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Let T be a triangulation of a Riemann surface, orientable or nonorientable and of an arbitrary genus. Suppose, a labelling of the vertices of T by three labels 0, +1, and -1 is fixed. The present paper deals with the following problem : find the number of labellings of the faces of T by two labels +1 and -1, in such a way that the sum of the labels of the faces around any vertex is equal modulo 3 to the given label of the vertex. If T is a planar triangulation and all labels of vertices are zeros, then the problem of existence of such a labelling of faces is equivalent, according to P. J. Heawood, to the four-colour problem for planar triangulations, and the corresponding counting problem is equivalent to that of counting the number of all proper four-colourings of T .

Dedicated to the memory of Percy John Heawood, 1861 -1955, on the occasion of the first centenary of his seminal paper [START_REF] Heawood | On the four-colour map theorem[END_REF].

Introduction.

During his early days at Durham while he was teaching a class of divinity students mathematics, one of them asked "You have taught us to cast out nines, can you cast out devils ?""Yes, I can," replied Heawood, "get out at once !" [START_REF] Dirac | [END_REF], p. 266 Percy John Heawood has had both the privilege and stamina to almost single-handedly create the field of graph colourings and to actively participate in its developments over a computing at w = - 1 2 the number of solutions of Problem 1.3 (the formula [START_REF] Belaga | On Heawood vectors of pseudotriangulations[END_REF]). It is the present author's hope that this polynomial and other formulae introduced hereby shall prove themselves useful instruments in studying graphs of triangulations. To substantiate these expectations, intensive calculations were carried out; their results will appear elsewhere.

Our graph-theoretical terminology is that of [START_REF]Handbook of Combinatorics[END_REF], with popular notational deviations indicated, and with a couple of our own notations when [START_REF]Handbook of Combinatorics[END_REF] is silent on the subject. As to the topological prerequisites, they can be found in [START_REF] Bloch | A First Course in Geometric Topology and Differential Geometry[END_REF], Chapter III.

Historical Background and Motivations.

The 4C problem has appeared first as a naive enquiry addressed by a student in London, in 1852, to his brother, also a student, who passed the question to his professor of mathematics, Augustus De Morgan. Unable to answer an apparently trivial question, De Morgan circulated it among London mathematicians. Finally, in 1878, Arthur Cayley submitted the problem to the London Mathematical Society.

Within a year, Alfred Bray Kempe has published a simple and elegant solution [START_REF] Kempe | On the geographical problem of the four-colors[END_REF] which satisfied everybody for at least ten years. Then, Percy John Heawood pointed out a fatal flow in Kempe's argument [START_REF] Heawood | Map colour theorem[END_REF] and proposed his own and, for that matter, a very successful programme of studying 4CP and related problems [START_REF] Heawood | Map colour theorem[END_REF], [START_REF] Heawood | On the four-colour map theorem[END_REF] (both, Kempe and Heawood, deal with planar triangulations and colour vertices). As to Kempe's modest attempt, it became just a popular historical anecdote, -or it seemed so to the general mathematical public : cf. any introduction to graph theory published before 1970.

Kempe's approach was reductive, i. e., inductive and local. Heawood's attitude was synthetic, i. e., global and easily lending itself to generalizations to triangulations of arbitrary Riemann surfaces, as in [START_REF] Heawood | Map colour theorem[END_REF], with its map colour formula [START_REF] Ringel | Map Color Theorem[END_REF], or, in a different way, in the present paper.

Ironically, Kempe's faulty proof gave rise to a method [START_REF] Birkhoff | The reducibility of maps[END_REF] which finally produced a computer-assisted solution of 4CP [START_REF] Appel | The four color proof suffices[END_REF], [START_REF] Appel | Every Planar Graph is Four Colorable[END_REF], whereas Heawood's approach, the brilliant offshoots for Riemann surfaces of non-zero genus notwithstanding [START_REF] Ringel | Map Color Theorem[END_REF], is still waiting its successful 4CP realization.

But does it really matter ? Why should somebody bother to find a [START_REF] Heawood | On the four-colour map theorem[END_REF]-inspired solution of 4CP ? We submit here three major reasons, one "negative"and two "positive", why it should be worth one's while to look for a realization in question.

First, there exists a widespread disappointment with the Kempe-inspired solution of 4CP . Attested by the authors of the solution themselves, the disappointment goes deeper than they are willing to admit, and not exactly as suggested in [START_REF] Appel | Every Planar Graph is Four Colorable[END_REF], p. 1 : "One can never rule out the chance that a short proof of the Four-Color Theorem might some day be found, perhaps by the proverbial high-school student. ".

Indeed, the problem is not so much with the "length"or "computerization"of the proof, but with its intelligibility and instructiveness. Here is a more to the point assessment : "Even if the Appel and Haken solution is perfectly correct ... , it is painfully obvious that it is not an adequate solution to the problem. For one thing it fails to explain why four is the final answer. In mathematics a decent proof is at least an explanation why the result is true." [START_REF] Cohen | On the four color problem[END_REF], p. 6.

The authors themselves submit a tentative, very intuitive, and, to our taste, not very convincing a posteriori elucidation of the "number four"mystery, [START_REF] Cohen | On the four color problem[END_REF], pp. 61-62. And even the masterfully written update [START_REF] Thomas | An update on the four-color theorem[END_REF] of the original proof leaves the mystery unresolved.

Second, Heawood's theorem (Theorem 1.1 above) lends itself to a most natural and elegant topological a priori explanation "why"four colours suffice [START_REF] Belaga | A new interpretation of the four-colour problem[END_REF] (cf. Appendix). Sure, there is no guarantee that such an "explanation"can be translated into an edifying proof * . But its existence greatly encourages the search for such a proof.

Third, the generalization of Heawood's modulo 3 interpretation of 4CP to triangulations of arbitrary Riemann surfaces promises to shed a new light into their "arithmetical "structure. In fact, thanks to [START_REF] Appel | Every Planar Graph is Four Colorable[END_REF], we know that, in the planar case, there exists a positive solution of the Problem 1. [START_REF] Belaga | A new interpretation of the four-colour problem[END_REF]. In what non-planar cases does it exists, too, and if not, "why"?

The Counting Formula.

As it was clear already to Heawood [START_REF] Heawood | On the four-colour map theorem[END_REF], Problem 1.3 is about the existence of solutions of a system of linear equations over the Galois field of cardinality three, F 3 , with a nonlinear condition on the unknown variables : only solutions with non-zero components are admitted. Here is the version of Problem 1.3 which will be the formal subject of the present study :

Problem 3.1. Let T = T p,r (S g ) be a triangulation of a Riemann surface S g (orientable or non-orientable) of the genus g, with p vertices, r faces, and let M T be its incidence matrix vertex-face. Suppose the vertices of T are assigned fixed labels a = (a 1 , ..., a p ) from F 3 . We are looking for the number λ(a, T ) of different labellings x = (x 1 , ..., x r ) of the faces of T by the numbers +1 and -1, satisfying the following system of linear equations over F 3 :

M T • x = a; a ∈ (F 3 ) p = A, x ∈ {+1, -1} r = (F * 3 ) r = X . (1) 
Remark 3.2. (1) Notice that, for any a, if

M T • x = a then M T • (-x) = -a.
This implies that λ(a, T ) = λ(-a, T ) and that λ(0, T ) ≥ 0 is even. The case a = 0 will be sometimes referred to as homogeneous.

(2) In particular, when T is a planar triangulation and a = 0, the number 1 2 λ(0, T ) is equal to the number of different proper four-colourings of vertices of T , up to an arbitrary permutation of colours. This fact establishes a link between Problem 3.1 and the 4C problem, of which Problem 3.1 becomes a far reaching generalization.

(3) Notice also that * As Kenneth I. Appel and Wolfgang Haken rightly point out, "But it is also conceivable that no such proof is possible. In this case a new and interesting type of theorem has appeared, one which has no proof of the traditional type." [START_REF] Appel | The four color proof suffices[END_REF] ∀a∈A λ(a, T ) = #X = 2 r .

(2)

Our main result will be a counting formula for λ(a, T ), Theorem 3.4 below. To describe it, we need few standard notations.

Notations 3.3. (1) Let T = T p,r (S g ) = {V, E, F } be a triangulation of a Riemann surface, as above, with, respectively, sets of vertices V , edges E, and faces F ,

V = {v 1 , . . . , v p }, E = {e 1 , . . . , e q }, F = {f 1 , . . . , f r } .
Euler's theorem for graphs on surfaces states that pq + r = 2 -2g, which in the case of a triangulation implies 2q = 3r and

r = 2p + 4g -4 ≥ 2p.
(2) If a vertex v ∈ V belongs, or is adjacent to a face f ∈ F , we shall write v ∈ f . The number α(v) of the faces adjacent to a vertex v is called the degree of v (instead of degree, some use the term valence [START_REF] Ringel | Map Color Theorem[END_REF]). For a subset V of vertices, ∅ ⊆ V ⊆ V , we define its broad neighbourhood complex, or shell for short, t(V ) (respectively, its narrow neighbourhood complex, or core for short, t(V )), as the sub-triangulation of T generated by the sub-sets of faces (f (V ) and f (V ), respectively) which meet at least one (respectively, two) vertices of V .

Since

f (∅) = f (∅) = ∅, we assume that t(∅) = t(∅) = ∅, too.
The terms broad and narrow concur obviously with the inclusions :

f (V ) ⊇ f (V ); t(V ) ⊇ t(V ).
We shall also use the notations

r = α(V ) = #f (V ), s = β(V ) = #f (V ), with r ≥ s and α(V ) = β(V ) = r = #F.
The last α-notation is compatible with the above degree notation :

α(v) = α({v}) = #f ({v}).
(3) We use arithmetical operations over both the ring Z of integers and the Galois field F 3 . When it does not lead to confusion, we use the numbers 0, +1, and -1 as elements of F 3 and the standard arithmetical notations for operations over both integers and the "numbers"0, +1, and -1. Otherwise, the qualifier (mod 3) is added.

Theorem 3.4. Let T be a triangulation of a Riemann surface, as above; let ω = -1 2 . Then the number λ(a, T ) of solutions of the system (1) is given by the following counting formula :

λ(a, T ) = 2 r • 3 -p+1 • ∅⊆V ⊆V \v p ω r • θ a | V , t(V ) = 2 r • 3 -p+1 • 1 + v∈V \v p ω α(v) • θ 1 (a v ) (3) + v,v ∈V \v p ω α({v,v }) • θ 2 a v , a v ; t({v, v }) + . . . ,
where θ a | V , t(V ) are integer functions depending only on the restriction a | V of the vector a to V and on the core t(V ), i. e., on the narrow neighbourhood complex of V (and not on its broad neighbourhood complex t(V ). (The exclusion V \ v p in the above and below, (5), summations is explained below, Theorem 4.1, Assumption 4.3). Note 3.5. (1) The functions θ(. . .) are defined below, Definition 5.3(2), [START_REF] Bouchet | Constructions of covering triangulations with folds[END_REF].They are calculated iteratively, from smaller subsets of vertices (and the corresponding subtriangulations) to bigger ones. The proof of Theorem 3.4 will be given below, §5. A farreaching combinatorial generalization of the above formula and of the narrow dependency property has been announced in [START_REF] Belaga | F 3 -arithmetic over triangulations of Riemann surfaces[END_REF] and will be proved elsewhere.

(2) The main idea behind the formula ( 3) is to re-construct the number λ(a, T ) from numbers of partial solutions of the system (1) : first, one evaluates the numbers of solutions of a void system of equation, then of a one equation of the system, then of two equations, etc. Finally, the functions θ(. . .) are reconstructed (see §5) with the help of Möbius inversion formula [START_REF] Comtet | Advanced Combinatorics[END_REF]. (Compare this including-excluding procedure with that, almost sixty years old, of H. Whitney [START_REF] Whitney | A logical expansion in mathematics[END_REF].)

(3) It is the narrow dependency property that makes the claim (3) nontrivial, its proof rather invloved, and the functions θ(. . .) so interesting invariants of respective subtriangulations. In fact, it is the inclusion-exclusion procedure which "distils"the narrow dependency property from its broad version : cf. Theorem 5.5(2) and Remark 5.6.

(4) To give the first inkling of the structure of the summation formula (3), let us compute its lowest terms. The first summand in (3) is the ∅-approximation of λ(a, T ). To calculate it, denote by A 0 the hyperplane of the vector space A (1) cut off by the equation

a 1 + . . . + a p = 0.
According to Theorem 4.1 below, the system (1) has no solutions if a / ∈ A 0 . Thus, according to (2),

λ 0 (a, T ) = #X #A 0 = 2 r • 3 -p+1
is the average number of solutions when a is varied and T is fixed (in contradistinction to the way, in a similar context, the average is defined in [START_REF] Tutte | On the enumeration of four-colored maps[END_REF]).

(5) Restricting ourselves to ∅and one-vertex-approximations, we take into account the impact of vertices and their neighbourhoods on λ(a, T ), but disregard the influence of edges and more complicated sub-graphs of T , etc.

(6) Proceeding in this way, we calculate, for example :

θ 0 = θ a | ∅ , t(∅) = 1; θ 1 (ξ) = θ 1 (a j ) | a j =ξ = θ a | {v j } , t({v j }) = 2 -3 • ξ 2 ; θ 2 (ξ, η) = . . . = θ 1 (ξ) • θ 1 (η) + 3 • θ 1 (ξ -η), if {v j , v k }is an edge in T ; θ 1 (ξ) • θ 1 (η), otherwise. (4) 
The above formula for θ 2 (ξ, η) is "weakly multiplicative ". This property of functions θ is the subject of Theorem 5.5(3).

(7) Note that the above "small"coefficients θ(. . .) are positive when a = 0 (which, in particular, is the case of 4CP for planar triangulations). This phenomenon, which can be verified for #V = 3, 4 as well, remains an enigma : cf. Conjecture 6.4 below.

Definition 3.6. Let T be a triangulation of a Riemann surface, as above. Assign to each face f j a formal variable w j , 1 ≤ j ≤ r. Proceeding from the formula (3), define the polynomial

L(W ; a, T ) = ∅⊆V ⊆V \v p θ a | V , t(V ) • f j ∈ f (V ) w j , (5) 
We also define

L(w; a, T ) = L(W ; a, T ) | w 1 =...=w r =w so that, obviously, λ(a, T ) = 2 r • 3 -p+1 • L(-1 2 ; a, T ). ( 6 
)
4. Rank of the Incidence Matrix.

Let M T be the incidence vertex-face matrix of a triangulation T of a Riemann surface S, as above, Problem 3.1. Attempting to solve the system (1), one has first to eliminate one trivial obstruction : Theorem 4.1. (In the planar case, g = 0, [START_REF] Heawood | On the four-colour map theorem[END_REF]; for Riemann surfaces of arbitrary genus g ≥ 0, [START_REF] Belaga | On Heawood vectors of pseudotriangulations[END_REF]).

(1) Since each face of M T is a triangle, all but three entries of any column of M T are zeros. This means that the sum of all rows of M T is zero in F r 3 ,

1 p × M T = 0 r
which implies : (a) the system (1) has no solutions if the free-term vector a does not belong to A 0 (cf. Note 3.5(4)) :

(1 p , a) = 0 =⇒ ∀x ∈ X. M T • x = a;

(b) the inequality holds :

rank F 3 (M T ) ≤ p -1.
(2) If rank F 3 (M T ) = p -1, then, according to the inequality (Euler's formula, cf. (3) The inequality holds :

rank F 3 (M T ) ≥ p -2. ( 4 
)
The following two properties are equivalent :

(i) rank F 3 (M T ) = p -2 ,
(ii) the triangulation T has a proper three-colouring of its vertices; such a colouring is unique up to a permutation of the colours.

Note 4.2. In the planar case, g = 0, the above two properties are equivalent to the third one : a proper three-colouring exists iff all vertices of T have even degrees, see Theorem 1.4 above. Two examples of triangulations of a torus, Figure 1, with all vertices of even degrees, and with the chromatic numbers 5 and 7, respectively, demonstrate that in the case g > 0 the "if"condition ceases to be true. A,P,b,c,d,e , all of even degree (respectively, 4, 8, 6, 6, 6, 6) , which is not three-colourable (cf. Theorem 1.4). Albeit there exists (as displayed on the diagramme above) a ±1 labelling of faces of the triangulation with sums around vertices equal to 0 modulo 3, it is not four-but five-colourable (cf. Theorem 1.1).

Lemma 5.2. The function λ(a, V ) has integer values and substantially depends only on (this means : is completely determined by) the sub-vector a | V and the shell t(V ) of V in T 0 .

Proof. The values x j corresponding to those faces f j which are not adjacent to one of the vertices of V , do not contribute to the summation and can be chosen arbitrary. The number of such faces is rr .

Instead of λ(a, V ), we shall sometimes use the explicit notations λ a | V , t(V ) . Definition 5.3. ( 1) For any a ∈ A 0 and any V , ∅ ⊆ V ⊆ V 0 , define the function

ζ(a, V ) = ζ a | V , t(V )
inductively, as follows :

ζ(a, ∅) = 1; ∀V , ∅ = V ⊆ V 0 . ζ(a, V ) = 2 -r • 3 p • λ a | V , t(V ) - ∅⊆V ⊆V ζ a | V , t(V ) . (9) 
(2) For any a ∈ A 0 and any V , ∅ ⊆ V ⊆ V 0 , define the function θ(a, V ), as follows :

θ(a, V ) = θ a | V , t(V ) = (-2) -r • ζ a | V , t(V ) ; ζ(a, V ) = ω r • θ(a, V ), where ω = - 1 2 . (10) Lemma 5.4. 
(1) According to [START_REF] Birkhoff | The reducibility of maps[END_REF], for any V , ∅ ⊆ V ⊆ V 0 , one has, tautologically,

λ(a, V ) = 2 r • 3 -p • ∅⊆V ⊆V ζ(a, V ).
(2) Applying Möbius inversion formula [START_REF] Comtet | Advanced Combinatorics[END_REF], we have :

ζ(a, V ) = ∅⊆V ⊆V (-1) p -p • 2 -r • 3 p • λ(a, V ). (11) 
(3) Thus (cf. ( 8)),

λ(a, V ) = 2 r • 3 -p • ∅⊆V ⊆V ω r • θ(a, V ), λ(a, V ) = 2 r • 3 -p • ∅⊆V ⊆V ω r • θ(a, V ).
Theorem 5.5. (1) The functions θ(. . .) defined in [START_REF] Bloch | A First Course in Geometric Topology and Differential Geometry[END_REF] are integer-valued.

(2) These functions substantially depend only on the sub-vector a | V and the core t(V ) of V in T 0 (and not on the shell, as in ( 9), [START_REF] Bloch | A First Course in Geometric Topology and Differential Geometry[END_REF]) :

θ(a, V ) = θ a | V , t(V ) .
(3) The functions λ(. . .) (8) and θ(. . .) [START_REF] Bloch | A First Course in Geometric Topology and Differential Geometry[END_REF] are weakly multiplicative, in the following sense :

∀V , V (∅ ⊆ V , V ⊆ V 0 ). t(V ) ∩ t(V ) = ∅ =⇒ λ(a, V ∪ V ) = λ(a, V ) • λ(V ), θ(a, V ∪ V ) = θ(a, V ) • θ(V ).
(The low part of the formula for θ 2 in (4) is a special case of the general formula for

θ(a, V ∪ V ), when #V = #V = 1 and #(V ∪ V ) = 2.) (4) Let ∅ ⊆ V ⊆ V ⊆ V 0 , V = {v i 1 , . . . , v i p }, 1 ≤ i 1 < i 2 < . . . < i p ≤ p -1.
Then

α=(α 1 ,...,α p )∈F p 3 λ(a | a i 1 =α 1 ,...,a i p =α p , V ) = 2 d • λ(a, V \ V ), d = # f (V ) \ f (V \ V ) . (5) Let ∅ ⊆ V , V ⊆ V 0 , V ∩ V = ∅, V = {v i 1 , . . . , v i p }, 1 ≤ i 1 < i 2 < . . . < i p ≤ p -1.
Then

α=(α 1 ,...,α p )∈F p 3 λ(a | a i 1 =α 1 ,...,a i p =α p , V ) = 3 p • λ(a, V ) (6) Respectively, ∀k, 1 ≤ k ≤ p . α∈F 3 θ(a, V ) | a i k =α = θ(a, V ) | a i k =0 +θ(a, V ) | a i k =1 +θ(a, V ) | a i k =-1 = 0.
Remark 5.6. Whereas the claims (1), ( 3), (5) of the above theorem can be proved relatively easily, as simple formal corollaries of Definitions 5.1, 5.3, the proofs of the statements (4), ( 6) are less evident, and that of the statement (2) is definitely more involved. (It will be given elsewhere.) This is because the property of "narrow dependency "is neither true for the functions λ(. . .), no can it be imposed in a straightforward manner. In fact, it is the inclusion-exclusion procedure (9), [START_REF] Bloch | A First Course in Geometric Topology and Differential Geometry[END_REF] which "distils "the narrow dependency property from its broad brand of Lemma 5.2; cf. Note 3.5(3).

Enquiries and Conjectures.

Calculations, both theoretical and based on examples, with respect to the Problem 1.2, suggest several conjectures concerning the system (1) and the counting function λ(a, T ). Three of these conjectures, if true, imply the positive answer to 4CP . The logic of justification of theses conjectures and the insights involved therein are rather intricate, and are somewhat similar to those explicated in [START_REF] Cohen | On the four color problem[END_REF] with respect to a version of the proof [START_REF] Appel | Every Planar Graph is Four Colorable[END_REF] of 4CP .

Conjecture 6.1 : Weak Homogeneity Conjecture. In the homogeneous case, a = 0, the counting function λ is positive : ∀S ∀T. λ(0, T ) > 0 Conjecture 6.2 : Strong Homogeneity Conjecture. The counting function λ(a, T ) attains its maximum in the homogeneous case, a = 0 : ∀S ∀T ∀a ∈ F p 3 . λ(0, T ) ≥ λ(a, T ). Conjecture 6.3 : "Big Triangulations"Conjecture.

(1) Strong (or Global) Version. If the triangulation T is "big enough", then the system (1) has a solution for any a : ∃P > 0. ∀p > P. ∀S ∀T = T p,r (S) ∀a ∈ F p 3 . λ(a, T ) > 0.

(2) Weak (or Local) Version. If, for a given Riemann surface S g , the triangulation T = T p,r (S g ) is "big enough", then the system (1) has a solution for any a :

∀S. ∃P = P (S) > 0. ∀p > P. ∀T = T p,r (S). ∀a ∈ F p 3 . λ(a, T ) > 0. Conjecture 6.4 : Local Homogeneity Conjecture. (Cf. the formulae (4).) The functions θ are positive in the homogeneous case :

∀S ∀T ∀V ⊆ (V \ v p ). θ = θ 0 | V , t(V ) > 0.
Mock Conjecture 6.5. The above Local Homogeneity Conjecture implies the Weak Homogeneity Conjecture (Conjecture 6.1) and is "its real reason and explanation". 7. Appendix. . Heawood's theorem (Theorem 1.1 above) has an elegant geometric interpretation via a folding of a planar triangulation into a tetrahedron. This "folding"interpretation [START_REF] Belaga | A new interpretation of the four-colour problem[END_REF], [START_REF] Belaga | Arithmetic of colorings of planar graphs[END_REF] lends itself naturally to a generalization to a n-dimensional case [START_REF] Belaga | On coloring the graph of a triangulation of an n-sphere[END_REF] :

(1) Construction 1 : 4C-tetrahedron. Identify the four colours with four vertices of a 3D simplex; call it the four-colour (4C-) tetrahedron. Then interpret four colouring of vertices of a planar triangulation as a mapping of the set of these vertices into the set of four vertices of the 4C-tetrahedron.

(2) Construction 2 : Extending a Proper Four Colouring to the Tetra-Colouring. A four colouring of a triangulation is proper iff the above mapping can be naturally extended to the mapping of the set of edges of the triangulation into the set of edges of the 4C-tetrahedron, and then to the mapping of the respective sets of faces. Call such mapping a tetra-colouring of the triangulation.

(3) Heawood's Theorem : "Only If ". Given a planar triangulation, fix orientations on it and on the 4C-tetrahedron. Given a proper four-colouring of the triangulation, construct its tetra-colouring extension and assign to each of the faces of the triangulation the label +1 or -1, according to whether the tetra-colouring preserves or not the chosen orientations. We call this labelling a Heawood vector over the triangulation. Then the sum of the labels of the faces around any vertex is equal to the local multiplicity of the mapping [START_REF] Wolf | Spaces of Constant Curvature[END_REF] times 3 (= the number of faces around a vertex in the tetrahedron) : cf. Figure 2. Thus, this sum is 0 modulo 3 ! Figure 2. A proper four-colouring of a sub-triangulation (on the left), with six vertices A -F. Four colours are identified with four vertices of the 4C-tetrahedron (on the right). All edges and faces of the tetrahedron have their numerical labels, respectively, 1-6 and 1 -4 (including the sole invisible face labelled 4 ). The coulouring of vertices of the sub-triangulation induces its mapping on the upper side of the tetrahedron, with the corresponding labellings of its edges and faces. The foldings occur along the edges AB, AF, and AC. The local multiplicity of the mapping at A is equal to +1.

(4) Heawood's Theorem : "If ". As above, for a given planar triangulation and the 4C-tetrahedron, fix orientations. Suppose a labelling of the faces of the triangulation by +1 and -1 is given, with the property that the sum of the labels of the faces around any vertex is 0 modulo 3, (0 modulo 3 property for short). Choose a pair of faces, one from the triangulation, another from the 4C-tetrahedron, and map the first face on the second one in such a manner that the orientation of the face would be preserved if the face is labelled by +1, and would be inverted otherwise. Then the 0 modulo 3 property guarantees that the mapping can be extended in a unique way on all faces of the triangulation defining its tetra-colouring.

(5) Corollary. Suppose a labelling of the faces of the triangulation by +1 and -1 is given, satisfying the above 0 modulo 3 property. Then the sum of the labels of all faces is equal to the global multiplicity of the corresponding tetra-colouring times 4 ( = the number of faces in the tetrahedron); thus, this sum is 0 modulo 4 [START_REF] Belaga | A new interpretation of the four-colour problem[END_REF].

(6) Generalization to the n-dimensional case. Heawood vector can be defined for any proper (n + 2)-colouring, n ≥ 2, of a graph corresponding to a n -dimensional simplicial complex T , and the corresponding congruences mod n + 3dim(s) can be conjectured and proved for any simplex s of T , -1 ≤ dim(s) ≤ n + 1. Here too, as in the two-dimensional case (Remark 1.3), we work within the most general interpretation of a n-dimensional simplicial complex [START_REF] Belaga | On Heawood vectors of pseudotriangulations[END_REF].

  Notations 3.3(1)) r = 2p + 4g -4 ≥ 2p, any ((p -1) × r)-sub-matrix of M T has the rank p -1.

Figure 1 .

 1 Figure 1. Left. Triangulation of a torus with six vertices, A, P, b,c, d, e, all of even degree (respectively, 4, 8, 6, 6, 6, 6) , which is not three-colourable (cf. Theorem 1.4). Albeit there exists (as displayed on the diagramme above) a ±1 labelling of faces of the triangulation with sums around vertices equal to 0 modulo 3, it is not four-but five-colourable (cf. Theorem 1.1).

  

Right. Triangulation of a torus with seven vertices, A, P, Q, b, c, d, e , all of even degree (respectively, [START_REF] Bloch | A First Course in Geometric Topology and Differential Geometry[END_REF][START_REF] Biggs | Graph Theory : 1736 -1936[END_REF][START_REF] Biggs | Graph Theory : 1736 -1936[END_REF][START_REF] Belaga | Arithmetic of colorings of planar graphs[END_REF][START_REF] Belaga | Arithmetic of colorings of planar graphs[END_REF][START_REF] Belaga | Arithmetic of colorings of planar graphs[END_REF][START_REF] Belaga | Arithmetic of colorings of planar graphs[END_REF], with a ±1 labelling of faces having the above 0 modulo 3 property. The sub-graph of this triangulation with seven vertices and double-lined edges is the complete graph K 7 ; thus, the triangulation is seven-colourable. Assumption 4. [START_REF] Belaga | A new interpretation of the four-colour problem[END_REF]. In what follows, we assume (without much loss of generality, according to Theorem 4.1(4)) that

Thus, one of the equations of the system (1) can be disregarded, and according to Theorem 4.1(2), it can be any of the equations; in what follows, it will be the equation corresponding to the vertex v p . This fact accounts for the exclusion V \ v p in the summations (3) and (5).

Partial Counting Functions and Formulae.

Henceforth, the triangulation T is fixed and does not appear in the notations of objects associated with it. Removing from T the vertex v p , one gets the (sub-)triangulation T 0 with the set of vertices V 0 = V \v p . Replace now the system (1) with its truncated version,

with the ((p -1) × r) matrix M 0 being the sub-matrix of the incidence vertex-face matrix M T , as above, whose last row (corresponding to v p ) is omitted.

As it was suggested above (Note 3.5(2)), along with the system [START_REF] Belaga | F 3 -arithmetic over triangulations of Riemann surfaces[END_REF], one needs to study all its sub-systems : Definition 5.1. For any a ∈ A 0 and any subset V of V 0 , ∅ ⊆ V ⊆ V 0 , define the functions λ(a, V ) and λ(a, V ) as follows :

(i) either V = ∅, and then λ(a, ∅)

and then (Notations 3.3)

λ(a, V ) = 2 r-r • λ(a, V ), where r = #f (V ) .