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Jordan Triples and Operads

Allahtan Victor GNEDBAYE and Marc WAMBST

Abstract. The Jordan triple of any Jordan algebra gives rise to a ternary Jordan algebra. We study
these ternary algebras in terms of operads. We give the description of the operad of ternary Jordan
algebras as a quadratic operad and prove that the quadratic dual of this operad is the operad of partially
antisymmetric, partially associative ternary algebras.

Résumé. Le triple de Jordan munit toute algebre de Jordan d’une structure d’algebre de Jordan
ternaire. Nous étudions ces algebres ternaires en termes d’opérades. Nous donnons une description de
I'opérade quadratique des algebres de Jordan ternaires et montrons que son dual quadratique est ’opérade
des algebres ternaires partiellement associatives, partiellement antisymétriques.

Mathematics Subject Classifications (1991): 17A30, 17A40, 17B60, 17C05, 17C10, 17C45, 17C50,
17D99, 18G40, 18G50, 18G60, 18G99

Key words: Jordan algebras, Jordan triple system, n-ary algebra, Koszul duality, operad.

Introduction.

Jordan algebras were introduced by P. Jordan in the 1930’s [Jo] in order to axiomatize
the algebraic relations of operators arising in quantum mechanics. The algebras and their
generalizations were also studied by N. Jacobson, K. MacCrimmon, K. Meyberg, E. Neher
([Ja2, McC, Mey, Neh]).

This article should be seen as a first step in the construction of a proper homological
theory which seems lacking for Jordan algebras, as remarked by M. Dubois-Violette [D-V].
Actually, N. Glassman ([Gla]) defined a cohomology theory for Jordan algebras but his
definition does not provide a cochain complex that could be used for computations. In
order to fill this gap, we use the theory of operads which is a natural framework to study
classes of algebras. Indeed, a homology theory given by a chain complex arises naturally in
the context of Koszul duality of quadratic operads. For example, in the case of associative,
commutative or Lie algebras, one recovers in this way the Hochschild homology, Harrison
homology or Chevalley-Eilenberg homology, respectively.

Jordan algebras are not quadratic in the standard sense of operads. Nevertheless, as
pointed out by J.-L. Loday, the triple Jordan product which can be associated with any
Jordan algebra satisfies a quadratic relation. It is then natural to consider ternary algebras,
the ternary Jordan algebras, which are quadratic in the sense of operads. In this article,
we describe the quadratic operad of ternary Jordan algebras and prove that its dual is the
quadratic operad of partially associative and partially anti-symmetric ternary algebras.
The latter had already been considered by the first author in [Gnl, Gn2]. They are
natural in the context of n-ary algebras.

The article is organized in three sections and an appendix. In the first section, we define
the ternary Jordan algebras which are the main object of our study. We also briefly recall



the bestiary of ternary algebras. In particular, we define the partially associative and
partially antisymmetric algebras. In Section 2, we construct the operad of ternary Jordan
algebras and the operad of partially associative and partially antisymmetric algebras. We
describe a basis in low degrees for each of them and state our main result stating that the
two operads are dual. The third section is devoted to the proofs of the theorems of Section
2. We end with an appendix in which we prove the equivalence of the structure of Jordan
algebras and that of ternary Jordan algebras in the presence of units.

Throughout the article, & will be a field of characteristic different from 2 and 3. We
denote the symmetric group acting on the set of {1,...,n} by S,, and by (o) the sign of
o€es,.

1. Ternary Jordan algebras and other ternary algebras
In this section, we define the main object of our article, namely the ternary Jordan

algebras. We also recall other related ternary algebra structures.

DerINITION 1.1. — A ternary Jordan algebra is a vector space A over k equipped with a
linear map {---} : AQA®RA — A, the triple product, which satisfies the partial symmetry
condition

(1.1) {ryz} ={zya}

and the four-term relation

(1.2) {zy{zuvi} + {z{yzuiv} = {{zyz}uv} + {zu{zyv}}

for all x,y, z,u,v € A.

This structure is also known under the name of Jordan triple systems; it plays a
fundamental role in the theory of Jordan algebras and in the study of symmetric spaces
(see [Neh]).

Let us give two examples of ternary Jordan algebras.

ExempLE 1.2. — Recall that a Jordan algebra is a vector space A over k together
with a linear map —%x— : A®A — A such that for all a,b € A, we have axb = bxa and
a?x(axb) = ax(a?xb), where we set a®> = axa. Any Jordan algebra A is endowed with a
ternary Jordan algebra structure whose triple product is defined by

(1.3) {abc} = ax(bxc) — bx(cka) 4+ cx(axb)

for all a,b,c € A.

In the appendix, we prove that the two structures are equivalent in the case of unital
algebras. Moreover, to any associative algebra A one associates a Jordan algebra A™ by
setting axb = £ (ab+ ba) for all a,b € A. A Jordan algebra whose product is derived from
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an associative algebra in this way is called a special Jordan algebra. For a special Jordan
algebra, the triple product (1.3) is simply given by {abc} = % (abc + cba).

ExeEMPLE 1.3. — A triple Jordan system is a k-module V' equipped with a quadratic
map P : V — Endg (V) satisfying

L(z,y)P(x) = P@)L(y.2),  L(P(a)y,y) = L(z, P(y)a).
and  P(P(x)y) = P(a)P(y)P(x)

forall z,y € V, where L(x,y) € Endg (V) is defined by L(z,y) = P(z+2)y—P(x)y—P(z)y
for any x,y,z € V. These systems have been studied by Meyberg [Mey| and Jacobson
[Ja2]. In [Loos|, it is proved that the triple product defined by {xyz} = L(z,y)z for all
x,y,z € V satisfies Relations (1.1) and (1.2). Consequently, to any triple Jordan system
(V, P) corresponds a ternary Jordan algebra structure on V.

Other generalizations of Jordan algebras, such as quadratic Jordan algebras and Jordan
pairs (see [Ja2, Loos, McC, Mey]), also give rise to a triple product satisfying (1.1) and
(1.2). More examples of ternary Jordan algebras are provided by Proposition 1.4 below.

We now define some other ternary algebra structures and emphasize their relations with
the Jordan ternary algebras. The general definitions for the corresponding n-ary algebras
can be found in [H-W] and [Gn2].

Let A be a vector space over k. A linear map (---) : AQA®A — A endows A with the
structure of a totally associative algebra if it satisfies the relations

(1.4) ((abc)de) = (a(bed)e) = (ab(cde))

for all a,b,c,d,e € A. The map equips A with the structure of a partially associative
algebra if it satisfies

(1.5) ((abc)de)+ (a(bed)e)+ (ab(cde)) =0

for all a,b,c,d,e € A. Formulas (1.4) and (1.5) give two different generalizations of the
usual (binary) associative algebras. We will consider the following two subclasses of these
algebras. A ternary totally associative and totally symmetric algebra (tats algebra for
short) is a totally associative algebra (A, (---)) such that

(1.6) (a1 azaz) = (Ga(1) Qg (2) aa(S))

for all a,as,a3 € A and o € S3. A partially associative and partially antisymmetric
algebra (papas algebra for short) is a partially associative algebra (A, (---)) such that

(17) (a1 ao a3) == —(a3 as al)

for all aq,as,a3 € A.



Intuitively, tats algebras should be seen as ternary generalizations of commutative
associative (binary) algebras and papas algebras as generalizations of anticommutative
associative (binary) algebras.

There is also a notion of ternary Lie algebra. Let L be a vector space over k equipped
with a linear map [-,-,-] : LQL®L — L. We say that L is a ternary Lie algebra if the
triple bracket [-,-,-| satisfies the condition of total antisymmetry

[a, az, az] = €(0)[ac(1); Ao (2), Ao(3)]

for all a1,a0,a3 € L and all 0 € S3 and the ternary variant of the Jacobi identity

> e(0)][a0): to(2)s Ba(3): to(1)s Ga(z)] =0

o€Ss
for all aq,...,a5 € L.

For binary algebras the anticommutator defines a functor from the category of asso-
ciative algebras to that of Lie algebras. This can be generalized to ternary algebras. It
was proven in [Gn2| that, if (A, (---)) is a partially associative algebra, then the bracket
[---] : AQA®A — A defined by

la1,a2,a3] = Z 5(0)(%(1) As(2) a0(3))
ogE€S3
for all a1, as,a3 € A endows (A, [,-,-]) with a ternary Lie algebra structure. We denote
this algebra by Ayx.
Similarly, the next proposition defines a functor from the category of totally associative
algebras to that of ternary Jordan algebras.

ProposiTioN 1.4. — Let (A, (---)) be a totally associative algebra. The triple product
{---} 1 AQA®A — A defined for all ay,a9,a3 € A by

(a1aza3) + (azazap)
2

{a1a2a3} =

equips (A, {---}) with a ternary Jordan algebra structure.

We denote the ternary Jordan algebra of Proposition 1.4 by AT. The proof of the
proposition is a straightforward computation.
The above considerations can be summarized in the following two sequences of functors:

{ papas algebras } — { partially associative algebras } =, { ternary Lie algebras }
{ tats algebras } < { totally associative algebras } —— { ternary Jordan algebras }

We will see in Section 2 that these two sequences of functors are dual of each other for
some appropriate duality.



2. The operad of ternary Jordan algebras

In this section, we construct the operad of ternary Jordan algebras and the operad of
papas algebras. Both will be defined as ternary quadratic operads. We also state our main
result, namely that these operads are dual of each other.

First, we briefly recall some facts about operads. For a general theory on operads,
we refer to [G-K], [L] and [L-S-V], but since we are dealing with non-necessarily unitary
operads, we follow the notation of [L]. Recall that an operad P is a familly {P(n)},eN of
vector spaces over k, each P(n) being a S,,-module, together with linear maps

Pn)QP(l1)P(l2)R - QP (ly) — Py + lo+ -+ -+ £y) (2.1)

for all n,¢y,...,¢, € N. These maps are compatible with the action of the symmetric
groups and their compositions satisfy the axioms of May [May].
Given an operad P, a P-algebra is a vector space A over k endowed with linear maps

P(n)@A®" — A (2.2)

for all n € N which are S,-equivariant and compatible with the maps (2.1).

The module P(n) is the vector space of all possible expressions in n variables for a given
type of algebras. The map (2.2) is the evaluation of such an expression in n elements of
A. The description of the operads of associative algebras, of commutative algebras and of
Lie algebras can be found, for example, in [G-K] or [L].

In [G-K], V. Ginzburg and M. Kapranov developed the notion of a quadratic operad for
binary algebras. We adapt their definition to ternary algebras. For more details about
quadratic operads of multinary algebras, see [Gnl, Gn2].

The forgetful functor from the category of operads into the category of families of S,,-
modules admits a left ajoint functor 7. If E is a family {E(n)},eN of S,-modules, the
operad 7 (F) will be called the free operad over E.

We will consider the case where F is concentrated in degree 3, i.e., E(k) = 0 for k # 3.
In this case, one has 7(E)(n) = 0 when n is even. Let R be a subspace of 7 (E)(5) that is
stable under the action of S5 and let (R) be the ideal (in the sense of operads) generated by
R. We define the ternary quadratic operad P(E, R) generated by E and R as the quotient
T(E)/(R).

For any k[S,]-module V' we denote by V'V its linear dual Hom(V, k) endowed with its
canonical Sj-action tensored by the sign representation of S,,. The dual ternary quadratic
operad P' of P = P(E, R) is defined as the quadratic ternary operad P(EY, R'), where
R* is the orthogonal of R in 7(EV)(5) =2 7 (E)(5)".

Examples of ternary quadratic operads are described in [Gn2], where the first author
gave a construction of the operads ta, pa, tats and lieg which are the operads of totally
associative, partially associative, totally associative and totally symmetric and Lie ternary
algebras respectively. It is also proved in [Gn2] that ta' = pa and tats' = lies.



We now define the operads jordsz and papas for ternary Jordan algebras and papas
algebras. We adopt the following convention. Let us write elements of the symmetric
group as product of disjoint cyclic permutations. A cyclic permutation of the elements
i1,...,0¢ € {1,...,n} will be denoted by 7;,. ;. Moreover, we equip the set of the
expressions containing the symbols a1, as ... or by, bs ... with a left action of the symmetric
group by setting

U'f(a17a2 ey b1, 09, ) = f(aa(1)7aa(2) SRR ba(1)7 bU(Q)v . )

where f is any expression containing aq, as, ... and by, bo, ... This action can naturally be
extended by k-linearity to the group algebra k[S,| for n sufficiently large. For example,
one has

(T12 — 37’123)-{(11 as ag} = {az as al} — 3{&2 a1 CI,3} .
Consider the symbols
X1 = {G,Q a1 a3}, XQ = {Gl an a3} and X3 = {(11 as CLQ}

and
Y1 = (bg b1 bg) , YQ = (b3 bg bl) and Y3 = (b1 b3 bg) .

We denote by E the vector space spanned over k£ by X;, Xy and X3, and by F' the
one spanned by Y7, Y5 and Y3. They are both endowed with an action of S3 given by
0-X; = Xo() and 0-Y; = €(0)Y,(;) for all i = 1,2,3 and o € S3. Note that the symbols
X; (resp. the symbols Y;) represent the only three different ways to “multiply” three
elements in a ternary Jordan algebra (resp. in a papas algebra) and that the action of S3
is compatible with the partial symmetry (1.1) (resp. antisymmetry (1.7)) of the product.
The tensor product F®QF (resp. the product F®F) is endowed with the action of S3x S
where S3 acts on the first term and S5 on the second by exchanging 2 and 3. It was proved in
[Gn2|, that the module 7 (E)(5) is the induced module Indgz>< s, (E®FE) and is isomorphic
to the direct sum of 10 copies of EQE. A basis of the space 7 (F)(5) is given by the set

{o:Alo€S5,0(1)<0o(3)}U{oB|loeSs,0(l)<o(5),0(2)<c(4)}, (2.3)

where A = {{a1az2a3}asas} and B = {a; {agazas} as}. Similarly, a basis of 7 (F)(FE) is
given by the set

{o-A"|oeS5,0(1) <o)} U{o-B |o€85,0(1) <o(5),0(2) <c(4)}, (2.4)
where A = ((bl b2 b3) b4 b5) and B = (bl (b2 b3 b4) b5)

In our conventions the two sets of symbols are endowed with an action of Sy taking into
account the partial symmetry of the product {---} and the partial antisymmetry of (---).



Let R be the subspace of T'(E)(5) spanned by the elements
o-(A+ T35-A — Ti5704-A — T13-B) (2.5)
where o runs over Ss. Similarly, let S be the subspace of T'(F')(5) spanned by the elements
o-(A"+ 75724- A" + B') (2.6)

where o runs over Ss5. Observe that the anihilation of the elements (2.5) is equivalent to
the four-term relation (1.2) and the anihilation of the elements (2.6) to Relation (1.5).
Finally, we define the operad of ternary Jordan algebras and the operad of papas algebras
respectively by
jords = P(E,R) and papas = P(F, S).

THEOREM 2.1. — The ternary quadratic operads jords and papas are dual of each
other :
jOI'dg! = papas.

The proof of Theorem 2.1 is based on the study of the S5 modules jordg(5) and papas(5)
for which we have following result.

THEOREM 2.2. — The subset of Ss
{o-Alo € S5,0(1) <o(3),0(1) <a(5) oro(2) <o(4)}
has 50 elements and is a basis of the space jords(5). The subset of Ss
{0-A"|0€85,0(1) <a(3),0(3) <o(5) ora(2) <c(4)}

has 40 elements and is a basis of the space papas(5).

The proofs for Theorems 2.1 and 2.2 will be given in Section 3. We can state the
following general result for ternary quadratic operads.

THEOREM 2.3. — Let P = P(E, R) be a ternary quadratic operad. Let {p;}1<i<n be a
basis of E and {p }1<i<n the corresponding dual basis in EV. If A is a P-algebra and B
a P'-algebra, then ARB is a ternary Lie algebra, whose bracket is defined by

1
[G1®b1, a2®b27 a3®b3] = 6 Z Z Mi(a0(1)7 A5 (2)s aa(3))®,u;/(ba(1)7 b0(2)7 bo(3))

0€Ss 1<i<n
for all elements a1,az,a3 € A and by,ba,b3 € B, and where p;(ay(1), G (2), Ao(3)) and
15 (o (1), bo(2), bo(3)) denote the images by the map (2.2) of 1i®a,(1)®ay(2)Raq(3) and
117 @bg (1) @b (2)@by(3y Tespectively.

Proof. — We refer to the proof given by Ginzburg and Kapranov ([G-K]) for quadratic
binary operads. The crucial point which allows to generalize their proof to ternary operads
lays in the duality tats' = lieg and in tats(n) = k for all even integer n (proven in [Gn2]).
O



Theorem 2.1 implies following statement.

CoROLLARY 2.4. — Let (A,{---}) and (B,(---)) be a ternary Jordan algebra and a
papas algebra respectively. The tensor product ARQB s endowed with a ternary Lie algebra
structure whose bracket is defined by

[a1®b1, a2®@bs, az@bs] = {az a1 az}@(be by bz)+{a1 az ag}®(bs be by)+{ai asaz}@(by b ba) .

for all ay,a2,a3 € A and by, by, b3 € B.

We end this section with a few words on possible further developments. In the theory of
Koszul duality for a binary quadratic operad P ([G-K]), any P-algebra A gives canonically
rise to a chain complex

CP(A) = A®"@g, P'(n)Y (2.7)

n

whose differential is defined in terms of binary trees. In particular, when P is the operad of
associative, commutative or Lie algebras, this complex is the standard Hochschild complex,
the Harrison complex or the Chevalley-Eilenberg complex respectively. We plan to extend
this to ternary operads and construct a chain complex for ternary Jordan algebras in this
way. Namely, we conjecture that the complex (2.7) can be generalized to ternary quadratic
operads. If (A4, {---}) is a jords-algebra, one has

A®3® g papas(3)V =2 A®%/I; and A®5®g papas(5)Y = A®5/I;,

where I3 is the subspace of A®3 spanned by the elements a®b®@c — c@bRa € A®3, and I
is the subspace of A®® spanned by all elements a®@b®@(c2d®e — e@d®c) € A®® and

a@bRcRdRe — cRbRaRdRe — aRARcRbRe + cRdRaRbRe € A% .

Consider the maps d3 : A®3 — A and d5 : A®% — A®3 defined by d3(a®b&c) = {abc} for
all homogeneous elements a®b®c € A®3, and

ds(z) = {abcl@d®e — c@{bad}®e + cvdx{abe} — axb{cde}

for all homogeneous elements z = aRbRcRd®e € A®S. They satisfy dzods = 0 and pass
to the quotient in maps

PLLY) ARLRYLLY) AN (2.8)

We expect that, in low degrees, the conjectured chain complex for ternary Jordan algebras
coincides with Sequence (2.8).



3. Proofs of Theorems 2.1 and 2.2

This section is entirely devoted to the proofs of Theorems 2.1 and 2.2. We begin with
a technical lemma.

LEmma 3.1. — The S5-module
(851 (KIS5)(1 = 71) + K[S5] (1 = 724)(1 + 715 + 735) )
has dimension 50 over k whereas the Ss-module
[Ss)/ (KIS5] (1 + 1a) + k5] (1 + m2a) (1 + 755) )

has dimension 40.

Proof. — We will first prove that the first Ss-module of the lemma is isomorphic to
k[55](1 +Tg4) (1 +T13) (1 +T13 +T35) (1 +T13) &) k[S5](1 +T13) (2 — T13 — ’7'35) (1 +T13) .

We use the following basic result of linear algebra. Let A be a k-algebra. If one is provided
with n quasi-idempotents, i.e. elements cy, .. ., ¢, € A such that ¢? = \;¢; where \; € k\{0}
and c;c; = 0 for i # j, then

Alcr+ - +cep) 2 A @ - @ Acy,

Weset A =Fk[S5], X =1—m713, Z =1—m4 and T = 1 + 75 + 735. The quotient
A/(AX 4+ AZT) is isomorphic to (A/AX)/((AX + AZT)/AX) which is also isomorphic
to (A/AX)/(A/AX)ZT where ZT denotes the projection of ZT € A in A/AX.

We also set X’ =1+ 113. So we get

XX'=X'X=0, X?2=2X, X?=2X and X+X =2.

One immediately deduces that A = AX ® AX’ and A/AX = AX'. The projection of ZT
in AX'is ZTX'. Consequently, we get A/(AX + AZT) =2 AX'JAX'ZTX'.
Now we set Z' = 1 + 794. One checks that the relations

72 =27, Z'2:2Z’, TX'=X'T, Z'Z=77Z'=0 and TB-T)=(T-1)X
are satisfied and that Z and Z’ commute with X, X’ and 7. These last relations involve

R? = 24R; fori=1,2,3,
R;R; =0 fori# j, and
Ry + Ry + R3 = 12X,

where
R =X'ZTX', Ry,=7Z'X'TX' and R3:2X’(3—T)X/.
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This family of quasi-idempotents gives rise to the decomposition AX' /AR, =& AR;®AR3
which proves the announced isomorphism

AJ(AX + AZ'T) =2 AX' /AR, = ARy ® AR3.

To determine the dimensions of the module ARy®AR3, we calculate the rank of the
right multiplication by R, and Rs. For any integer ¢, we denote the matrix of dimension
¢ whose entries are all equal to 1 by Jp, and the identity matrix of dimension ¢ by I,. One
has

Ry = 2(1 4 124)(1 + 713 + 715 + 735 + T35 + Ti53) -

It is easy to see that, in the basis of k[S5] formed by the elements of S5 in an appropriate
order, the matrix of V +— V Ry is the Kronecker product of matrices 2I19 ® Jo ® Jg. The
rank of this matrix is 10. On the other hand, we have

R3 = 6(1+ 713) — 2(1 4+ 713 + 715 + T35 + T35 + Ti53) -

In an appropriate basis of k[Ss|, the matrix of V +— V Rj3 is given by

2 -1 -1
Iy | -1 2 —1]®Js,
-1 -1 2

whose rank is 40.
The dimension of the second module in the lemma is computed in the same way. We
will not give all details here. One first proves that the module is isomorphic to

k[S5](1 — Tlg)(l + ’7'35)(1 — Tlg)(l — ’7'24) @ k[S5](1 — T35 — ’7'15)(1 — 7'13) .

This part of the proof uses the quasi-idempotents Y7 = XUZ'X, Y, = XUZX and
Y3 =2(2—T)X, where U = 14 75. To prove that the dimension of the module AYo@®AY3
is 40, one computes the rank of the right multiplication by Y> and Yj. ]

We now prove Theorem 2.2.

Proof of theorem 2.2. — By definition, the module jordg(5) is the quotient of the module
7 (E)(5) by the subspace R. They were both defined in Section 2. The space 7 (E)(5) is
spanned by the symbols 0-A = 0-{{aj as az} as a5} and o0-B = o-{a; {az a3 a4} a5}, where
o runs over S; and where we take in account Relation (1.1). Namely, we have m3-A = A
and Ti5-B = T94-B = B. By definition of R, the relation

0'T13-B:U'(A—T247'15-A+7'35-A) (31)

holds in the quotient. So, we may restrict the generators of jords(5) to the set

{0-A|o € S5},
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There are exactly two ways to express o713-B in terms of A. The one given above and

also
O'T13-B = O'T13T24'B = O'-(T24-A — ’7'15-A + T24’7'35-A) . (32)
Now, we can determine all the relations holding in 7 (E)(5)/R. They are
0(1—T13)-A:0 and 0(1—T24)(1+T15+T35)'A:0, (33)

where the later is the difference of Relations (3.1) and (3.2) and where o still runs over Ss.
These considerations imply that jords(5) is isomorphic to the left Ss-module

{S51/ (KISs)(1 = maa) + KISs)(1 = 72) (1 + 715+ 75) )

whose dimension is 50 by Lemma 3.1.
Note that the set

K={0€Ss,|o(l)<a(3),0(1) <o(5) ora(2) <o(4)}

has cardinal 50. It is sufficient to show that the set {o-A |0 € K} spans jords(5). To this
end, we introduce the following subsets of S;. We set

Ko ={o € 5[a(1) <o(3)},

Ki={oc€eKy|o(l)<o(3)<o(5) and 0(2) < c(4)},
Ky={oc€ Ky|o(l) <o(3)<o(b) and 0(2) > c(4)},
Ks={oce€Ky|o(l) <o(5)<o(3)and 0(2) <o(4)},
Ky={oc€eKy|o(l) <o(5)<o(3)and 0(2) >0c(4)},
Ks={o€ Ky|lo(5)<o(l)<o(3)and 0(2) <o(4)},
K¢={oc€e Ky|o(b) <o(l)<o(3)and 0(2) > 0c(4)}.

The sets K1, ..., Kg form a partition of Ky and we have
K=K UKyUK3UK,UK5.
Moreover, Card(K;) = 10 for all i = 1,---,6 and one has
KeToaT3sm13 = K1, KeT3sTi3 = Ko, KeToaTis = K3, KeTis = Ka, KeToy = K5. (3.4)

Note that as 13-4 = A, we can restrict the set of generators to {o-A|o € Ky}. After
the second of Relations (3.3), for any o € S5, one has

0-A = 0(To4 + ToaTis + ToaTss — Tis — T35) A

in jords(5). Consequently, according to Relations (3.4), if an element o € K is in Kg,
then 0-A € jords(5) can be written as a linear combination of elements 7;-A € jords(5),
where 7; € K; for i = 1,...,5. This proves that K spans jords(5) and ends the proof of
the Theorem for the operad jords.

The proof for the Ss-module papas(5) is similar. One first proves that it is isomorphic
to

K151/ (KIS51 (1 + maa) + KIS5](1 + m2)(1 4+ 735) )

whose dimension is 40 by Lemma 3.1. Then, in a same way as above, one proves that the
set {0-A" |0 € K'} where K’ = K1 U Ko U K3 U Kj is a family of 40 generators. n
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We can now prove Theorem 2.1.

Proof of Theorem 2.1. — In order to show that P(E, R)' = P(F,S), we have to prove
that £V = F and that R and S are orthogonal. The isomorphism E = FV is obvious
by definition of F and F. To establish the orthogonality of the spaces R and S, we first
express the duality of 7(F)(5) and 7 (F)(5) in a proper way.

In view of the form of the basis (2.3) of 7(E)(5), we can state the Ss-module
isomorphism

T(E)(5) = (k[S5]/(1 _ 713)),4 @ <k[55]/(1 — s 1— 724))3.

We put symbols A and B here to distinguish the two summands of the direct sum. From
this isomorphism, we deduce that

In the same way the form of the basis (2.4) of 7 (F)(5) yields the isomorphism

T(F)(5) 2 (klS5)/(L+713) ) A @ (K[S5]/(1 + 715, 1+ 724) ) B
and so
T(F)(5) = k[55](1 - 7'13)14/ ) k[S5](1 - T15)(1 - 7'24)B/ . (36)
Now, we consider the isomorphism of Ss-modules 7 (F)(5) — 7(E)(5)" defined between

the spaces (3.5) and (3.6) by 0 A+ 7B +— e(0)cA’ + e(r)rB’ for all 0,7 € S5. Thus, we
can define a non-degenerate bilinear form (—|—) : 7(E)(5)x7 (F)(5) — k by setting

1 1
(cA+TBloc’A' +7'B’) = 55(0)50,01 + 16(7)5T,T/

for all o,0'T, 7" € S5.
We will prove that (R|S) = {0}. If ¢ is an element of S5, then

r = 0'(1 +’7'35 — 7'157'24)(1 + Tlg)A — O'T13(1 +’7'15)(1 +7'24)B

is a generator of R (see (2.5)) via the isomorphism (3.5). For o’ € S5 consider the generator
(see (2.6))

y=0"(1+715724)(1 — 113)A" + 0’ (1 — 715)(1 — T24) B’
of the space S via the isomorphism (3.6). We calculate

(z|y) =(o(1+ 735 — T15724) (1 + T13) A | 0" (1 + T15724) (1 — T13)A")

— (om13(1 4 715)(1 + 724) B 0'(1 — 715) (1 — 724) B)

(0(1 4 735 — T15724) (1 + T13) (1 + 713) (1 + T15724) A | 0" A")
<0'T13 (1 + 715)(1 + 724)(1 + T24)(1 + 715)B | 0'B >

=2(0(1+4 735 — T15724) (L + T13) (1 + Ti5724) A | 0’ A")

4<O'7'13 1 + T15 1 —}—T24)B,O'/B/> .
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The first equality is given by the Ss-invariance of the scalar product and the second
by a simple computation in k[S5]. Now, since (A|A’) = 2(B|B’), we have (z|y) =
2(czA |0’ A), where

2= (14735 — T15724) (1 + 713) (1 + T15724) — T13(1 + 715) (1 + To4) -

Another computation in k[S5] gives z = 0. We proved that (R, S) = 0. By Theorem 3.2, as
the dimension of T'(E)(5) is 90, the dimension of R is 40 and that of S is 50. Consequently,
we have R = S+, W

Appendix

In this appendix, we prove the equivalence of the notions of Jordan algebras and ternary
Jordan algebras in the unitary case. The results presented here may be well known to the
experts, but we did not find complete proofs of them in the literature. We give them here
for the sake of completeness.

THEOREM A.1l. — If (J,*) is a Jordan algebra, then the ternary product
{abc} = (axb)*c + ax(bxc) — (a*xc)xb

endows J with a ternary Jordan algebra structure.

We say that a ternary Jordan algebra (J, {---}) is unital if there exists 1 € J such that
{lal} =a for all a € J. Remark that, if one replaces z, z, u and v by 1 in Relation (1.2)
and uses (1.1), one gets {11y} = {y11} = {1y1l} =y for all y € J. When the ternary
Jordan algebra is unital, we have the converse theorem of Theorem A.1.

TuEOREM A.2. — If (J,{---}) is a unital ternary Jordan algebra of unit 1, then the
product axb = {a b1} endows J with a Jordan algebra structure.

Proof of Theorem A.1. — Relation (1.1) is an obvious consequence of the commutativity
of (J,*). Let us check that the map {---} defined in the theorem satisfies Relation (1.2).
We claim that the relations

{zylzza}} ={z{zzy}z} (A.1)

and

{zyatyz} ={z{yzy}z} (4.2)
hold for all z,y, 2z in any Jordan algebra. Indeed, these are relations in three variables
of degree 1 in z. By the theorems of MacDonald and Shirshov (see [Jal, ch..9.]), it
is sufficient to check them for any special algebra. Recall that in this case, we have
{zyz} = %(a:yz + zzy) for all x,y, z. Indeed we have

{zy{zzx}} = %(mymzx + xzayzr) = {x {zxy} x}
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and
1
Hzyatyz} = 5(eyryz + zyaye) = {z {yw y} 2}
We follow [Loos| to complete the proof. Linearizing (A.1), we obtain
{xy{xzt}} +{ty{zza}} =2{z{zzy}t} + {x{zty}a}. (A.3)

We can also linearize (A.2) and obtain the relation

Haya}zty+ Hozadyt) = {a{yw 2} ) +{a{zay} t} = 2o {ya 2} 1},

which is equivalent to

Hrya}zty +{ty{zza}} == 2z {22y} t}, (A.4)
The difference between Relations (A.3) and (A.4) is

Afey{ezt}} ={z{ztyta} + {{zya} 21},
which, after linearization, yields Relation (1.2). 0
Proof of Theorem A.2. — First we note that for any a,b € J, the partial symmetry of
{---} implies {a b1} = {1ba} and that, from (1.2), we get
{ab{cdc}}+{c{bad}c} =2{{abc}dc} (A.5)

for all a,b,c,d € J.

Replacing a, b and ¢ by 1 in (A.5) gives d = d*1 and replacing d and ¢ by 1 gives
axb = bxa. We proved that x is an unitary and commutative law.

Replacing a and ¢ by 1 in (A.5) gives us {b1d} = bxd. So, for all a,b € J, we have

axb={lab}={alb} ={abl}.
Now, if we replace z by a, by b, v by ¢ and y and u by 1 in Relation (1.2), we get
{abc} = (axb)xc + ax(bxc) — (axc)xb. (A.6)
Note that {aab} = a?xb for any a,b € J.
We compute
(a*xb)xa = {la{aab}}
={{laa}tab} —{af{ala}b}+{aa{lab}}
={a*ab} — {aa®b} + {aaaxb}
= 3a®x(axb) — 2(a*xb)xa .
The second equality is a consequence of the four-term relation and the last one of (A.6).
For any a,b € J, we get a®x(axb) = (a*xb)*a, which proves that (J, ) is a Jordan algebra.
O]
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