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Mod 3 Arithmetic on Triangulated Riemann Surfaces *

E. G. Belaga

Université Louis Pasteur 7, rue René Descartes, F-67084 Strasbourg Cedex, FRANCE

Abstract. Let T be a triangulation of a Riemann surface, orientable or non-
orientable and of an arbitrary genus. Suppose, a labelling of the vertices of T by
three labels 0, +1, and -1 is fixed. The present paper deals with the following
problem : find the number of labellings of the faces of T by two labels +1 and -1,
in such a way that the sum of the labels of the faces around any vertex is equal
modulo 3 to the given label of the vertex. If T is a planar triangulation and all
labels of vertices are zeros, then the problem of existence of such a labelling of
faces is equivalent, according to P. J. Heawood, to the four-colour problem for
planar triangulations, and the corresponding counting problem is equivalent to
that of counting the number of all proper four-colourings of T .

Keywords: Riemann surface, triangulation graph, four-colouring, Heawood vector.
A. M. S. Subject Classification (1991): 05 C.

Dedicated to the memory of Percy John Heawood, 1861 -
1955, on the occasion of the first centenary of his seminal
paper [17].

1. Introduction.

During his early days at Durham while he was teaching a
class of divinity students mathematics, one of them asked
“You have taught us to cast out nines, can you cast out
devils ?”“Yes, I can,” replied Heawood, “get out at once
!” [14], p. 266

Percy John Heawood has had both the privilege and stamina to almost single-handedly
create the field of graph colourings and to actively participate in its developments over a

* Expanded version of a talk presented at the Palaiseau Conference on Combinatorics
and Computer Science (Palaiseau, France, September1997).
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period of nearly sixty years (cf. [14] and [8], p. 217). His last published papers [18], [19], as
his first one [16], deals with the four-colour problem, 4CP henceforth. In fact, the papers
[18], [19] pursue (albeit, one must admit, without much success) a beautiful idea from his
second paper [17] :

Theorem 1.1. ([23], pp. 237, 260). A proper four-colouring of vertices of a planar
triangulation exists iff its faces can be labelled by two labels +1 and -1 in such a way that
the sum of the labels of the faces around any vertex is 0 modulo 3.

Seventy years after [17], the present author has independently discovered Heawood’s
theorem [3], together with, or more precisely, by way of a straightforward but elegant
geometric interpretation of a proper four-colouring as a folding of a planar triangulation
into a tetrahedron : see Appendix . (The theory of branched and folded coverings has been
initiated in [24]; an attempt of an in-depth study of covering triangulations with folds can
be found in [11]).

Generalizing this approach following another of Heawood’s fruitful tracks, one passes
from planar graphs to graphs on arbitrary Riemann surfaces [6], [16], [23], p. 261. However,
discarding the planarity condition comes at a price of “casting out”the “devil”of colouring.
It means that the link between F3-arithmetic on a triangulation of a non-planar Riemann
surface, on the one hand, and colourings of the vertices of this triangulation, on the other,
ceases to exist (cf. Figure 1) :

Problem 1.2. Let T be a triangulation of a Riemann surface. Suppose, a labelling
of the vertices of T by three labels 0, +1, and -1 is fixed. Find the number of labellings of
the faces of T by two labels +1 and -1, such that the sum of the labels of the faces around
any vertex is equal to the given vertex label modulo 3.

Remark 1.3. Our interpretation of a triangulation of a Riemann surface is most
general : triangulation is any embedding of a graph into the surface which cuts it into
triangles (thus, double edges are permitted : cf. Figure 1 below).

The only and, for that matter, rather curious remnant of Heawood’s colouring preoc-
cupations emerges as a generalization (Theorem 4.1 below) of Heawood’s other theorem
from [17] :

Theorem 1.4. ([23], p. 260). Let T be a planar triangulation. Then T is 3-colourable
iff all vertices of T have even degree.

The purpose of the present paper is to introduce, prove, and investigate a counting
formula for the above Problem 1.2. Several conjectures about the numbers of solutions of
the system with arbitrary free terms are advanced; three of these conjectures, if true, would
imply a positive answer to 4CP . Contradictory examples, which will appear elsewhere,
show that the suggested conditions of the conjectures cannot be weakened.

The counting formula is far from being effective : it represents a delicate balancing act
of mutual computation of iterations. Its main advantage lies, however, in the suggestive
power of its coefficients which are integer invariants of corresponding sub-triangulations.
It also gives rise to two invariant polynomials, one of r (= the number of faces of T )
variables L(W ; a, T ),W = (w1, ..., wr), and the second one derived from the first one, of
one variable,

L(w; a, T ) = L(W ; a, T ) |w1=...=wr=w,
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computing at w = − 1
2 the number of solutions of Problem 1.3 (the formula (6)).

It is the present author’s hope that this polynomial and other formulae introduced
hereby shall prove themselves useful instruments in studying graphs of triangulations. To
substantiate these expectations, intensive calculations were carried out; their results will
appear elsewhere.

Our graph-theoretical terminology is that of [15], with popular notational deviations
indicated, and with a couple of our own notations when [15] is silent on the subject. As
to the topological prerequisites, they can be found in [10], Chapter III.

2. Historical Background and Motivations.

The 4C problem has appeared first as a naive enquiry addressed by a student in
London, in 1852, to his brother, also a student, who passed the question to his professor
of mathematics, Augustus De Morgan. Unable to answer an apparently trivial question,
De Morgan circulated it among London mathematicians. Finally, in 1878, Arthur Cayley
submitted the problem to the London Mathematical Society.

Within a year, Alfred Bray Kempe has published a simple and elegant solution [20]
which satisfied everybody for at least ten years. Then, Percy John Heawood pointed out
a fatal flow in Kempe’s argument [16] and proposed his own and, for that matter, a very
successful programme of studying 4CP and related problems [16], [17] (both, Kempe and
Heawood, deal with planar triangulations and colour vertices). As to Kempe’s modest
attempt, it became just a popular historical anecdote, - or it seemed so to the general
mathematical public : cf. any introduction to graph theory published before 1970.

Kempe’s approach was reductive, i. e., inductive and local. Heawood’s attitude was
synthetic, i. e., global and easily lending itself to generalizations to triangulations of
arbitrary Riemann surfaces, as in [16], with its map colour formula [21], or, in a different
way, in the present paper.

Ironically, Kempe’s faulty proof gave rise to a method [9] which finally produced
a computer-assisted solution of 4CP [1], [2], whereas Heawood’s approach, the brilliant
offshoots for Riemann surfaces of non-zero genus notwithstanding [21], is still waiting its
successful 4CP realization.

But does it really matter ? Why should somebody bother to find a [17]-inspired
solution of 4CP ? We submit here three major reasons, one “negative”and two “positive”,
why it should be worth one’s while to look for a realization in question.

First, there exists a widespread disappointment with the Kempe-inspired solution of
4CP . Attested by the authors of the solution themselves, the disappointment goes deeper
than they are willing to admit, and not exactly as suggested in [2], p. 1 : “One can never
rule out the chance that a short proof of the Four-Color Theorem might some day be found,
perhaps by the proverbial high-school student. ”.

Indeed, the problem is not so much with the “length”or “computerization”of the proof,
but with its intelligibility and instructiveness. Here is a more to the point assessment :
“Even if the Appel and Haken solution is perfectly correct ... , it is painfully obvious that
it is not an adequate solution to the problem. For one thing it fails to explain why four is
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the final answer. In mathematics a decent proof is at least an explanation why the result
is true.” [12], p. 6.

The authors themselves submit a tentative, very intuitive, and, to our taste, not very
convincing a posteriori elucidation of the “number four”mystery, [12], pp. 61-62. And even
the masterfully written update [22] of the original proof leaves the mystery unresolved.

Second, Heawood’s theorem (Theorem 1.1 above) lends itself to a most natural and
elegant topological a priori explanation “why”four colours suffice [3] (cf. Appendix). Sure,
there is no guarantee that such an “explanation”can be translated into an edifying proof * .
But its existence greatly encourages the search for such a proof.

Third, the generalization of Heawood’s modulo 3 interpretation of 4CP to triangula-
tions of arbitrary Riemann surfaces promises to shed a new light into their “arithmetical
”structure. In fact, thanks to [2], we know that, in the planar case, there exists a posi-
tive solution of the Problem 1.3. In what non-planar cases does it exists, too, and if not,
“why”?

3. The Counting Formula.

As it was clear already to Heawood [17], Problem 1.3 is about the existence of solutions
of a system of linear equations over the Galois field of cardinality three, F3, with a non-
linear condition on the unknown variables : only solutions with non-zero components are
admitted. Here is the version of Problem 1.3 which will be the formal subject of the present
study :

Problem 3.1. Let T = Tp,r(Sg) be a triangulation of a Riemann surface Sg (ori-
entable or non-orientable) of the genus g, with p vertices, r faces, and let MT be its inci-
dence matrix vertex-face. Suppose the vertices of T are assigned fixed labels a = (a1, ..., ap)
from F3. We are looking for the number λ(a, T ) of different labellings x = (x1, ..., xr) of
the faces of T by the numbers +1 and -1, satisfying the following system of linear equations
over F3 :

MT · x = a; a ∈ (F3)p = A, x ∈ {+1,−1}r = (F∗3)r = X . (1)

Remark 3.2. (1) Notice that, for any a, if MT · x = a then MT · (−x) = −a. This
implies that λ(a, T ) = λ(−a, T ) and that λ(0, T ) ≥ 0 is even. The case a = 0 will be
sometimes referred to as homogeneous.

(2) In particular, when T is a planar triangulation and a = 0, the number 1
2λ(0, T ) is

equal to the number of different proper four-colourings of vertices of T , up to an arbitrary
permutation of colours. This fact establishes a link between Problem 3.1 and the 4C
problem, of which Problem 3.1 becomes a far reaching generalization.

(3) Notice also that

* As Kenneth I. Appel and Wolfgang Haken rightly point out, “But it is also conceivable
that no such proof is possible. In this case a new and interesting type of theorem has
appeared, one which has no proof of the traditional type.”[1]
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∑

∀a∈A
λ(a, T ) = #X = 2r. (2)

Our main result will be a counting formula for λ(a, T ), Theorem 3.4 below. To describe
it, we need few standard notations.

Notations 3.3. (1) Let T = Tp,r(Sg) = {V,E, F} be a triangulation of a Riemann
surface, as above, with, respectively, sets of vertices V , edges E, and faces F ,

V = {v1, . . . , vp}, E = {e1, . . . , eq}, F = {f1, . . . , fr} .

Euler’s theorem for graphs on surfaces states that p− q + r = 2− 2g, which in the case of
a triangulation implies 2q = 3r and

r = 2p+ 4g − 4 ≥ 2p.

(2) If a vertex v ∈ V belongs, or is adjacent to a face f ∈ F , we shall write v ∈ f .
The number α(v) of the faces adjacent to a vertex v is called the degree of v (instead of
degree, some use the term valence [21]). For a subset V ′ of vertices, ∅ ⊆ V ′ ⊆ V , we
define its broad neighbourhood complex, or shell for short, t(V ′) (respectively, its narrow

neighbourhood complex, or core for short, t(V ′)), as the sub-triangulation of T generated by

the sub-sets of faces (f(V ′) and f(V ′), respectively) which meet at least one (respectively,
two) vertices of V ′.

Since f(∅) = f(∅) = ∅, we assume that t(∅) = t(∅) = ∅, too. The terms broad and
narrow concur obviously with the inclusions :

f(V ′) ⊇ f(V ′); t(V ′) ⊇ t(V ′).

We shall also use the notations

r′ = α(V ′) = #f(V ′), s′ = β(V ′) = #f(V ′),

with r′ ≥ s′ and α(V ) = β(V ) = r = #F.

The last α-notation is compatible with the above degree notation :

α(v) = α({v}) = #f({v}).

(3) We use arithmetical operations over both the ring Z of integers and the Galois
field F3. When it does not lead to confusion, we use the numbers 0, +1, and -1 as elements
of F3 and the standard arithmetical notations for operations over both integers and the
“numbers”0, +1, and -1. Otherwise, the qualifier (mod 3) is added.

Theorem 3.4. Let T be a triangulation of a Riemann surface, as above; let ω = − 1
2 .

Then the number λ(a, T ) of solutions of the system (1) is given by the following counting
formula :
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λ(a, T ) = 2r · 3−p+1 ·
∑

∅⊆V ′⊆V \vp
ωr
′ · θ
(
a |V ′ , t(V ′)

)

= 2r · 3−p+1 ·
(

1 +
∑

v∈V \vp
ωα(v) · θ1(av) (3)

+
∑

v,v′∈V \vp
ωα({v,v′}) · θ2

(
av, a

′
v; t({v, v′})

)
+ . . .

)
,

where θ
(
a |V ′ , t(V ′)

)
are integer functions depending only on the restriction a |V ′ of the

vector a to V ′ and on the core t(V ′), i. e., on the narrow neighbourhood complex of V ′

(and not on its broad neighbourhood complex t(V ′). (The exclusion V \vp in the above and
below, (5), summations is explained below, Theorem 4.1, Assumption 4.3).

Note 3.5. (1) The functions θ(. . .) are defined below, Definition 5.3(2), (11).They
are calculated iteratively, from smaller subsets of vertices (and the corresponding sub-
triangulations) to bigger ones. The proof of Theorem 3.4 will be given below, §5. A far-
reaching combinatorial generalization of the above formula and of the narrow dependency
property has been announced in [7] and will be proved elsewhere.

(2) The main idea behind the formula (3) is to re-construct the number λ(a, T )
from numbers of partial solutions of the system (1) : first, one evaluates the numbers of
solutions of a void system of equation, then of a one equation of the system, then of two
equations, etc. Finally, the functions θ(. . .) are reconstructed (see §5) with the help of
Möbius inversion formula [13]. (Compare this including-excluding procedure with that,
almost sixty years old, of H. Whitney [27].)

(3) It is the narrow dependency property that makes the claim (3) nontrivial, its
proof rather invloved, and the functions θ(. . .) so interesting invariants of respective sub-
triangulations. In fact, it is the inclusion-exclusion procedure which “distils”the narrow
dependency property from its broad version : cf. Theorem 5.5(2) and Remark 5.6.

(4) To give the first inkling of the structure of the summation formula (3), let us
compute its lowest terms. The first summand in (3) is the ∅-approximation of λ(a, T ). To
calculate it, denote by A0 the hyperplane of the vector space A (1) cut off by the equation

a1 + . . .+ ap = 0.

According to Theorem 4.1 below, the system (1) has no solutions if a /∈ A0. Thus, according
to (2),

λ0(a, T ) =
#X

#A0
= 2r · 3−p+1

is the average number of solutions when a is varied and T is fixed (in contradistinction to
the way, in a similar context, the average is defined in [26]).

(5) Restricting ourselves to ∅- and one-vertex-approximations, we take into account
the impact of vertices and their neighbourhoods on λ(a, T ), but disregard the influence of
edges and more complicated sub-graphs of T , etc.
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(6) Proceeding in this way, we calculate, for example :

θ0 = θ
(
a |∅, t(∅)

)
= 1;

θ1(ξ) = θ1(aj) |aj=ξ= θ
(
a |{vj}, t({vj})

)
= 2− 3 · ξ2;

θ2(ξ, η) = . . . =

{
θ1(ξ) · θ1(η) + 3 · θ1(ξ − η), if{vj , vk}is an edge in T ;
θ1(ξ) · θ1(η), otherwise.

(4)

The above formula for θ2(ξ, η) is “weakly multiplicative ”. This property of functions θ is
the subject of Theorem 5.5(3).

(7) Note that the above “small”coefficients θ(. . .) are positive when a = 0 (which, in
particular, is the case of 4CP for planar triangulations). This phenomenon, which can be
verified for #V ′ = 3, 4 as well, remains an enigma : cf. Conjecture 6.4 below.

Definition 3.6. Let T be a triangulation of a Riemann surface, as above. Assign to
each face fj a formal variable wj , 1 ≤ j ≤ r. Proceeding from the formula (3), define the
polynomial

L(W ; a, T ) =
∑

∅⊆V ′⊆V \vp

(
θ
(
a |V ′ , t(V ′)

)
·

∏

fj∈ f(V ′)

wj

)
, (5)

We also define

L(w; a, T ) = L(W ; a, T ) |w1=...=wr=w

so that, obviously,

λ(a, T ) = 2r · 3−p+1 · L(− 1
2 ; a, T ). (6)

4. Rank of the Incidence Matrix.

Let MT be the incidence vertex-face matrix of a triangulation T of a Riemann surface
S, as above, Problem 3.1. Attempting to solve the system (1), one has first to eliminate
one trivial obstruction :

Theorem 4.1. (In the planar case, g = 0, [17]; for Riemann surfaces of arbitrary
genus g ≥ 0,[6]).

(1) Since each face of MT is a triangle, all but three entries of any column of MT are
zeros. This means that the sum of all rows of MT is zero in Fr3 ,

1p ×MT = 0r

which implies :
(a) the system (1) has no solutions if the free-term vector a does not belong to A0

(cf. Note 3.5(4)) :
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(1p, a) 6= 0 =⇒ ∀x ∈ X. MT · x 6= a;

(b) the inequality holds :

rankF3(MT ) ≤ p− 1.

(2) If rankF3
(MT ) = p − 1, then, according to the inequality (Euler’s formula, cf.

Notations 3.3(1))

r = 2p+ 4g − 4 ≥ 2p,

any ((p− 1)× r)-sub-matrix of MT has the rank p− 1.
(3) The inequality holds :

rankF3
(MT ) ≥ p− 2.

(4) The following two properties are equivalent :
(i) rankF3(MT ) = p− 2 ,
(ii) the triangulation T has a proper three-colouring of its vertices; such a colouring

is unique up to a permutation of the colours.
Note 4.2. In the planar case, g = 0, the above two properties are equivalent to

the third one : a proper three-colouring exists iff all vertices of T have even degrees, see
Theorem 1.4 above. Two examples of triangulations of a torus, Figure 1, with all vertices
of even degrees, and with the chromatic numbers 5 and 7, respectively, demonstrate that
in the case g > 0 the “if”condition ceases to be true.

Figure 1. Left. Triangulation of a torus with six vertices, A,P, b, c, d, e , all
of even degree (respectively, 4, 8, 6, 6, 6, 6) , which is not three-colourable (cf.
Theorem 1.4). Albeit there exists (as displayed on the diagramme above) a
±1 labelling of faces of the triangulation with sums around vertices equal to
0 modulo 3, it is not four- but five-colourable (cf. Theorem 1.1).
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Right. Triangulation of a torus with seven vertices, A,P,Q, b, c, d, e , all of
even degree (respectively, 10, 8, 8, 4, 4, 4, 4), with a ±1 labelling of faces having
the above 0 modulo 3 property. The sub-graph of this triangulation with seven
vertices and double-lined edges is the complete graph K7; thus, the triangulation
is seven-colourable.

Assumption 4.3. In what follows, we assume (without much loss of generality,
according to Theorem 4.1(4)) that

rankF3
(MT ) = p− 1.

Thus, one of the equations of the system (1) can be disregarded, and according to Theorem
4.1(2), it can be any of the equations; in what follows, it will be the equation corresponding
to the vertex vp. This fact accounts for the exclusion V \ vp in the summations (3) and
(5).

5. Partial Counting Functions and Formulae.

Henceforth, the triangulation T is fixed and does not appear in the notations of objects
associated with it. Removing from T the vertex vp, one gets the (sub-)triangulation T 0

with the set of vertices V 0 = V \vp. Replace now the system (1) with its truncated version,

M0 · x = a; a ∈ Fp−1
3 = A0, x ∈ {+1,−1}r = (F∗3)r = X, (7)

with the ((p− 1)× r) matrix M0 being the sub-matrix of the incidence vertex-face matrix
MT , as above, whose last row (corresponding to vp) is omitted.

As it was suggested above (Note 3.5(2)), along with the system (7), one needs to study
all its sub-systems :

Definition 5.1. For any a ∈ A0 and any subset V ′ of V 0, ∅ ⊆ V ′ ⊆ V 0, define the
functions λ(a, V ′) and λ(a, V ′) as follows :

(i) either V ′ = ∅, and then λ(a, ∅) = #X = 2r ;

(ii) or

V ′ 6= ∅, V ′ = {vi1 , ..., vip′ }, 1 ≤ i1 < i2 < ... < ip′ ≤ p− 1,

and then (Notations 3.3)

a |V ′ = {aii , . . . , aip′ };
M0[V ′] =

(
mik,j

)1≤j≤r
1≤k≤p ;

Λ(a, V ′) = {x ∈ X |M0[V ′] · x = a |V ′};
λ(a, V ′) = #Λ(a, V ′);

λ(a, V ′) = 2r−r
′ · λ(a, V ′), where r′ = #f(V ′) .

(8)
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Lemma 5.2. The function λ(a, V ′) has integer values and substantially depends only
on (this means : is completely determined by) the sub-vector a |V ′ and the shell t(V ′) of
V ′ in T 0.

Proof. The values xj corresponding to those faces fj which are not adjacent to one of
the vertices of V ′, do not contribute to the summation and can be chosen arbitrary. The
number of such faces is r − r′.

Instead of λ(a, V ′), we shall sometimes use the explicit notations λ
(
a |V ′ , t(V ′)

)
.

Definition 5.3. (1) For any a ∈ A0 and any V ′, ∅ ⊆ V ′ ⊆ V 0, define the function

ζ(a, V ′) = ζ
(
a |V ′ , t(V ′)

)

inductively, as follows :

ζ(a, ∅) = 1;

∀V ′, ∅ 6= V ′ ⊆ V 0.

ζ(a, V ′) = 2−r
′ · 3p′ · λ

(
a |V ′ , t(V ′)

)
−

∑

∅⊆V ′′ 6⊆V ′
ζ
(
a |V ′′ , t(V ′′)

)
.

(9)

(2) For any a ∈ A0 and any V ′, ∅ ⊆ V ′ ⊆ V 0, define the function θ(a, V ′), as follows :

θ(a, V ′) = θ
(
a |V ′ , t(V ′)

)
= (−2)−r

′ · ζ
(
a |V ′ , t(V ′)

)
;

ζ(a, V ′) = ωr
′ · θ(a, V ′), where ω = −1

2
.

(10)

Lemma 5.4. (1) According to (9), for any V ′, ∅ ⊆ V ′ ⊆ V 0, one has, tautologically,

λ(a, V ′) = 2r
′ · 3−p′ ·

∑

∅⊆V ′′⊆V ′
ζ(a, V ′′).

(2) Applying Möbius inversion formula [13], we have :

ζ(a, V ′′) =
∑

∅⊆V ′′⊆V ′
(−1)p

′−p′′ · 2−r′ · 3p′ · λ(a, V ′′). (11)

(3) Thus (cf. (8)),

λ(a, V ′) = 2r
′ · 3−p′ ·

∑

∅⊆V ′′⊆V ′
ωr
′′ · θ(a, V ′′),

λ(a, V ′) = 2r · 3−p′ ·
∑

∅⊆V ′′⊆V ′
ωr
′′ · θ(a, V ′′).

Theorem 5.5. (1) The functions θ(. . .) defined in (10) are integer-valued.
(2) These functions substantially depend only on the sub-vector a |V ′ and the core

t(V ′) of V ′ in T 0 (and not on the shell, as in (9), (10)) :

θ(a, V ′) = θ
(
a |V ′ , t(V ′)

)
.
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(3) The functions λ(. . .) (8) and θ(. . .) (10) are weakly multiplicative, in the following
sense :

∀V ′, V ′′(∅ ⊆ V ′, V ′′ ⊆ V 0). t(V ′) ∩ t(V ′′) = ∅ =⇒
λ(a, V ′ ∪ V ′′) = λ(a, V ′) · λ(V ′′),

θ(a, V ′ ∪ V ′′) = θ(a, V ′) · θ(V ′′).
(The low part of the formula for θ2 in (4) is a special case of the general formula for
θ(a, V ′ ∪ V ′′), when #V ′ = #V ′′ = 1 and #(V ′ ∪ V ′′) = 2.)

(4) Let
∅ ⊆ V ′ ⊆ V ′′ ⊆ V 0,

V ′′ = {vi1 , . . . , vip′′ }, 1 ≤ i1 < i2 < . . . < ip′′ ≤ p− 1.

Then

∑

α=(α1,...,αp′′ )∈Fp
′′

3

λ(a |ai1=α1,...,ai
p′′=αp′′

, V ′) = 2d · λ(a, V ′ \ V ′′),

d = #
(
f(V ′′) \ f(V ′ \ V ′′)

)
.

(5) Let
∅ ⊆ V ′, V ′′ ⊆ V 0, V ′ ∩ V ′′ = ∅,
V ′′ = {vi1 , . . . , vip′′ }, 1 ≤ i1 < i2 < . . . < ip′′ ≤ p− 1.

Then

∑

α=(α1,...,αp′′ )∈Fp
′′

3

λ(a |ai1=α1,...,ai
p′′=αp′′

, V ′) = 3p
′′ · λ(a, V ′)

(6) Respectively,

∀k, 1 ≤ k ≤ p′.
∑

α∈F3

θ(a, V ′) |aik=α

= θ(a, V ′) |aik=0 +θ(a, V ′) |aik=1 +θ(a, V ′) |aik=−1= 0.

Remark 5.6. Whereas the claims (1), (3), (5) of the above theorem can be proved
relatively easily, as simple formal corollaries of Definitions 5.1, 5.3, the proofs of the state-
ments (4), (6) are less evident, and that of the statement (2) is definitely more involved. (It
will be given elsewhere.) This is because the property of “narrow dependency ”is neither
true for the functions λ(. . .), no can it be imposed in a straightforward manner. In fact,
it is the inclusion-exclusion procedure (9), (10) which “distils ”the narrow dependency
property from its broad brand of Lemma 5.2; cf. Note 3.5(3).
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6. Enquiries and Conjectures.

Calculations, both theoretical and based on examples, with respect to the Problem 1.2,
suggest several conjectures concerning the system (1) and the counting function λ(a, T ).
Three of these conjectures, if true, imply the positive answer to 4CP . The logic of justifi-
cation of theses conjectures and the insights involved therein are rather intricate, and are
somewhat similar to those explicated in [12] with respect to a version of the proof [2] of
4CP .

Conjecture 6.1 : Weak Homogeneity Conjecture. In the homogeneous case,
a = 0, the counting function λ is positive :

∀S ∀T. λ(0, T ) > 0

Conjecture 6.2 : Strong Homogeneity Conjecture. The counting function
λ(a, T ) attains its maximum in the homogeneous case, a = 0 :

∀S ∀T ∀a ∈ Fp3. λ(0, T ) ≥ λ(a, T ).

Conjecture 6.3 : “Big Triangulations”Conjecture.
(1) Strong (or Global) Version. If the triangulation T is “big enough”, then the

system (1) has a solution for any a :

∃P > 0. ∀p > P. ∀S ∀T = Tp,r(S) ∀a ∈ Fp3. λ(a, T ) > 0.

(2) Weak (or Local) Version. If, for a given Riemann surface Sg, the triangulation
T = Tp,r(Sg) is “big enough”, then the system (1) has a solution for any a :

∀S. ∃P = P (S) > 0. ∀p > P. ∀T = Tp,r(S). ∀a ∈ Fp3. λ(a, T ) > 0.

Conjecture 6.4 : Local Homogeneity Conjecture. (Cf. the formulae (4).) The
functions θ are positive in the homogeneous case :

∀S ∀T ∀V ′ ⊆ (V \ vp). θ = θ
(
0 |V ′ , t(V ′)

)
> 0.

Mock Conjecture 6.5. The above Local Homogeneity Conjecture implies the Weak
Homogeneity Conjecture (Conjecture 6.1) and is “its real reason and explanation”.

7. Appendix.

.
Heawood’s theorem (Theorem 1.1 above) has an elegant geometric interpretation via

a folding of a planar triangulation into a tetrahedron. This “folding”interpretation [3], [4]
lends itself naturally to a generalization to a n-dimensional case [5] :

(1) Construction 1 : 4C-tetrahedron. Identify the four colours with four vertices
of a 3D simplex; call it the four-colour (4C-) tetrahedron. Then interpret four colouring
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of vertices of a planar triangulation as a mapping of the set of these vertices into the set
of four vertices of the 4C-tetrahedron.

(2) Construction 2 : Extending a Proper Four Colouring to the Tetra-
Colouring. A four colouring of a triangulation is proper iff the above mapping can be
naturally extended to the mapping of the set of edges of the triangulation into the set of
edges of the 4C-tetrahedron, and then to the mapping of the respective sets of faces. Call
such mapping a tetra-colouring of the triangulation.

(3) Heawood’s Theorem : “Only If”. Given a planar triangulation, fix orienta-
tions on it and on the 4C-tetrahedron. Given a proper four-colouring of the triangulation,
construct its tetra-colouring extension and assign to each of the faces of the triangulation
the label +1 or -1, according to whether the tetra-colouring preserves or not the chosen
orientations. We call this labelling a Heawood vector over the triangulation. Then the sum
of the labels of the faces around any vertex is equal to the local multiplicity of the mapping
[28] times 3 (= the number of faces around a vertex in the tetrahedron) : cf. Figure 2.
Thus, this sum is 0 modulo 3 !

Figure 2. A proper four-colouring of a sub-triangulation (on the left), with six
vertices A –F. Four colours are identified with four vertices of the 4C-tetrahedron
(on the right). All edges and faces of the tetrahedron have their numerical labels,
respectively, 1–6 and 1 – 4 (including the sole invisible face labelled 4 ). The
coulouring of vertices of the sub-triangulation induces its mapping on the upper
side of the tetrahedron, with the corresponding labellings of its edges and faces.
The foldings occur along the edges AB, AF, and AC. The local multiplicity of
the mapping at A is equal to +1.

(4) Heawood’s Theorem : “If”. As above, for a given planar triangulation and
the 4C-tetrahedron, fix orientations. Suppose a labelling of the faces of the triangulation
by +1 and -1 is given, with the property that the sum of the labels of the faces around any
vertex is 0 modulo 3, (0 modulo 3 property for short). Choose a pair of faces, one from the
triangulation, another from the 4C-tetrahedron, and map the first face on the second one
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in such a manner that the orientation of the face would be preserved if the face is labelled
by +1, and would be inverted otherwise. Then the 0 modulo 3 property guarantees that
the mapping can be extended in a unique way on all faces of the triangulation defining its
tetra-colouring.

(5) Corollary. Suppose a labelling of the faces of the triangulation by +1 and -1 is
given, satisfying the above 0 modulo 3 property. Then the sum of the labels of all faces
is equal to the global multiplicity of the corresponding tetra-colouring times 4 ( = the
number of faces in the tetrahedron); thus, this sum is 0 modulo 4 [3].

(6) Generalization to the n-dimensional case. Heawood vector can be defined
for any proper (n + 2)-colouring, n ≥ 2, of a graph corresponding to a n -dimensional
simplicial complex T , and the corresponding congruences mod

(
n + 3 − dim(s)

)
can be

conjectured and proved for any simplex s of T , −1 ≤ dim(s) ≤ n+ 1. Here too, as in the
two-dimensional case (Remark 1.3), we work within the most general interpretation of a
n-dimensional simplicial complex [6].
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