situation with the same A but with B replaced by B1 = T ·B,
with T as in Lemma 2.1 and with Tw = cosh(t arccosh(L)). There are two ways we
can look at this situation, one is by replacing the equiquadrangles by the domain on
the right of figure 7, another is to keep the lower half of the cylinder (in ℑm(z) < 0)
fixed and shift the upper half by T (see right of figure 10). But since the length of the
middle geodesic is nℓ this amounts to applying a arccosh(Tw)/(n arccosh(L)) = t/n
twist along the middle geodesic. This proves that for 1 6 j 6 k the twist parameter
for γj is now twj(ℓ) + t/nj .

Fig. 10

To end the proof let S be the surface obtained from the equiquadrangles or
otherwise said from A and B and let S1 be the surface obtained from A and B1 =
T · B. Let S′ and S′

1 be the surfaces with boundaries obtained from S and S1

respectively by cutting along γ1, . . . , γs. The above construction shows that S′

and S′
1 are isometric. This shows that the remaining Fenchel-Nielsen coordinates,

length of γj and twist along γj, remain unchanged.
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We started with a decomposition into horizontal cylinders, but we would have ob-
tained the same type of result, starting with a decomposition into vertical cylinders.
This would lead to another pants decomposition and another set of Fenchel-Nielsen
coordinates

(3.6.2)

(
n′

1ℓ
′, tw′

1(ℓ
′) +

t′

n′
1

, . . . , n′
p′ℓ′, tw′

p′(ℓ′) +
t′

n′
p′

,

gp′+1(ℓ
′), tw′

p′+1(ℓ
′), . . . , g3g−3(ℓ

′), tw′
3g−3(ℓ

′)

)

with ℓ′ = 2 arccosh(L′), L′ as in 2.1.

3.7 Corollary. Let D be a Teichmüller disk, PSL2(R) orbit of a surface obtained
from squares. Let

(n1ℓ, t1, . . . , npℓ, tp, ℓp+1, tp+1, . . . , ℓ3g−3, t3g−3)(
n′

1ℓ
′, t′1, . . . , n

′
p′ℓ′, t′p′ , ℓ′p′+1, t′p′+1, . . . , ℓ

′
3g−3, t′3g−3

)

be pairs of Fenchel-Nielsen coordinates, of type (3.6.1) and (3.6.2), for surfaces in
D.

Let ϕ1 be the composition of fractional Dehn-twists along γ1, . . . , γk that consists
in replacing t1, . . . , tp by t1+1/n1, . . . , tp+1/nk. Similarly let ϕ2 be the composition
of fractional Dehn-twists that consists in replacing t′1, . . . , t

′
p′ by t′1 +1/n′

1, . . . , t
′
p′ +

1/n′
p′.

Then ϕ1 and ϕ2 generate the natural action of PSL2(Z) on D.

Proof. Let S be a surface in D tiled by parallelograms with invariant τ . The

image of S under
(

1 1

0 1

)
is obtained by replacing the initial parallelograms by those

with invariant 1+τ . Let A be the hyperbolic left-right side pairing and B1 the other
side pairing of the hyperbolic quadrangle associated to the parallelogram defined
by τ . Replacing τ by 1 + τ is just a change of basis of the lattice. By construction
this corresponds to replacing A and B1 by A and A · B1. But this is just taking
t = 1 in (3.6.1). This is the action of ϕ1.

The same argument shows that
(

1 0

1 1

)
acts by ϕ2 on D.

3.8 Remark. From the form of the matrices A and B in Lemma 2.1 and the proof
of Proposition 3.6 one can easily deduce that all the cosh(fj(ℓ)/2) have algebraic
expressions in L.

The same is true of the cosh(tiℓi/2) since the exact expression given in [Bu]
3.3.11 only involves hyperbolic sines and hyperbolic cosines of lengths.

4. The stairs and the escalator families.

In this section we will consider families constructed from the common admissible
arrangement of rectangles illustrated in figure 11. Although these families belong
to different strata we will see that the equations of the surfaces in these families
are intimately related.
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a

b

c

d

Fig. 11

The families are differentiated by the way the sides labeled a, b, c and d are
identified. The families are as follows.

St1(g): the number of rectangles is 2g and the identification is a ∼ b, c ∼ d.
The surface is hyperelliptic of genus g and the Weierstrass points are the centers
of the rectangles and the midpoints of the edges labeled a ∼ b and c ∼ d. The
vertices map to two distinct points in the surface hence the surface is in the stratum
H(g − 1, g − 1). Surfaces in this family are often called stairs (see [Sch] or [Möl]).

Esc1(g): the number of rectangles is 2g + 2 with g odd and the identification is
a ∼ d, b ∼ c. The surface is hyperelliptic of genus g and the Weierstrass points are
the centers of the rectangles. The vertices of the rectangles map to four distinct
points hence the surface is in the stratum H((g−1)/2, (g−1)/2, (g−1)/2, (g−1)/2).
By analogy with the stairs we call this family the escalator family.

Esc2: the number of rectangles is 2g with g odd and the identification is a ∼ d,
b ∼ c. The surface is hyperelliptic of genus g and the Weierstrass points are
the centers of the rectangles and the vertices of the rectangles. The vertices of the
rectangles map to two points and hence the surface is in the stratum H(g−1, g−1).

Escb1(g): the number of rectangles is 2g + 2 with g even and the identification
is a ∼ c, b ∼ d. The surface is hyperelliptic of genus g and the Weierstrass points
are the centers of the rectangles. The vertices of the rectangles are mapped to
four distinct points. Since the identifications a ∼ c and b ∼ d use a half-turn, the
surface is in the stratum Q((g−1), (g−1), (g−1), (g−1)). The identification used
here does not really deserve to be called of escalator type but we have named it by
analogy with the Esc1 family.

Escb2(g): the number of rectangles is 2g with g even and the identification is
a ∼ c, b ∼ d. The surface is hyperelliptic of genus g and the Weierstrass points
are the centers of the rectangles and the vertices of the rectangles. The vertices of
the rectangles are mapped to two points and the surface is in the stratum Q(2g −
2, 2g − 2).

Finally we also consider one last family based on a slightly different arrangement
(see figure 12).
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Fig. 12

St2(g) : the number of rectangles is 2g − 1. The surface is hyperelliptic of genus
g and the Weierstrass points are the vertices, all mapped to one point, the centers
of the rectangles and the midpoints of the identified horizontal edges of the lower
left rectangle and of the identified vertical edges of the upper right rectangle. The
surface is in the stratum H(2g − 2).

Note that multiples of 2 g satisfy the angle condition for the differential on sur-
faces in St1(g), Esc2(g) and Escb2(g), while multiples of g+1 satisfy the conditions
for surfaces in Esc1(g) and Escb1(g). For surfaces in St2(g) we must choose multi-
ples of 4 g− 2. In particular we can replace the rectangles by equiquadrangles with
angles π/(2 g) for St1(g), Esc2(g) and Escb2(g), or angles π/(g + 1) for Esc1(g)
and Escb1(g), or angles π/(4 g − 2) for St2(g). If we do this we are under the
hypothesis of 3.5 and the hyperbolic metric will be non-singular. To compute the
corresponding Fuchsian groups we only need, by Propositions 3.2 and 3.3, to com-
pute the words expressing the identifications in terms of the elementary horizontal
and vertical identifications h and v of the rectangle and the rotation of angle π at
the center of the rectangle. This is taken care of by

4.1 Lemma. If the surface is in St1(g) the side pairings are given by,

(4.1.1) 〈 v, (hv)g−1hvh−1(hv)1−g, (hv)jh2(hv)−j , (hv)ihv2h−1(hv)−i

/ 0 6 j 6 g − 1, 0 6 i 6 g − 2 〉

If the surface is in St2(g) they are given by,

(4.1.2) 〈 v, (hv)g−1h(hv)1−g, (hv)jh2(hv)−j , (hv)jhv2h−1(hv)−j / 0 6 j 6 g− 2 〉

For Esc1(g) and Esc2(g) the side parings are given by,

(4.1.3) 〈 (hv)k, (hv)k−1hv−1, (hv)jh2(hv)−j , (hv)ihv2h−1(hv)−i

/ 0 6 j 6 k − 1, 0 6 i 6 k − 2 〉

where k = g + 1 for Esc1(g) and k = g for Esc2(g).
For Escb1(g) and Escb2(g) they are given by,

(4.1.4) 〈 (hv)kr, (hv)k−1hr, (hv)jh2(hv)−j , (hv)ihv2h−1(hv)−i

/ 0 6 j 6 k − 1, 0 6 i 6 k − 2 〉
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where again k = g + 1 for Escb1(g) and k = g for Escb2(g).

For surfaces in St1 and St2 these computations have been done by G. Schmit-
hüsen in [Sch]. Similar computations yield the result for the other families.

Our next objective is to compute equations for the associated algebraic curves.
We do Esc1(g) and Escb1(g) first.

4.2 Proposition. Surfaces in Esc1(g) or Escb1(g) correspond to algebraic curves
with an equation of the form

(4.2.1) y2 = x2g+2 + a xg+1 + 1

(with −2 < a < 2 when the elementary tile is a rectangle). The Abelian differential
or the quadratic differential is a scalar multiple of

(4.2.2) ω =
x(g−1)/2dx

y
or q =

xg−1dx2

y2
.

Conversely if C is a curve with equation (4.2.1), with a 6= ±2, then, if g is odd,
(C, ω) is in the SL2(R) orbit of surfaces in Esc1(g) and if g is even, (C, q) is in the
SL2(R) orbit of surfaces in Escb1(g).

Moreover the equation of the elliptic curve corresponding to one elementary rec-
tangle (or more generally elementary parallelogram) is

(4.2.3) y2 = x4 + a x2 + 1

with the same a as in (4.2.1) and we have

a =
2 µ − 4

µ
,

where µ is the invariant of the rectangle as defined in section 2.

Proof. We first note that, from the combinatorial structure of the identifications
and the fact that the angle at the vertices of the equiquadrangles, defining the non-
singular hyperbolic metric, is π/(g + 1) one can easily check that the surface has
an automorphism fg of order g + 1, the fixed points of which are the four images
of the vertices.

Now assume that g is odd and hence the surface S is in Esc1(g). The quotient of

S under fg
2 is a surface E in Esc1(1) obtained from four rectangles. The quotient

map is ramified precisely at the vertices of the rectangles, i.e. the fixed points of fg.
To reconstruct this situation, we first note that in this case f1 is an involution

and we can always assume that it is induced by x 7→ −x. The four vertices will
then be points above x = 0 and x = ∞. Label the rectangles from 1 to 4 starting
with the lower left. The choice we have just made implies that if the x coordinates
of the center of rectangles 1 and 2 are x1 and x2 then the centers of rectangles 3
and 4 are −x1 and −x2. We can still make one choice,so we choose the midpoints
of the horizontal edges of rectangles 2 and 3 to have x-coordinate 1. The midpoints
of the horizontal edges of rectangles 1 and 4 will then correspond to −1. But this
implies that the involution obtained by rotating the arrangement of rectangles by
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angle π will be induced by x 7→ 1/x. In which case we have x2 = −1/x1. Hence an
equation of the form

(4.3) y2 = (x2 − x2
1)(x

2 − 1/x2
1) = x4 + a x2 + 1

Now we have four involutions induced by half-turn around:

(1) the vertices; this is f1 which is (x, y) 7→ (−x, y);
(2) the midpoints of horizontal sides; this is (x, y) 7→ (1/x, y/x2);
(3) the centers of the rectangles; this is (x, y) 7→ (x,−y);
(4) the midpoints of vertical edges.

Since (4) is the composition of (1), (2) and (3), it is (x, y) 7→ (−1/x,−y/x2), and
hence its fixed points are the points with x-coordinate ±i.

To end the description of E we note that for rectangles we have real structures
obtained by taking reflections in the horizontal or vertical medians of the rectangles.
The first must fix the points above ±i and the second the points above ±1. This
implies that the first is (x, y) 7→ (1/x̄,−ȳ/x̄2) and the second is (x, y) 7→ (1/x̄, ȳ/x̄2).
This in turn implies that |x1| = 1 and hence −2 < a < 2.

Now consider the genus g curve with equation

(4.4) y2 = x2g+2 + a xg+1 + 1 ,

g = 2 n + 1 odd. This curve has an obvious automorphism of order g + 1 defined
by ϕ : (x, y) 7→ (ζ x, y), where ζ is a primitive (g + 1)-th root of unity. The fixed
points of ϕ are the points above x = 0 and the points at infinity. The quotient of
this curve under ϕ2 is the curve with equation (4.3). The quotient morphism is
(x, y) 7→ (xn+1, y) which is precisely ramified at the points above x = 0 and the
points at infinity. This proves (4.2.1) for surfaces in Esc1(g).

If g is even and S is in Escb1(g) we consider the surface S′ in Esc1(2 g + 1)
obtained from the same rectangles. Then S′ is a double cover of S and the covering
is precisely ramified at the vertices of the rectangles. But we know from the above
that S′ has an equation of the form y2 = x4 g+4 + a x2g+2 + 1. From this it is not
hard to deduce that S has again an equation of the form (4.2.1).

Since the differentials vanish at the points above x = 0 and the points at infinity,
we also get (4.2.2).

The third assertion follows from the fact that the image in moduli space of the
set of surfaces in Esc1(g) (resp. Escb1(g)) is an algebraic curve.

To end the proof we only need to note that the surface E obtained from four
rectangles is obviously isomorphic to the one obtained from one rectangle and that
the curve defined by (4.3) is isomorphic to

y2 = x (x − 1)

(
x − 4

2 − a

)

the isomorphism being induced by

x 7→ 2 x1(x − x1)

(1 + x2
1)(x1x − 1)

.

If the rectangles are in fact squares we have µ = 2 hence,
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4.5 Corollary. Let S be a surface of genus g in Esc1 or Escb1. If S is tiled by
squares, then an equation for S is

y2 = x2g+2 + 1 .

Form 4.2 we are going to deduce the other cases. We do Esc2(g) and Escb2(g)
first.

4.6 Proposition. Let S be a surface of odd, respectively even, genus g in Esc2,
respectively Escb2. Then the corresponding algebraic curve has an equation of the
form

(4.6.1) y2 = x (x2g + a xg + 1) .

The Abelian, resp. quadratic, differential is a scalar multiple of

(4.6.2) ω =
x(g−1)/2dx

y
resp. q =

xg−1dx2

y2
.

Conversely if C is a curve with equation (4.6.1), with a 6= ±2, then, if g is odd,
(C, ω) is in the SL2(R) orbit of surfaces in Esc2 and if g is even, (C, q) is in the
SL2(R) orbit of surfaces in Escb2.

Moreover the equation of the elliptic curve corresponding to one elementary rec-
tangle (or more generally elementary parallelogram) is

(4.6.3) y2 = x4 + a x2 + 1

with the same a as in (4.6.1) and this parameter only depends on the elementary
parallelogram used in the construction.

In particular if S is tiled by squares, then an equation for S is

(4.6.4) y2 = x (x2g + 1) .

Proof. Let S be in Esc2(g) or in Escb2(g) depending on the parity of g. Consider
the surface S′ in Esc1(2 g − 1) obtained from the same rectangles. Then S′ is an
unramified double cover of S. More precisely let h be fg

2g−1 composed with the

hyperelliptic involution. Then S is the quotient S′/h. From 4.2 we know that S′

has an equation of the form (4.2.1) and that h is (x, y) 7→ (−x,−y).
From this it is immediate to deduce (4.6.1) the quotient map being (x, y) 7→

(x2, x y). The rest easily follows from Proposition 4.2 and its proof.

For St1(g) and St2(g) the expressions we find are not so nice, but they can
nevertheless be deduced from 4.2 and 4.6.

Let S′ be a surface in Esc1(2 g − 1). The involution induced by rotation of the
arrangement of rectangles has 4 fixed points, but if we compose this involution
with the hyperelliptic involution we obtain an involution with no fixed points. The
quotient S of S′ under this last involution is in St1(g) and obtained from the same
rectangles. We note also that all surfaces in St1(g) are obtained in this way.

On the other hand, by Proposition 4.2, S′ has an equation of the form y2 =
x4g + a x2g + 1 and the involution we are considering is (x, y) 7→ (1/x, y/x2g). An
equation for the quotient is not as easy to express as in previous cases but we can
do the following. Let x1, 1/x1, . . . , x2g, 1/x2g be the roots of x4g + a x2g + 1. Let
tk = i 1+xk

1−xk

. Then y2 =
∏

(x2 − t2k) is also an equation for S and the involution

(x, y) 7→ (1/x, y/x2g) is now (x, y) 7→ (−x,−y). Hence
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4.7 Proposition. Let S be in St1(g) and let ti be as above. Then an equation for
S is

y2 = x
∏

(x − t2k) .

The differential defining the locally flat metric on S is

(x + 1)g−1dx

y
.

For surfaces in St2(g) we can use the same argument but starting with a surface
S′ in Esc2(2 g−1). Let x1, 1/x1, . . . , x2g−1, 1/x2g−1 be the roots of x4g−2+a x2g−1+

1 and let tk = i 1+xk

1−xk

.

4.8 Proposition. Let S be in St2(g) and let the tk be as above, then an equation
for S is

y2 = x(x + 1)
∏

(x − t2k) .

The differential defining the locally flat metric on S is

(x + 1)g−1dx

y
.

If the surfaces are tiled by squares, i.e. if we have a = 0 in the equations for S′

in Esc1(2g − 1) or in Esc2(2g − 1), a tedious but elementary computation shows
that we have

4.9 Corollary. If S is the surface in St1(g) tiled by squares then S has for equation

y2 = x

(∑

k

(−1)k

(
4g

2k

)
xk

)
.

If S is the surface in St2(g) tiled by squares then S has for equation

y2 = x(x + 1)

(∑

k

(−1)k+1

(
4g − 2

2k

)
xk

)
.

5. Balanced genus 2 surfaces tiled by four rectangles.

In the last section we have seen relations between different surfaces tiled by
rectangles. The aim of this section is to explore in more detail the consequences of
Proposition 3.6 and Corollary 3.7 in the case of balanced surfaces of genus 2 tiled
by four rectangles. We will also exhibit the action of other fractional Dehn twists
exchanging the different families.

5.1 Proposition. There are exactly four PSL2(R) orbits of balanced surfaces tiled
by four rectangles. These are the orbits of the surfaces described in figure 13 (where
identifications are indicated by numbers and top-top or bottom-bottom identifications
are by half-turns while all others are by translations).

Proof. Consider a balanced surface tiled by 4 rectangles. We leave aside the case
when the surface is a torus. The angles at the vertices of the rectangles add up to
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4 · 2 π = 8 π. Thus the vertices cannot be identified to a single point on the surface:
this would be a zero of order 6 for the quadratic differential, but the multiplicities
of the zeros of a quadratic differential add up to 4 g−4, a multiple of 4. The vertices
can be identified to two points on the surface, each of angle 4 π, corresponding to
two zeros of order 2 for the quadratic differential (possibly the square of an Abelian
differential with two zeros of order 1). The case when the vertices are identified to
four points on the surface has been ruled out (they would be points of angle 2 π
and the surface would be a torus).

Let us therefore enumerate all (connected) surfaces obtained from 4 rectangles,
the vertices of the rectangles being identified to 2 points of angle 4 π. Decomposing
the surface into horizontal cylinders, we find one of the four possible situations: all
4 rectangles are lined up horizontally and form a single horizontal cylinder of width
4 rectangles; they form 2 cylinders of widths 2 and 2 or of widths 1 and 3; or they
form three cylinders of widths 1, 1, and 2. There cannot be 4 horizontal cylinders
of widths 1: if all rectangles have their left and right sides glued together then the
surface is a torus.

Now consider the four possible cylinder decompositions in turn.
Case 1: one cylinder of width 4. Consider the 4 rectangles lined up horizontally,
forming a wide rectangle; the surface results from the identification of the left and
right sides of this wide rectangle, and of pairwise identifications of the horizontal
rectangle edges. Label the bottom sides of the rectangles 1, 2, 3, 4, from left to
right, and likewise their top sides 5, 6, 7, 8.

Gluings 1–2, 1–4, 2–3, 3–4, 5–6, 5–8, 6–7, 7–8 are forbidden, they would yield
a cone point of angle π. Gluing 1–5 and 2–6 simultaneously is also forbidden,
it would yield a point of angle 2 π. Avoiding such gluings, let us enumerate the
possible surfaces we can obtain by gluing pairs of sides.

(1–3, 2–4, 5–7, 6–8), (1–3, 2–5, 4–7, 6–8), (1–3, 2–6, 4–8, 5–7), (1–3, 2–7, 4–5,
6–8) and (1–3, 2–8, 4–6, 5–7) give five different surfaces in Q(2, 2).

(1–5, 2–8, 3–7, 4–8) and (1–6, 2–5, 3–8, 4–7) give two different surfaces in H(1, 1).
The remaining possible gluings, starting with 1–7 or 1–8, would yield surfaces

already listed (one can see that by cutting the leftmost square and pasting it to the
right, or cutting the rightmost square and pasting it to the left).
Case 2: two cylinders of widths 2 and 2.

The two cylinders have to be glued one to the other, so let us number the
rectangles R1, R2, R3, R4, and suppose we start with R2 glued to the right of R1,
R3 glued on top of R2, R4 glued to the right of R3. Label 1, 2, 4 the bottom sides
of R1, R2, R4, and 3, 5, 6 the top sides of R1, R3, R4.

Gluings 1–2, 5–6 are forbidden, they would yield a cone point of angle π. Gluing
1–5 and 2–6 simultaneously is also forbidden, it would yield a point of angle 2 π.

This leaves the following possible gluings.
(1–3, 2–5, 4–6) and (1–3, 2–6, 4–5) give surfaces in H(1, 1), (1–4, 2–5, 3–6),

(1–4, 2–6, 3–5) give surfaces in Q(2, 2). (1–5, 2–3, 4–6) and (1–5, 2–4, 3–6) give
the surfaces already listed as (1–3, 2–6, 4–5) and (1–4, 2–6, 3–5) respectively. (1–6,
2–3, 4–5) gives a surface in H(1, 1), and (1–6, 2–4, 3–5) a surface in Q(2, 2).
Case 3: two cylinders of widths 3 and 1.

Again let us number the rectangles R1, R2, R3, R4, and without loss of generality
start with R2 glued to the right of R1, R3 glued to the right of R2, R4 glued on
top of R1. Label 1, 2, 3 the bottom sides of R1, R2, R3, and 4, 5, 6 the top sides
of R4, R2, R3.
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The following gluings are possible, and give rise to different surfaces.

(1–4, 2–6, 3–5), (1–5, 2–6, 3–4), (1–6, 2–5, 3–4).

Case 4: three cylinders of widths 1, 1 and 2.

Without loss of generality we can start with R2 glued to the right of R1, R3

glued below R1, and R4 glued either on top of R1 (sub-case 1) or on top of R2

(sub-case 2).

In sub-case 1, label 1 and 2 the bottom sides of R4 and R2, 3 and 4 the top sides
of R3 and R2. The possible gluings are (1–2, 3–4) and (1–4, 2–3).

In sub-case 2, label 1 and 2 the bottom sides of R4 and R2, 3 and 4 the top sides
of R1 and R3. The possible gluings are (1–2, 3–4) and (1–3, 2–4).

The gluings (1–3, 2–4) of sub-cases 1 and 2 yield the same surface, so we get
three different surfaces from case 4.

Our case study evidenced 19 different balanced surfaces tiled with 4 rectangles;
one can compute their SL(2, Z)-orbits and see that these 19 surfaces fall into 4
different orbits, representatives of which are presented in figure 13 (the detailed
description of the 19 different cases is the object of the rest of this section).

1

1

2 3

2

3
4 4

5 5

1

1

3 2

2

3
4 4

5 5

1

3

3 2

2

1
4 4

5 5

1

3

2 3

2

1
4 4

5 5

(A) (B)

(C) (D)

Fig. 13

To give a full description of these families we need a more detailed description
of the geometry of the hyperbolic quadrangles we will consider.

Let L be as in Lemma 2.1, then since the angle is π/4 we have L′ =

√
2 L2 − 1

2 L2 − 2
.

If we take A and B as in (2.1.1), with this value of L′, and T as in (2.1.2), then
A and T · B generate a Fuchsian group of signature (1; 2). Moreover all Fuchsian
groups of signature (1; 2) are conjugate to one of this form. Note also that in
this context the elliptic element e1 of order two at the center of symmetry of the
quadrangle is the conjugate of z 7→ −z by a matrix of the same form as T but with
Tw replaced by

√
(Tw + 1)/2.

Call L1 (resp. L2) the hyperbolic cosine of the hyperbolic distance between p1

and p3 (resp. p2 and p4) in figure 7 (left), call L3 (resp. L4) the hyperbolic cosine
of the hyperbolic distance between q1 and q2 (resp. q1 and q4) (figure 7 left) and
finally call L′

2 (resp. L′
4) the hyperbolic cosine of the hyperbolic distance between

p3 and p′2 (resp. q4 and q′1) (figure 7 right).
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5.2 Lemma. We have the following relations

(i) L2 =
L1 + 1

L1 − 1
;

(ii) L3 = 2 L1 + 1;
(iii) L4 = 2 L2 + 1;

(iv) L′
2 = 4 Tw2(L2 + 1) − 1 = Tw2 2 L1

L1 − 1
− 1 (with Tw as in (2.1.2));

(v) L′
4 = 2 L′

2 + 1.

Proof. The first three assertions are immediate consequence of the relations be-
tween the side lengths of a trirectangular quadrangle with remaining angle π/4 (see
[Bu], p.454). For (iv) we note that the trace of T ·B is L′′ = 2 Tw L′ (L′ as above).

But L2 = 2 L′2 − 1 and L′
2 = 2 L′′2 − 1, combined with (i) this yields (iv). For (v)

we note that q′1 is the image of q4 under the action T ·B and from this the distance
between q4 and q′1 can easily be computed and the relation checked.

5.3 Proposition. Let SA, SB, SC or SD be in the SL2(R) orbit of one of the
surfaces of type (A), (B), (C) or (D) of 5.1. Then Fenchel-Nielsen coordinates of
these surfaces are of the form

(i) (ℓ, tw, ℓ, tw, ℓ′, 0) for SA;
(ii) (ℓ, tw, ℓ, tw, ℓ′, 1

2 ) for SB;

(iii) (ℓ, tw + 1
2
, ℓ, tw, ℓ′, 0) for SC ;

(iv) (ℓ, tw + 1
2 , ℓ, tw, ℓ′, 1

2) for SD,

where cosh(ℓ′/2) = 2 cosh(ℓ/2) + 1.

Proof. We first note that the surfaces are balanced and that in all cases the
quadratic differential defining the locally flat metric has two zeros of order 2. Hence
replacing the rectangles by an equiquadrangle with interior angle π/4 (left of figure
7) leads to a smooth hyperbolic surface. Moreover since the angles at the vertices
are π/4 the union of the arcs labeled 1 and 3 in figure 13 (all cases) forms a simple
closed hyperbolic geodesic that we will call γ3.

The medians of the horizontal cylinders are also simple closed hyperbolic geod-
esics γ1 (for the lower cylinder) and γ2 (for the upper cylinder). Since the γi do
not intersect they define pants decomposition of the surfaces.

To obtain Fenchel-Nielsen coordinates we start with case (A) for equiquadran-
gles. In this case reflection along γ1 clearly fixes point-wise γ2 and γ3, from this it
follows that the twist parameters are all zero in this case hence Fenchel-Nielsen co-
ordinates of the form (ℓ, 0, ℓ, 0, ℓ′, 0). The assertion that cosh(ℓ′/2) = 2 cosh(ℓ/2)+1
immediately follows from 5.2 (ii).

We have here only considered the euquiquadrangle case to use the fact that
the γi are multigeodesic, but clearly, using 5.2 (iv), we can replace the rectangles
by more general quadrangles of the form illustrated on the right of figure 7, this
yields Fenchel-Nielsen coordinates of the form (ℓ, tw, ℓ, tw, ℓ′, 0) with of course again
cosh(ℓ′/2) = 2 cosh(ℓ/2)+1. That this describes the full SL2(R) orbit follows from
Proposition 3.6 (for this case see also [Si2] section 3).

The claim for surface of type (B) can also be deduced form [Si2] section 3, but
to cover also the relation between type (C) and (D) we are going to deduce this
from a more general result.

5.4 Lemma. Let S be a surface in Esc2(g), if g is odd, or Escb2(g), if g is even.
If S is in Esc2(g) then the union of the arcs labeled a ∼ d and b ∼ c (see figure 11)



24 SAMUEL LELIÈVRE, ROBERT SILHOL

forms a simple closed hyperbolic geodesic γ. If S is in Escb2(g) then the union of
the arcs labeled a ∼ c and b ∼ d forms a simple closed hyperbolic geodesic that we
will also denote by γ.

Let S′ in St1(g) be obtained from the same rectangles. In the same way {a ∼
b} ∪ {c ∼ d} defines a simple closed geodesic γ′ in S′.

Then S′ is obtained from S by applying a half-Dehn twist along the geodesic γ.
Conversely S is obtained from S′ by applying a half-Dehn twist along the geodesic
γ′.

Proof. Label consecutively the rectangles of figure 11 from 1 to 2g starting with
the rectangle on the lower left hand side. Note also that both for S and S′ the
vertices lie in two orbits.

In all cases label ◦ those in the orbit of the upper left corner of rectangle 1 and
label • those in the other orbit.

Since the angle at the vertices is π/(2g) the combinatorics of the rectangles at
these points is described in figure 14. In the upper figure the geodesic γ corre-
sponds to the horizontal line passing through ◦ and •, while in the lower figure the
horizontal line represents γ′. This proves the assertions on γ and γ′.

Since ◦ and • split γ into two arcs of equal hyperbolic lengths it follows from
the defintion of a half-Dehn twist that we pass from the upper part of figure 14 to
the lower part by performing a half-Dehn twist along γ. But the upper part gives
the combinatorics for Esc2 or Escb2 while the lower gives the combinatorics for St1.
This proves Lemma 5.4.
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Fig. 14

For simplicity we have formulated 5.4 for rectangles and equiquadrangles, but
obviously, althoug the geodesics may not conicide, the statement can be generalized
for parallelograms by Poposition 3.6.

Since SA is in St1(2) and SB in Escb1(2) the statement of 5.3 for type (B)
follows.

The same argument also shows that one passes from SC to SD by a half-Dehn
twist along γ3.
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To end the proof we note that SC (resp. SD) is obtained from SA (resp. SB) by
applying a half-Dehn twist along γ2, as can be immediately checked by looking at
the identifications.

We end this section by computing the equations for the different families.

Case (A). This family is of course St1(2) and equations can be recovered by
applying the results of section 2. But to highlight the links between the different
cases we are going to use a slightly different approach.

We use the fact that the surface has a non hyperelliptic involution induced by a
rotation of angle π. Hence we can look for an equation of the form

(5.5) y2 = (x2 − a2)(x2 − 1)(x2 − b2) .

If we label the rectangles R1 to R4 starting with the lower left one, the existence
of the additional involution imposes that the midpoints of the horizontal edges of
rectangles R2 and R3 have x-coordinate 0 or ∞. We choose 0. Since composing this
involution with the hyperelliptic one fixes the vertices, these will have x-coordinate
∞. We normalize further by chosing the x-coordinate of the Weierstrass point at
the center of rectangle R1 to be −1 which forces the center of the rectangle R4 to
have x-coordinate 1. Finally we choose the Weierstrass points (−b, 0) and (b, 0) to
be the midpoints of the horizontal edges of rectangles R1 and R4 respectively. With
this fixed, a map from the surface to the genus 1 surface tiled by one rectangle is
induced by the map

(5.6) f : x 7→ x2(x2 − b2)

1 − b2
.

But now a and −a are simply solutions of f(x) = 1 distinct from ±1. Hence

(5.7) a =
√

b2 − 1 .

To complete the description of the genus 1 quotient (or alternatively recover b in
terms of the genus 1 quotient) we only need to compute for which values of λ the
equation x2(x2 − b2) − λ (1 − b2) = 0 has a double root. This yields

(5.8) λ =
b4

4 (b2 − 1)
.

This does not conform to our convention on the µ invariant for genus 1 but we
easily find,

(5.9) µ =
λ

λ − 1
=

b4

(b2 − 2)2
=

(a2 + 1)2

(a2 − 1)2
.

Summarizing, we have an equation for the algebraic curve, of the form

(5.10) y2 = (x2 − a2)(x2 − 1)(x2 − a2 − 1)

and a degree 4 map, ramified at the points at infinity,

(5.11) (x, y) 7→
(

(2 x2 − a2 − 1)2

(a2 − 1)2
, y

4 x(2 x2 − a2 − 1)

(a2 − 1)3

)
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onto the genus 1 curve defined by

(5.12) y2 = x(x − 1)

(
x − (a2 + 1)2

(a2 − 1)2

)
.

To obtain the values of a for the other combinations of rectangles in the same
SL2(Z)-orbit we note that the difference between cases (A1) to (A6) (see figure 15)
is in the repartition of the Weierstrass points among vertices, centers of rectangles,
horizontal edges and vertical edges. These are (0, 4, 2, 0) (A1), (0, 0, 2, 4) (A2),
(0, 2, 4, 0) (A3), (0, 4, 0, 2) (A4), (0, 0, 4, 2) (A5) or (0, 2, 0, 4) (A6) (see figure 15).
We can then procceed as above.

But a better solution here is to replace, in equation (5.9), µ by 1−µ, 1/µ and so
forth. For this, note that one passes from (A1) to (A2) by replacing the rectangle
defined by τ by the parallelogram defined by τ + 1, hence by 2.8 and 2.9, µ by
1 − µ. From the geometric point of view this is just one of the cases of Corollary
3.7 and can be described as applying half twists along γ1 and γ2.

To pass from (A1) to (A3) we replace τ by τ/(1 − τ), and hence µ by 1/µ.
From there the other transformations needed are clear, one passes from (A2) to
(A6) (resp. from (A3) to (A5)) by a quarter Dehn-twist along the median of the
vertical cylinder (resp. horizontal cylinder) and from (A4) to (A5) by two vertical
half-twists.

The different values one obtains are best expressed in terms of ν = a2 + 1/a2

which is a modular invariant (see [Si2] section 3 ). The values one obtains are given
in figure 15.

(A1) (A2) (A3)

(A4)

(A5)

(A6)ν

2(6 − ν)

2 + ν

−ν

2(ν + 6)

ν − 2

2(ν − 6)

ν + 2

2(6 + ν)

2 − ν

Fig. 15

Case (B). This family is Escb2(2) and we have an equation of the form y2 =
x (x4 + a x2 + 1) (see section 4) with

(5.13) a =
2µ − 4

µ
.

There are three surfaces (B1), (B2) and (B3) in the SL2(Z) orbit (see figure 16).
One passes from (B1) to (B2) by two half-Dehn twists along the medians of the
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horizontal cylinders or as above by replacing µ by 1−µ. In the same way one passes
from (B1) to (B3) by replacing µ by 1/µ. This yields the different values indicated
in figure 16.
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There are of course obvious similarities between case (A) and case (B). These
are explored in detail in [Si2] section 3.

5.14 Remark. Here again we can be far more general. For exactly the same
reasons, the transformations

a 7→ 2(6 − a)

a + 2
and a 7→ 2(6 + a)

a − 2

correspond to replacing in any of the escalator families τ by 1+τ or 1/τ respectively.
These in turn correspond to applying half-Dehn twists along the horizontal cylinders
or the vertical cylinders.

Case (C). We again label the rectangles in figure 13, R1 to R4, starting with the
upper left. We normalize so that the x-coordinate of the vertices of the rectangles
are the points at infinity. We normalize further so that the center of rectangle R1

has x-coordinate 1 and the midpoint of the horizontal edge between rectangles R2

and R3 has x-coordinate 0. Note that since this is not a Weierstrass point the
midpoint of the lower edge of rectangle R2 (arc labeled 2 in figure 13) will also
have x-coordinate 0. We will call a, b and c the x-coordinate of, respectively, the
midpoint of the horizontal edges of rectangle R1, the center of rectangle R2 and
the midpoint of the upper horizontal edge of rectangle R3 (arc labeled 3 in figure
13). This is also the lower edge of rectangle R4. Finally we will call d1 and d2 the
x-coordinates of the midpoints of the vertical edges of rectangles R3 and R4. The
Weierstrass points are the points with x-coordinates 1, a, b, c, d1 and d2.

With this notation we can choose for the map f : P1 → P1 that induces the
covering map from the surface to the genus 1 curve obtained from one rectangle,
the map

(5.15) f(x) =
x2(x − a)(x − c)

(1 − a)(1 − c)
.

This map sends 1, b, and two points with the same x-coordinate, to 1. Again this
means that the equation f(x) = 1 must have a double root (different from 1). This
imposes conditions on a and c, namely

(5.16) a =
−(3 t2 + 4 t + 2)(t + 2)

t (t2 + 2 t + 2)
c =

−(t2 + 4 t + 6)(t + 1)

t2 + 2 t + 2
.



28 SAMUEL LELIÈVRE, ROBERT SILHOL

From this one recovers

(5.17) b = − t2 + 3 t + 2

t
.

Let λ = f(di). In addition to the di we again have two points with the same x-
coordinate. Hence again f(x) = λ must have a double root (with of course λ 6= 1).
This imposes

(5.18) λ = −(t2 − 2)2(3 t2 + 4 t + 2)3(t2 + 4 t + 6)3

1024 t3(t2 + 2 t + 2)2(t + 2)3(t + 1)3
.

This defines the genus 1 quotient and from this on can easily compute the di. We
find

(5.19) d1 =
(t2 − 2 + (t2 + 4 t + 2) i

√
2)(t2 − 2)

4 t (t2 + 2 t + 2)
,

d2 =
(t2 − 2 − (t2 + 4 t + 2) i

√
2)(t2 − 2)

4 t (t2 + 2 t + 2)
.

To obtain a full map we must introduce the points p and q which are mapped
under f of (5.15), to f(d1) = f(d2) and 1 respectively. We have

p = −(t2 + 4 t + 6)(3 t2 + 4 t + 2)

4 t (t2 + 2 t + 2)
and q = −2(t2 + 3 t + 2)

t2 + 2 t + 2
.

With this a full map to the genus 1 curve is

(x, y) 7→
(

x2(x − a)(x − c)

(1 − a)(1 − c)
, y

x (x − p)(x − q)√
(1 − a)3(1 − c)3

)
.

This does not comply with our convention of section 2 but to recover µ in terms
of λ we only need to set

(5.20) µ =
λ

λ − 1
.

We will use this later.
The solution we have found is of course far from optimal since solving (5.18) for

a specific value of λ yields in general 16 solutions in t. On the other hand these
solutions come in groups of 4. Namely if t is a solution then so are,

(5.21) t,
2

t
, − t + 2

t + 1
, −2(t + 1)

t + 2
.

Moreover these 4 solutions yield isomorphic curves, since replacing t by 2
t leaves b

fixed, exchanges a and c and exchanges the di, while replacing t by − t+2
t+1

replaces

b by 1/b, a by c/b, c by a/b and the di by di/b. In other words these depend on
choices in the above computations.
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We can use relation (5.21) to simplify the equation (5.18). If we let w be a root
of

fλ = (λ − 1)x4 − (6λ + 2)x3 + 12λ x2 − (8λ − 2)x + 1 ,

or equivalently

(5.22) fµ = x4 + (2 − 8 µ)x3 + 12µ x2 − (2 + 6 µ)x + µ − 1 ,

then solutions of the form (5.21) will be

(5.23)

√
2(u + 1 +

√
2)

u − 1 −
√

2
, where

(
u2 + 1

u2 − 1

)2

= w .

On the other hand we cannot improve further. The reason is that for the four
surfaces in the SL2(Z)-orbit we have the same repartition of Weierstrass points.
Namely, with the same convention as before, it is (0, 2, 2, 2).

To differentiate the cases we must take a closer look at equation (5.22). If µ
is real > 1 then, fµ = 0 will have two real roots, w1 > 2 and 0 < w2 < 1/2,
and two complex conjugate roots w3 and w4. Computing a, b, c, d1 and d2 in
terms of these roots we find that a, b and c will be real for w1 while d1 and d2

are complex conjugate, for w2 on the other hand b, d1 and d2 will be real and a
and c complex conjugate. Comparing with the real structures induced by reflection
along the horizontal axis or the vertical axis in cases (C1) and (C4) we conclude
that w1 corresponds to (C1) and w2 corresponds to (C4) (recall that d1 and d2 are
on vertical edges while a and c are on horizontal edges).

In the absence of additional information we can not distinguish between (C2)
and (C3) which are mirror images of each other and correspond to the two complex
conjugate roots w3 and w4.

Finally we note that we pass from (C1) to (C2) (resp. (C3)) by a third of a Dehn
twist (resp. minus a third of a twist) along the geodesic median of the vertical
cylinder of width 3 (and a full twist along the cylinder of width 1). We pass from
(C2) to (C4) by a third of a Dehn-twist along the geodesic median of the horizontal
cylinder of width 3.
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Case (D). Label as before the rectangles in figure 13 R1 to R4 starting with
the lower left. The surface in this case has two non-hyperelliptic involutions with
centers at the midpoints of the vertical edges of rectangles R1 and R2 for the first
and at the centers of the rectangles R3 and R4 for the second.
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We normalize so that the x-coordinates of the vertices are ±i, the centers of
rectangles R3 and R4 are the points at infinity and the midpoints of the vertical
edges of rectangles R1 and R2 have x-coordinate 0. We denote ±a the centers of
rectangles R1 and R2 and ±b the midpoints of the vertical edges of rectangles R3

and R4.
These choices yield an equation of the curve in the form

(5.24) y2 = (x2 − a2)(x2 + 1)(x2 − b2) .

A map from the curve to the genus 1 curve defined by one rectangle is induced
by

(5.25) f(x) =
x2(x2 − a2)

(x2 + 1)2
.

Since by construction we have f(b) = f(−b) = 1 we find

(5.26) b =
±i√

a2 + 2
.

To find the complete equation of the genus 1 curve, we look for double roots of
the equation f(x) = λ. This yields

(5.27) λ = 1 − µ = − a4

4 (a2 + 1)
,

where µ conforms with the convention of section 2.
There are six different configurations in an SL2(Z) orbit (see figure 18) and to

differentiate them we again look at the possible real structures and repartition of
Weierstrass points among vertices, centers and horizontal and vertical edges. These
are (2, 2, 0, 2) for D1 and D3, (2, 0, 2, 2) for D2 and D3 and (2, 2, 2, 0) for D5 and
D6 (see figure 18).

1

2

2

1

1

1

2

2

1

1

2

2

1

2

2

1

1

1 2

21

1 2

2

(D1) (D2) (D3) (D4)

(D5) (D6)

Fig. 18

Hence the surfaces in this family come in three pairs. In the first (D1), (D3) the
two surfaces are real, but the first has only one real component, while the second
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has three (for the real structure induced by reflection along the vertical median of
the cylinder of width 4). For µ > 1 equation (5.27) has 2 real roots and two pure
imaginary roots

(5.28) ±
√

2 µ − 2 + 2
√

µ2 − µ and ±
√

2 µ − 2 − 2
√

µ2 − µ .

Because of (5.24) and (5.26) this implies that the first corresponds to (D1) while
the second corresponds to (D3). The relation between (D5) and (D6) is similar and
to find the corresponding value of a we only need, by Lemma 2.8, to replace µ by
µ/(µ − 1) in (5.28). The first value corresponds to (D5), the second to (D6).

To passes from (D1) to (D2) by a quarter Dehn-twist along the geodesic median
of the vertical cylinder of width 4 and similarly from (D2) to (D3), from (D3) to
(D4) and from (D4) to (D1). Hence the values of a for (D2) and (D4) are obtained
by replacing µ by 1/µ in (5.28) (see 2.8).

Finally note that we pass from (D2) to (D5) by a quarter Dehn-twist along the
geodesic median of the horizontal cylinder of width 4.

We note here that combining (5.24), (5.25) and (5.28), we obtain equations

(5.29)

y2 = (x2 + 1)
(
x2 − 2

(
µ − 1 +

√
µ2 − µ

))(
x2 +

µ −
√

µ2 − µ

2 µ

)
for (D1)

y2 = (x2 + 1)
(
x2 − 2

(
µ − 1 −

√
µ2 − µ

))(
x2 +

µ +
√

µ2 − µ

2 µ

)
for (D3)

with similar relations between (D2) and (D4) and between (D5) and (D6).

6. Remarks on curves defined over number fields.

An immediate consequence of (5.29) is that if µ is a general squarefree integer,
then (D1) and (D3) are Galois conjugate in Q[

√
µ]. The interesting point here is

that one passes from (D1) to (D3) by a fractional Dehn-twist. There seems to be
many more instances where such a phenomenon occurs. Simple examples arise for
a real quadratic number field K = Q[

√
d] if µ is a unit of norm 1 or if µ = 1

2 + b
√

d
since in the first case µ and 1/µ are conjugate in K|Q while in the second µ and

1−µ are conjugate. Examples of the first are µ = 9+4
√

5 and µ = 97+56
√

3 while
µ = (2 +

√
5)/4 and µ = (12 + 7

√
3)/24 are examples for the second (see tables in

Appendix).
The phenomenon is not restricted to quadratic extensions. Forgetting the ref-

erence to µ the relation between three surfaces in the same PSL2(Z) orbit of case
(B) can be expressed as follows: Let a1, a2 and a3 be the three corresponding
parameters of the form (5.13), then the ai are the roots of an equation of the form

(6.1) x3 − α x2 − 36 x + 4 α

and again one passes from one to the others by fractional Dehn-twists.
Similarly the six elements in a same PSL2(Z) orbit in case (A) are obtained by

letting the parameter ν be one of the roots of

(6.2) x6 − (α + 72)x4 + (8 α + 1296)x2 − 16 α .
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For case (C), rewriting (5.24), the four surfaces are obtained by letting w be one
of the roots of

(6.3) x4 + (2 − 8 α)x3 + 12α x2 − (2 + 6 α)x + α − 1 .

The situation is a little less satisfactory here since we were not able to express
directly equations for these surfaces in terms of the parameter w. On the other
hand one can show, although the computations are too long to be presented here,
that the coordinates of the isomorphy classes of the surfaces in the Igusa moduli
space (see [Ig]) can be expressed in terms of the parameter w.

Appendix: Values of µ for some equiquadrangles.

The values given in the tables that follow where computed numerically using a
variant of the method described in [Bu-Si2] and should be considered as conjectured
values. This being said most of these values are in fact exact and can be deduced
from the known exact uniformization of certain curves (see for example [Ai-Si], [Bu-
Si1], [Bu-Si2], [Si1] or [Si2]). In fact these exact cases often come from surfaces at
the intersection of two families. For example the curve defined by y2 = x6 + 1 is in
Escb1(2) and obtained from squares. But it also has an automorphism of order 4 and
hence is also in Escb2(2), the corresponding equation is y2 = x (x4 − 10

3 x2 +1) and

from this we obtain for angle π/4 that L =
√

2 yields µ = 4
3 . In a similar fashion

the curve with equation y2 = x (x4 + 1) is isomorphic to the one with equation

y2 = x6 − 5 i
√

2 x3 + 1 and from this we can deduce that the surface defined by

the trace triple (see below) (3 + 2
√

2, 4 + 2
√

2, 4 + 2
√

2) yields µ = 1
2 − 5

√
2

4 i. The
computations are generally more involved but the method is the same. We give
one last example: surfaces with Fenchel-Nielsen coordinates (ℓ, 1

2 , ℓ, 1
2 , ℓ, 1

2 ) admit

a second pants decomposition with coordinates (ℓ′, 1
2 , ℓ, 0, ℓ′, 1

2 ) (see [Si2]) where

L′ = cosh(ℓ′/2) = 3L−1
2(L−1) if L = cosh(ℓ/2). We have ℓ′ = ℓ for L = (5+

√
17)/4 and

from this information it is possible to compute the µ for (1 +
√

17)/4 = cosh(ℓ/4)
in the π/3 table.

In the first two tables L denotes the hyperbolic cosine of the hyperbolic half-
length of the horizontal median of the equiquadrangle with interior angle π/n and
µ is the invariant defined in (2.7) or 2.9 3. All the corresponding surfaces are with
twist parameter zero.

We complete this list with a few examples with nonzero twist parameter. These
are best described in terms of a trace triple and we use the convention of [Ac-Na-Ro],
that is we describe them with a triple (x2, y2, z2), where x = trace(A), y = trace(B)
and z = trace(A · B−1), A and B being the generators of the group. For the
surfaces with zero twist the corresponding trace triple is (4L2, 4L′2, 4L2L′2), L′ as
in Lemma 2.1.

It should be noted that the examples presented in this appendix all have arith-
metic Fuchsian groups (see tables in [Ta] and [Ac-Na-Ro]). On the other hand
for general n, and in particular large enough n, the groups described in (2.3),
(2.4) and (2.5) are not arithmetic Fuchsian groups. They are however subgroups
of triangle groups, and this is in accordance with a conjecture of Chudnovsky and
Chudnovsky ([Ch-Ch] section 7) that if a curve defined over Q has a Fuchsian group
G in PSL2(R∩Q) then G is either an arithmetic group or a subgroup of a triangle
group.
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For angle πππ/3 For angle πππ/4
L µ L µ

√
2 +

√
2

837 + 1107
√

2

2401

√
10 + 2

√
17

2

1151 − 217
√

17

256
√

7 +
√

17

2

23 +
√

17

27

√
2 +

√
6

2

12 + 7
√

3

24
√

6 + 2
√

3

2
27 − 15

√
3

√
3

128

125

√
2

27

25

1 +
√

5

2

2 +
√

5

4
√

5 +
√

5

2

32

27

√
5 +

√
17

2

897 − 217
√

17

2
√

4 + 2
√

2

2

1564 + 1107
√

2

2401

√
2

4

3

1 +
√

17

4

621 + 27
√

17

512

√
18 + 2

√
33

4

283 + 21
√

33

256
√

6

2
2

√
4 + 2

√
2

2
2

√
14 + 2

√
17

4
−108 + 27

√
17

√
3 +

√
11

4

9 + 7
√

33

18
√

4 +
√

2

2

58 + 41
√

2

27

√
6

2
4

√
2 +

√
10

4

32

5

√
14 + 2

√
17

4

1151 + 217
√

17

256
√

5

2

27

2

√
2 +

√
10

4
9 + 4

√
5

√
3 +

√
3

2
27 + 15

√
3

√
5

2

128

3
√

10 + 2
√

17

4
109 + 27

√
17

√
3 +

√
3

2
97 + 56

√
3

√
3 +

√
2

2

1566 + 1107
√

2

2

√
10 + 2

√
17

4

897 + 217
√

17

2

For angle πππ/5√
8 + 2

√
5

2

65 + 29
√

5

125

√
2 +

√
10

4

1621 + 725
√

5

121
√

5 +
√

5

2
2
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For angle πππ/6 For angle πππ/8
L µ L µ

√
3 +

√
7

2
128 − 48

√
7

√
2 +

√
2

−4 + 8
√

2

7

2
81

80

√
6 + 2

√
2

2

3 + 2
√

2

4

3
√

2 +
√

10

4

4096 − 1216
√

10

243

√
cos(π/8) + 1 2

√
6 + 2

√
7

2

512 − 160
√

7

81

√
4 + 2

√
2

2

11 + 8
√

2

7
√

10

2

32

27

√
4 +

√
2

2
12 + 8

√
2

√
2

81

49
For angle 0

1 +
√

3

2
2

√
5

125 − 55
√

5

2
√

7

2

81

32

√
3

9

8
√

6

2

32

5

√
2 2

√
3 +

√
7

2

512 + 160
√

7

81

√
6

2
9

√
2 +

√
10

4

4096 + 1216
√

10

243

√
5

2

125 + 55
√

5

2
√

5

2
81

√
3 +

√
7

4
128 + 48

√
7

For surfaces with a nonzero twist parameter, in terms of the trace triple (x2, y2, z2).

For π/3 (i.e. sum of the interior angles equal to 4π/3).

(3 +
√

7, 4 +
√

7, 5 +
√

7), µ =
59 + 17

√
7

54
(1 + i).

(3 + 2
√

2, 4 + 2
√

2, 4 + 2
√

2), µ =
1

2
− 5

√
2

4
i.

(9, 6, 6), µ = 1/2

(1 + 4ρ + 4ρ2, 1 + 4ρ + 4ρ2, 1 + 4ρ + 4ρ2), ρ = cos(2π/9), µ = (1 −
√

3 i)/2.
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For π/4 (i.e. sum of the interior angles equal to π).

(9, 7, 7), µ =
1

2
− 13

√
7

98
i.

(4 + 2
√

3, 4 + 2
√

3, 4 + 2
√

3), µ = (1 −
√

3 i)/2.

(3/2 +
√

2, 4 + 2
√

2, 4 + 2
√

2), µ = 1/2.

(3 +
√

6, 5 + 2
√

6, 6 + 2
√

6), µ = (5 + 2
√

6)(1 −
√

3 i)/2.

For π/6 (i.e. sum of the interior angles equal to 2π/3).

(9, 8, 8), µ =
1

2
− 7

√
2

16
i.

(7/2 + 3
√

5/2, 5 + 2
√

5, 5 + 2
√

5), µ =
1

2
− 79

√
5

80
i.

(3 + 2
√

2, 6 + 4
√

2, 6 + 4
√

2), µ =
1

2
− 11

√
2

11
i.

(7 + 4
√

3, 4 + 2
√

3, 4 + 2
√

3), µ = 1/2.

(ρ2, ρ2, ρ2), ρ = 1 + 2 cos(π/9), µ = (1 −
√

3 i)/2.
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