N

N

Exponential Stability of an Abstract Non-dissipative
Linear System.
Kangsheng Liu, Zhuangyi Liu, Bopeng Rao

» To cite this version:

Kangsheng Liu, Zhuangyi Liu, Bopeng Rao. Exponential Stability of an Abstract Non-dissipative
Linear System.. 2000. hal-00129638

HAL Id: hal-00129638
https://hal.science/hal-00129638

Preprint submitted on 8 Feb 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00129638
https://hal.archives-ouvertes.fr

Exponential Stability of an Abstract Non-dissipative

Linear System

Kangsheng Liu * Zhuangyi Liu | Bopeng Rao *

Abstract

In this paper we consider an abstract linear system with perturbation of the form

dy
—=A B
a y+eby

on a Hilbert space H, where A is skew-adjoint, B is bounded, and e is a positive
parameter. Motivated by a work of Freitas and Zuazua on the one-dimensional wave
equation with indefinite viscous damping [4], we obtain a sufficient condition for ex-
ponential stability of the above system when B is not a dissipative operator. We also
obtain a Hautus-type criterion for exact controllability of system (A,G), where G is
a bounded linear operator from another Hilbert space to H. Our result about the
stability is then applied to establish the exponential stability of several elastic systems
with indefinite viscous damping, as well as the exponential stabilization of the elastic

systems with non-co-located observation and control.
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1 Introduction

We consider a linear evolution equation

d
—y(t) = A.y(t) = (A+eB)y(t),
() y(t) = ( Jy(t) (L1)
y(0) = %o
in a Hilbert space H, where A is a densely defined, closed linear operator with domain D(.A).

We assume that
(H1) A is skew-adjoint (A* = —A), and has a compact resolvent.

(H2) B is a bounded linear operator on ‘H with ||B|| = Nb.

Under assumptions (H1) and (H2), we know that the operator A. generates a Cy semigroup
Se(t) on H (see [9]). In this paper we study mainly exponential stability of the above system,
i.e., that there exist ¢ > 0 and M > 1 such that

1S.(t)]| < Me™™, Wt>0. (1.2)

When e = 1, this problem has been investigated extensively for both bounded and unbounded

operator B. These works are based on the assumption of dissipativeness of B,
Re(By,y) <0, Vye€ D(A), (1.3)

which implies that the energy of the system, E(¢) = ||S:(¢)]|?, is a decreasing function of
time. Clearly, this is not a necessary condition for F(t) being bounded upper by a function
which tends to zero exponentially. A natural question to ask is the following: Without the
dissipativeness of B, can we still obtain (1.2) under some extra conditions? This problem is

quite significant in the control theory for distributed parameter systems, because
(a) the optimality systems resulting from the regulators are non-dissipative;

(b) the closed-loop systems by feedback with non-co-located sensors and actuators are

non-dissipative;

(c) the perturbations arising from undetermined parts of models are non-dissipative, in

general.



Such a question was first raised in [2] for the one-dimensional wave equation

wi(x,1) = Wep(x,t) — d(x)we(z,t), 0 <z <1, t>0,
w(0,t) =w(l,t) =0, ¢>0, (1.4)

w(x70) = 'wO(m)a 'wt($70) = 'wl(‘r)a O<z<l

where d is a smooth function and changes sign on (0,1). It was conjectured that (1.2) holds
if

[nE/Old(I)SiHQTLﬂ:L’dl‘ >Co>0, n=1,2,---. (1.5)
It turns out that (1.5) is not enough to ensure exponential stability. When ||d||z~ becomes
large enough, there will be eigenvalues of the system (1.2) with positive real part (see [3]).
Thus, in order to have exponential stability, the damping coefficient must not only satisfy

(1.5), but also has a small L> norm. Later on, Freitas and Zuazua [4] considered the modified

system of (1.4):

wi(r, 1) = Wep(x,t) — ed(x)wy(z,t), 0<az<1,t>0,
w(0,t) = w(l,4) =0, t>0, (1.6)
w(0,t) = wo(x), wi(z,0) =wi(z), 0<az<l1.

They proved that if d € BV(0,1) and the condition (1.5) holds, then there exist positive

constants £q9, M, w, depending only on the function d, such that for all 0 < ¢ < &g
1
() = [ (ol + fw)de < Mem=E(0), V1> 0, (1.7)
0

for every finite energy solution of (1.6). Their result was further extended in [1] to the
equation

Wy = Wy — 2ed(z)w; — b(x)w (1.8)

where b € LY(0,1).

These works lead us to the current study in this paper. In stead of working on a par-
ticular PDE system, we would like to obtain general result along the line developed in [2].
Although the shooting method used in [4] and [1] is no longer applicable to our abstract
problem, the analysis in these papers do provide us valuable information on how to im-
pose additional conditions in order to guarantee (1.2). In the next section, we estimate
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the growth rate of the semigroup S.(t), by a formula for the type of a Cy semigroup on a
Hilbert space due to Huang [7] and Priss [10]. The exponential stability of the semigroup
follows from a negative growth rate. It is well-known that the exponential stability of a
linear system reversible in time is always connected with exact controllability of the corre-
sponding system. Thanks to the fact that our sufficient condition for exponential stability
of (1.1) is also necessary when — B is symmetrical and nonnegative, in section 3 we obtain a
Hautus-type criterion for exact controllability of system (A, ), where G is a bounded linear
operator from another Hilbert space to H. In section 4, we apply the result on exponential
stability to several elastic systems (such as string, Euler-Bernoulli beam, Timoshenko beam
and 2-dimensional Schrodinger equations) with indefinite viscous damping or non-dissipative

perturbation arising from feedback by non-co-located observation and control.

2 Sufficient Condition for Exponential Stability

Under the condition (H1), there is an orthonormal base of H consisting of eigenvectors of A,

{bn|n=1,2,--}, (2.1)
such that
Aqbn:zﬁnqbnv n:1727"'7ﬁne]}{7
0 <8 < Bl <+ < Bal < |Brya] = 0.

We have taken multiple eigenvalues into account. Every eigenvalue has a finite multiplicity.

(2.2)

For each v > 0, set

Sy={v=Y ab.| Y laf =1, meN,a,cC} (2.3)
n€lLym n€lLym
where
Lym =A{n €N| B, = Bu| <7} (2.4)
Let
Cy = jnf Re(~Bu,y). (2.5)

Note that I, = I,; if 8., = B and C,, > C,, for 0 < v; < v;. We further assume that

(H3) C, >0, for some v > 0.
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Denote the type of semigroup S.(t) by

anl(A.) = lim In I\S;s(t)ll (2.6)
and the spectral bound of A, by
oo(A.) = sup{Re)| ) € o(A.)}. (2.7)
We shall use a result in [7, 10], which states
wo(As) = inf{s > ou(A:) | sup [[(A = )7 < +oo}. (2.8)
Theorem 2.1 Under the assumptions (H1)-(H3), for every C € [0,C.) it holds that
wo(A.) < —eC (2.9)
whenever
0<e< YN+ GG =) - o) (2.10)

20.,\/N2 — C?

In particular, S:(t) is exponentially stable if

0<e< 2NZCW (/N2 +C2—Ny). (2.11)

Proof. We will prove that for every o > —C there exists 6. > 0 such that

(o + 27)y — Ay|| > oc||y]| VreR, yeDA). (2.12)
Since for y € D(A), 0,7 € R,
(g0 +i7)y — A-yllllyll = Re((eo + ir)y — Ay, y) > e(o — Ny)|lyll*,

(2.12) holds for all o > Ny. If (2.12) is false for some o € [—C, Ny, then there exist a

sequence of real numbers 7, and a sequence of normalized vectors y, € D(A.) such that
(o)l — Ay, =f, =0 in H as p— +oo. (2.13)
From (2.13) we have

1 . .
o= g<fp — (7,1 — A)yp, +eBy, , yp) = lim Re(By,, yp). (2.14)

p—r+oco
)



Moreover, (2.13)-(2.14) imply that

H(iTp[ - A)ypH2 = pr - 5(01 - B)ypHQ
< Ifll* + 2ellof = B[l foll + €%ll(a 1 — B)ys|?
= o(1) 4+ &*(0® — 20Re(By,, y,) + || By,l|*)

< (VP - o)+ o))
Thus, for any § > 0 there exists N € IN such that
(G, I — A)y,||? < *(Nf —o*+68) Vp>N. (2.15)

We expand y, for p > N in the eigenvectors of A:

Yp = §<yp,¢n>¢n. (2.16)
Substituting (2.16) into (2.15) yields
3= 1y = Al ) < £H(VE = 0 46) (2.17)
Choose m = m(p) such that
|7 — Bm| = min{|7, — B,] | n € IN}. (2.18)
Then we have
% <lr—B.  VYné I (2.19)

In fact, if |7, — Bn| > 7, (2.19) holds obviously. If |7, — 3,,| < %, then (2.19) follows from
|7 — Bnl > |Bn — Bm| — |7p — Bm|. Combination of (2.17) and (2.19) gives that

2

/7 < 13
T 2 Mgl <N - 0" +4). (2.20)
n¢lym
Define
= 3, (Ypsbu)bn, P> N (2.21)
n€ly m

Then (2.20) implies that

2e 5 5 5 4e* 5 o
lyp — 2l < SV Ni—=o*+4d, 1Z2|znl">21- ?(Nb — o +9). (2.22)
6



Note that —o < C' < C, < N,. Since the function

) VNE+Co(Cy +2) = N,
Tr) =

(2.23)
Nb2 — x2

9(
is monotonically increasing on (—C., ;) (see Supplement 1), the inequality (2.10) implies

(2.11) and, therefore,

\/N2—|-02—Nb C
2Nb€/’y< ’ i 7

= < 1.
Cy N2+ C2+ N,

From (2.22) we know z, # 0 if § is small enough. Hence, We have z,/||z,|| € ¥, and

4 2
“Re(Bzy,2) 2 Ollzll* = Oy (1 - — (N2 — 0® +4)). (2.24)
v
It follows from (2.14), (2.22) and (2.24) that
g = pginoo Re(By,, yp)
< SuJI\)][Re<BZp7 zp) + Re(B(yp — 2), yp) + Re(B2y,y, — 2p)]
p>
< sup[=Cyllz)* + (1 + Nz IDIBIHys — 2]
p>N

IN

4¢? AN,
~0,(1 - %(Nf ~ o +8)) + ng,/Ng — o2+ 6. (2.25)

We take § — 0 in (2.25) to get

2
O, + o < AC, (f,/zvg - 02) + 4N, (i/zvg - 02) . (2.26)
v v
If 0 = Ny, then (2.26) is an obvious contradiction. For —C < o < Nj, (2.26) implies

€> %g(a) > %g(—C), (2.27)

which contradicts (2.10).
Since A, also has compact resolvent, from (2.12) we deduce that the resolvent of A, is
bounded on eo + 2R for all ¢ > —C'. By the resolvent equation, the resolvent is bounded
on {eo+ir|oc > —C — 6,7 € R} for some § > 0 small enough. The proof is complete from

(2.8). 0

It is easy to see that (H3) is satisfied with v = 4o when the following conditions hold:
7



(H4) The spectrum of A satisfies the gap condition
it {18 — Bel s k= 1,2, 6 # i} =90 > 0. (2.28)
(H5) For any normalized eigenvector ¢ of A,
—Re(B¢, ¢) > Cy > 0. (2.29)

Corollary 2.1 Assume that the conditions (H1), (H2),(H}) and (H5) hold. Then the semi-

group S.(t) is exponentially stable if

Yo .
0 \/ V2 CQ—N). 2.30
<€<2Nbco< p, + 05 b ( )

Moreover, for every C € (0,Cy), it holds that

Yo(y/NZ + Co(Co — C) — Ny)
200/ NZ — (2 '

Proof. This follows from Theorem 2.1 with v = o, C, > C and the fact that the function

91(:0)=\/N62+$(I_C)_Nb=( al —I—\/( Ny )2—|— CO—I—l)_1

wo(A.) < —eC V0<e< (2.31)

T z—C z—C

is monotonically increasing for x > C' > 0. O
Remark 2.1: In the analysis above, we provided not only the sufficient conditions for the
exponential stability of semigroup S(¢), but also an explicit negative bound of the type
wo(A:) of semigroup S, () with the perturbation parameter ¢ in an explicit range.
Remark 2.2: Chen et al. [2] discussed the exponential stability of (1.1) with e = 1 and the
dissipative operator B. In addition to the assumptions similar to (H1)-(H3), they needed the
condition that Re(By,,y,) — 0 implies By, — 0 for any sequence of normalized vectors y,.
This condition does not hold generally if B is nondissipative. On the other hand, If —B is
symmetrical and nonnegative, i. e., —B = —B* > 0, then the assumption (H3) is necessary
for the exponential stability of semigroup S.(¢) (see the proof of Theorem 3.1 below).
Remark 2.3: The spectral gap condition (H4) is very restrictive. Corollary 2.1 applies
primarily to the one-dimensional problems. Actually, as we will see in Section 4, the condition

(H4) can be absent even for some PDE system on the region of one spatial dimension.
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Roughly speaking, (H5) means that the damping operator B is uniformly effective for all the
normalized eigenvectors. When the spectral gap condition fails, (H3) means that the damping
operator B is uniformly effective for all the normalized linear combinations of eigenvectors

corresponding to the eigenvalues located in the y—neighborhood of any eigenvalue.

3 Hautus-type Criterion for Exact Controllability
Let H and U be Hilbert spaces. Consider the control system (A, &)
¢
y(u,t) = e“yq —I—/ e(t_s)AGu(s)ds (3.1)
0

where A generates a Cy semigroup e’ on H, G € L(U;H), yo € H. When H = " and
U =C™ are finite dimensional, the famous Hautus lemma [6] says that the system (A, G) is

controllable if and only if
Rank[M — A, G] = n VA€ o(A), (3.2)
or, equivalently,
A=Ay +11G7ylle >0 YXea(A), |yl =1 (3.3)
When A* = —A, (3.3) is equivalent to
|G*é|lu >0 ¥ & being normalized eigenvectors of A. (3.4)

In this section, we will give a counterpart of the special Hautus criterion (3.4) for infinite-
dimensional systems. We need the following Lemma given in K. Liu [8, Thm 2.3]. Concerning
the definitions of exact controllability and exponential stabilizability of (A, ), we refer the
reader to [8].

Lemma 3.1 Let A*=—A, G € L(U;H). Then the following propositions are equivalent:
(a) The system (A, G) is exactly controllable.

(b) The system (A, Q) is exponentially stabilizable.



(¢) For every positive-definite self-adjoint K € L(U) the operator A— GKG* generates an

exponentially stable Cy semigroup on H.

By Lemma 3.1 and the frequency domain condition for exponential stability [7, 10], K. Liu
[8] gave a Hautus-type criterion for exact controllability of the second order conservative
systems in Hilbert spaces. Also by Lemma 3.1, Zhou and Yamamoto [11] gave a counterpart

of (3.3) for the conservative system (A, G), A* = —A. Our result is the following:

Theorem 3.1 Suppose that the assumption (H1) holds and G € L(U;H). Then the follow-

ing propositions are equivalent:
(a) The system (A, G) is exactly controllable.
(b) The assumption (H3) holds for B = —GG*, that is,

lim inf ||G" | > 0. (3.5)

y—0t YEX,

(¢) There exists F' € L(H;U) such that the assumption (H3) holds for B = GF.

Proof. The implication (b)=-(c) is trivial, (c)=-(a) follows readily from Theorem 2.1 and
Lemma 3.1.

(a)=-(b): By Lemma 3.1, the exact controllability of (A, () is equivalent to the exponen-
tial stability of the semigroup S.(¢) with B = —GG*, ¢ > 0. Thus, it suffices to prove that
(H3) is necessary for the exponential stability of S.(¢) when —B = —B* > 0. In this case,

C, > 0 for all ¥ > 0. If for any v > 0, C,y = 0, then there exist 3,, and a normalized vector

of the form
n€ly m
such that
1Byl < [[(=B)Z (=B, )7 < 7.
Thus,
1(E8nl — Ayl Sev+ 11 D2 (B — Ba)iandul < (1+2)7- (3.7)
n€ly m

This means that the resolvent of A, is unbounded on ¢IR if it exists. Thus, S.(¢) is not

exponentially stable. a
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Remark 3.1: If the spectral gap condition (H4) holds, then the condition (3.5) takes the
form

|G p|lv =6 >0 YV ¢ being normalized eigenvectors of A. (3.8)

This is just a counterpart of the finite-dimensional case (3.4).

4 Applications

In this section, we apply our result about exponential stability to the wave, beam, and
2-dimensional Shrodinger equations with indefinite viscous damping or non-dissipative per-

turbation arising from feedback by non-co-located observation and control.

Example 1: The 1-d wave equation with indefinite viscous damping

Wi (2, 1) = Wep(x, 1) — ed(2)wy(z,t), 0<z<1,t>0,
w(0,t) = w,(1,1) =0, ¢>0, (4.1)
w(0,1)

wo(x), wi(z,0)=wi(z), 0 <z <1,

where d € L*(0,1) is real-valued. The underlying Hilbert space is

.|

with the inner product

€ H'(0,1) x L*(0,L)] w(0) = 0} :

v

{ o ] ; { - ]> = /Ol[w’lwg + v10,]dz.

0 U2

Define

D(A) = { { v ] | we H0,1),0 € H(0,1),w(0) = v(0) = w'(1) = 0} :

<




Then, the system (4.1) can be rewritten as (1.1). A has a complete orthonormal set of

eigenfunctions

Sy
3
Il
£}
_|_
[
=
H_
PN
N
_|_

) sin(n + %)Wx
with eigenvalues

. ) 1
z@;—“:iz(n+§)n, n=012"-.

It is easy to see that (H1), (H2) and (H4) are satisfied with 49 = 7, and
1 1
(B, ¢ :/ d(x) sin*(n + 3 )made, (4.2)
0

Thus, (H5) holds if and only if

inf 1 d(z)[1 — cos(2n + 1)mz]dx > 0. (4.3)

n>0 Jo

For example, we take

d(z) =14+ acos2krz, a€cR (4.4)

with k& being any positive integer. Then,
L 1
Yo=T, Nb:1+|a|7 _<B¢7:i:7¢i:>:§ Vn=>0.

Therefore, S.(t) is exponentially stable if

0<e< m(mu +la)2+1—2(1+|al)). (4.5)

Moreover, for every C' € (0, %), it holds that

T(VA(L+ [a])? +1—2C — 2(1 + |al))

wo(A:) < —eC Vi<e< ) (4.6)
2/(1+ |a])? — C?
We can also choose d(x) with local support, such as
sindne, i <z< %,
d(z) = ¢ 2sindrz, % <z < %, (4.7)
0, otherwise.
For this case,
(B > o Va0
20m



Example 2: Exponential stabilization of the Euler-Bernoulli beam equation with non-co-

located observation and control.

Consider the following system with distributed control and locally distributed observation

Wi (T, 1) + Wegae(x,t) = f(2,t), O0<az<1,t>0,

w(0,t) = w(l,t) = we(0,t) = we(1,8) =0, ¢ >0, (4.8)
w(0,t) = wo(x), wy(z,0)=wi(z), 0<z<l, t>0,

h(z,t) = wi(x,t), ze(5,1), >0

Our purpose is to find a bounded linear operator K from L*(3,1) to L*(0,1) so that the

feedback control law

f(-,t) = —eKh(-, 1), t>0 (4.9)
stablizes the system (4.8) for some £ > 0. The simplest form of operator K would be

2¢(x)h(1 — ), 0<z<g,

(4.10)
2d(x)h(z), T<e<l,

Kh(x) = {

where ¢ € L>(0, 1), d € L*°(3,1) are real-valued. The underlying Hilbert space is
H = [H*(0,1) N H}(0,1)] x L*(0,1)

with the inner product

D(A) = { { v ] | we HY0,1),0 € H(0,1),w,v € H}(0,1),w"(0) = w"(1) = o} ,

0 I 0 0 w
A = 7 B = 2 y =
—9' 0 0 —KI w,

where Ij is the embedding from L?(0,1) to L*(1,1). Then, the closed-loop system (4.8)-(4.9)

can be rewritten as (1.1). A has a complete orthonormal set of eigenfunctions

1
+
an— 2.2

nem

SINnTT
+in’m?sinnra

13



with eigenvalues

i3E = +in’n?, n=12---.
It is easy to see that (H1), (H2) and (H4) are satisfied with 79 = 37%. For K defined in
(4.10), we have

L 1
—(BoE, oty = 2/0 c(x)sinnm(l — ) sinnredr + 2/l d(z)sin® nradz
= /5[d(1 —z)+ (=1)""e(2)](1 — cos 2nmz)dz. (4.11)
0

Thus, (H5) holds if and only if

—-

inf [ 7[d(1 - z)+ (=1)"*'e(2)](1 — cos 2nrz)dz > 0. (4.12)

n>1.Jo
For example, we take
1
c(x) = cosdmz, d(z)= 3 + cosdmz. (4.13)
Then,
1
N, =3, —(B¢t ¢F) = 7 Yn>1L

Therefore, S.(t) is exponentially stable if

2

0<e< %(\/145 - 12). (4.14)
Moreover, for every C' € (0, i), it holds that

372 (\/145 —ac — 12)
29 — C? '

Remark 4.1: Let d = 0 in (4.10), then the observation and control are completely non-

wo(A:) < —eC Vi<e< (4.15)

co-located. In this case, by (4.11) we know that K can be uniformly effective only for
finite many eigenmodes. The problem of whether there exists K € £(L*(3,1), L*(0,1)) with
suppKh C (0,3) for any h € L*(3,1) such that (H5) holds remains open.

Example 3. Two-dimensional Schrodinger equation with distributed control and locally dis-

tributed observation:
0" .
a—?(x,t) = iAy(z, 1)+ fla,t), 2 €Q=(0,a) x (0,b), >0

Ylan =0, t >0, y(z,0)=yo(z), z € (4.16)
h(z,t) = y(x,t), z € =(5a) x(0,b), t > 0.
14
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Let
H = LQ(Q)

with the standard L? (complex) inner product. Define
A=1A, D(A)= H*(Q)N H, (D). (4.17)

Then, the operator A is skew-adjoint, and has eigenvalues

2

ZENN AN
)\kl—'lﬁkl—'l ‘|‘b2 T, k,lEIN,

and the corresponding normalized eigenfunctions

2 . kmzy . lmzy

Gri(x) = T sin —— sin ——=, k,l € N.
Set the feedback control law
f(-,t) = —eKh(-, 1), K € ,C(LQ(Ql), LQ(Q), (4.18)

h(a — xq, 0<z1 <5, 0< 2 <),
[Kh](z) { c(z1)h(a — 21, 22), T1 < 3 T2 (4.19)

d(zq1)h(z), f<m <a,0<xy<b,
where ¢ € L>(0,%), d € L>(

72

5,a) are real-valued. Then, the closed-loop system (4.16)-
(4.18) can be rewritten as (1.1) with B = —K[;, where [; is the embedding from L?*(Q)

to L*(©2;). When a/b is a rational number, the gap condition (H4) is true, but there are
multiple eigenvalues. While a/b is an irrational number, the gap condition (H4) is false
(see [2]). So, we have to check the condition (H3). We recount the eigenvalues and the

corresponding normalized eigenfunctions:

'Lﬁn = iﬁkn,lm 5n < ﬁn-l-lv an = qbkn,lm n € IN.

Choose v = (Z)?, then

kQ—kQ_I_l—lQ 1

{nelN“

We note that for p,q € I, ,,, p =g if and only if [, = {,, for any ¢ € ¥,

, 2a, . k,mz, . l,7Zx )
V= > ad= >, \/Esm p Lsin 2 2 > an? =1 (4.20)

n€ly,m n€lym n€ly,m

15



Using the orthogonality of {sin(Imxy/b)}2, in L*(0,b), we have

—(By, ) = /0% c(z:l)/ob Z apgPp(a — 1, 22)Pg(x1, 2)dwaday

p,qEIy,m
2

@ b 2 no . kn‘ “ . ln
—I—/I d(ml)/o E \;_bsm ;TTH sin 7;;3;2 dzoday
2 n€lym Va4
2 3 ky,
DY |an|2/ [d(a — 21) + (=) e(ey)] sin? 2 4y, (4.21)
a i 0 a
Thus, (H3) holds if and only if
) 2 14k . o kmay o
inf [d(a —x1) + (—1) " e(xq)] sin dz; > 0. (4.22)

keN Jo a

The sufficiency follows from (4.21). If (4.22) is false, then there exists a sequence &, of

positive integers such that

wje

lim [d(a — 1) + (_1)1+£nc(x1)] sin? Eamxy

n—+oo Jg a

dz; = a <0.

Thus, for the sequence ¢, 1 of normalized eigenfunctions of A we have

(Bt b} = 2 [ ldla— ) £ (~1) ()] sin? 2T, - 22 <,
which implies that (H3) is false. For example, we take
e(z1) = cos 47;“, d(zy) = % + cos 4”;1 (4.23)
Then,
N=2 a=Cp o=g

Therefore, S.(t) is exponentially stable if
2
0<e< 3?(\/3 - 6). (4.24)

Moreover, for every C € (0, i), it holds that

72 (V37— 4C - 6)
a?vy/9 — 4C? .

wo(A:) < —eC Vi<e< (4.25)
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Example 4. Timoshenko beam equation with indefinite viscous damping

U = PUpy — PPz — dy(X)uy, O<az<m, t>0,

O1t = qPrr + Py — pp — eda(x)py, 0<z<m, t>0,

u(0,t) = u(m,t) = ¢x(0,¢) = ¢p(m,t) =0, t>0,

u(z,0) = ug, u(z,0) = w1, ¢(x,0) = ¢o, ¢e(2,0)=¢1, 0 < <,

(4.26)

where p, ¢ > 0 are constants and dy, dy € L*(0, ) are real-valued.

The underlying Hilbert space is
H = Hy(0,7) x L*(0,7) x H'(0,7) x L*(0,7)
with the inner-product induced by the quadratic form of energy,
[, 000017112 = [ (plue = 61 + alul? + [0 + [917) da
Define in H

D(A) = {[u,v,qb, I/J]T | u,v, € H(}(O?"T) 7¢ S H2( ) LZ) € H (0 "T)}

0o 7 o 0] ‘o 0 o o |
pd2 0 —pd, 0 0 —dy(z) 0 0
Ao | P p | B 1(z)
0 0 I 0 0O 0 0 0
| pd: O q0* —pl 0 | 0 0 0 —dy(z) |

Then, the system (4.26) can be rewritten as (1.1) by setting y = [u, us, ¢, ¢:]T. It is easy
to verify that (H1) and (H2) are satisfied. To compute the eigenvalues of A, we solve the

eigenequation
AI:’U/’ ’U7 ¢7 /l/}]T = )\I:’LL, ’U7 957 1/)]T7 I:’u@ ’U7 ¢7 /l/}]T E ,D(A)'

Eliminating the unknowns v, ¢, ¢, we obtain

u(0) = () = ee(0) = tunl) = 0

A straight forward calculation leads to

)‘721,1 =
)‘721,2 =

(p+ q)n® + pl + 1/[(p — q)n2 + p]? + 4pgn?,

~al (4.27)
~Y(p+ q)n® +p] — 1\/1(p — @)n? + p]* + dpgn?,

MI»—‘ M|>—A



)‘ii = +4y/—A};, (counting multiple eigenvalues)

and the corresponding normalized eigenvectors

Z;fi =& -[sin na, )\ii sinnx, Sy, cosnz, )‘iisn,i cos nz|”, 1=1,2, nelN
where
1 1
Su=t (4 2] (20
n p
1 .
= o ([(p —q)n? = p] + (1) /[(p — q)n? + p? + 4pqn2) : (4.28)
R,; = g [P(n - Sn,i)Q + anSZ,Z' - )‘i,i - AiZSZZI} 2 (4-29)
These sequences have asymptotic expansions:
Nij = Fiypn+ 5F +0(), 82, =140(),
for p = ¢, ’ " ’ " (4.30)
2 9.2 S
R ;= 2mpn® + O(n), 7=1, 2,
(1,7) = (1,2) for p> g, (1,7) =(2,1) for p < g,
A= —gn? +0(1), A= —pn? + 0O(1),
for p # ¢, i 1) ™! pl @ (4.31)
Spi =1 —=1)n* +0(1), Sni =0(5),
R, = mq(1 — )t +0(), R, = mpn + O(1),

In order to verify condition (H3), we need the following observations of the eigenvalues:

1. Each of the two branches of eigenvalues are distinct within itself. This can be verified
by showing that _)‘i,wi = 1,2 are strictly monotonically increasing functions of n?,
see Supplement 2. Moreover, inf, >4 |)\f+172- — )\fz| =~ >0, 1 = 1,2, by the asymptotic
expansions (4.30) and (4.31).

2. inf,s1 A, — A5, = 43 > 0. This follows from the fact that A2y — A2, > 0 for all

n,2

n > 1 and the asymptotic expansions (4.30) and (4.31).

3. Multiplicity of each eigenvalue is less than two. For any 1 < m < n, there exists r = p/q
such that A, ; = A, 2, 1. e., double eigenvalues occur. This can be verified by showing
that the function f(r) = (A2, — A2 ,)/q changes sign on (0,0c0) (see Supplement 3).
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4. When p # ¢, the gap condition (H4) does never hold. In fact, if \/p/q = k/l, k,l € N

is a rational number we have A7, — Af;, = O(1) for p > g and A}, — A{;, = O(1) for

p < qas j — oo. See Supplement 4 for the case when y/p/q is an irrational number.
Choose v = min{v1, 72,73, 2|A{;|}. From the above observations, we know that
3, = {chéfl + CQZ;‘,:“Q ‘ |c1|2 + |c2|2 =1, |)\il — )\;—:72| <5y, myn €N, ¢1,¢c0 €C}. (4.32)

For any chTfl + CQZ?,;Q € 3,, by v <3 we have n # m, and

F(m7 n,cy, 62) = _<B(CIZT:L|:,1 + CQZ;E,Q) ) ClZ;zt,l + CQZT:IE,2>
™ AF AF :
— / di(x) “1hn,1 sinnx + 2%m, sin mz| dz
0 n,1 m,2
™ A8, At LS, :
—I—/ da(x) AlntInl cos nx + £22m,29m.2 cosmz| dz  (4.33)
0 RnJ Rm,?
Thus, (H3) holds if and only if
inf{l'(m,n,ci,cy) | m#n,|ai]> + |eal* = 1,m,n € N,ep, ey €C} > 0. (4.34)

For example, we take
di(z) = a;(1 + Bicoskiz), «; >0, ai+a5#0, 8] <2 keN, i=1, 2. (4.35)

Using

4 T
| | coskyx cosnx cos madz| < n
0

=0, k; = 2nor2m,

i
/ cos ki z sin nz sin mzdzx
0

< %, otherwise,

N

we deduce that

T |/31| _)‘7211 9 _)‘an 9
Dimynyeics) > Ta —.—>( Loy 4 om2 e,
2 2 R?
N |62|) _Ai,ISEL,1|C |2_|_ _)\zn,QSTQn72|C |2
2 R, R, 7

s
—|—§Oé2(1

Y

™ .
5 min(7y, 72)

where we have put

. |51| _)‘Z,l |ﬁ2| _)‘721,152,1
= (01(1_7) m, Tl =) T )
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. |51| _)‘72n,2 |52| —/\3“,25%,2
2 = inf (“l“‘?ﬁ*a*“ 2 TR, )

Now, using the asymptotic expansions (4.30) and (4.31) we can easily conclude the following:

1. When p = ¢, (H3) holds even if either oy or «ay is zero. Therefore, by Theorem 2.1,
Se(t) is exponentially stable if ¢ is small enough. This means that when the two wave
speeds are the same, only one displacement or rotation angle damping is sufficient for

the exponential energy decay in the Timoshenko beam.

2. When p # ¢, (H3) holds if both «; and ay are positive. Therefore, S, (¢) is exponentially
stable if ¢ is small enough. On the other hand, for di(z) = 0 or dz(x)) = 0, it is easy to
see that S.(t) is not exponentially stable for any € > 0. This means that when the two
wave speeds are different, the displacement and rotation angle dampings are necessary

for the exponential energy decay in the Timoshenko beam.

5 Technical Supplements

Supplement 1. Let 0 < C, < N,

NE4C(Cy 4 ) = N,

NE — 22

g(z)

Then, g is monotonically increasing function on (—C.,, Ny).

Proof. Write the function ¢ in the following form

-1
C, Ny, — C, N? Ny
2)= —2 /1 - +O0, +— .
9(z) VN, — Ny +z Cy+z 7 /C, +
Then the monotony of ¢ follows from the fact that all the factors are positive monotonically

increasing functions on (—C.,, Ny). O

Supplement 2 —)2 ..i = 1,2 are monotonic increasing functions of n?.

n,e0

Proof. It is obvious that the conclusion holds for —)\72172. Let

flx) = (p+@)z+p—/l(p— a)z +pl2 + 4pge

= (p+q)z+p—/l(p+q)z+p? — dpga?.
20




Then, 2f(n?) = —A2Z,. Since

[(p+ @)z + pl(p + q) — 4pgx
VI(p + q)x + p]2 — 4pga?

(p+q)z+p—Apglp+q)~'a
VI(p+ q)x + p]2 — 4pga?

flz) = (p+q) —

= (p+aq) |1-

and the fraction in the bracket is strictly less than one, we know that f'(z) > 0 for all > 0.

O

Supplement 3 For any 1 < m < n, there exist p,q > 0 such that X} | = A2 ,.

Proof. Let r = p/q, and

1
r) = —(\, =\
f(r) q( it~ Am2)

= (r+1)(m?—-n* + \/[(r —n? +r24+4rn? + \/[(r — 1)m? + r]? + 4rm?,

which is continuous for r € (0, +00). Moreover, we have

. o 2 2 . _
rliré}r f(r)y=m*—n* <0, rginoo f(r) = +4oc. (5.1)
This proves that for certain ratio of p and ¢, there exis double eigenvalues. a

Supplement 4 Let \/p/q be an irrational number, then there exist sequences of integers
k;j — +oo, [; = 400, such that qki — pl} = O(1).

Proof. By a result in number theory [5, p.140], for any 7 > 1, there exist a rational number

-4
q

p
gk} — pl2| = Q(lj\/;‘|‘kj)

% with [; > 7 such that

Thus,
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