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Abstract. We customize here, for the purposes of precomputed and interac-
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1. Introduction

This paper is a part of our programme [3-5] to bridge the gap between, on the one hand,
computer animation heuristics (such as the popular 2D deformation morphing, or the less
known space-time deformation method) and, on the other hand, computer visualization
artifacts built around strict mathematical methods and theorems (such as sphere eversions
[10], or 3D and 4D immersions of Klein bottle [6]). The purpose of the present paper is
triple.

First, and foremost, it attempts to customize, for the needs of Computer Animation,
some methods of differential topology related to Cobordism Theory. Cobordism, inter-
preted here as deformation, is a more powerful and versatile tool than any other type of
topological deformation acquired up to date in Computer Graphics. Its main, and novel,
feature is its shapewise character, in contradistinction to known pointwise deformations
which trace the deformation of a shape by tracing the destination of every one of its indi-
vidual points. The ensuing broadening of the visualization panorama leads to the concept
of virtual, or implicit animation, as an intrinsically defined deformation which, to become
“real”animation, needs to be subsequently visualized on a “screen”, by its sinking into a
visualizable ambient space.

Second, and in the opposite direction, the paper intends to make manifest deep math-
ematical intuitions hidden, all unknowingly even to their inventors, behind the facade of
some animation heuristics, – with the subsequent goal to either shore up these heuris-
tics with new rigorous technical means, or even to completely incorporate them, on the
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theoretical level, into a corresponding mathematical framework.

Finally, our third goal is to expose some mathematical problems arising from attempts
to interpret, explain, and rigorously justify needs of, and related experimental phenomena
observed in, Computer Animation.

2. Cobordism as a Deformation

Figure 1 demonstrates that two isomorphic objects (cf. the sign ≈ between two
adjacent shapes) could create quite different, if not outright opposite, visual impressions.
Hence, one of the primary concerns of Topology is the problem of recognizing when shapes
( in topological parlance, manifolds) “looking”differently are really different or, in fact, are
“the same”, or equivalent.

Figure 1. Visual versus topological equivalences; the picture is borrowed from [9].

To this end, a whole gamut of equivalence notions has been created, from isomorphic
(diffeomorphic or homeomorphic) to cobordant to homotopic, together with corresponding
sets of tools for deciding when two manifolds are homeomorphic, diffeomorphic, cobor-
dant, etc. [7]. Some of these equivalence notions are explicitly defined deformations
(homeotopies, isotopies, immersions) well-known in Computer Visualization [6]. Not so
with cobordism which, by definition, is a manifold with two “brims”(see Figure 2 (Left)
and §3), not a deformation.

However, any cobordism can be interpreted as an implicit deformation, since it can
be always supplied by a suitable Morse function [7] which cuts it into “slices”(cf. Figure 2
(Left)), in such a way that :

(i) the two outermost slices are the brims themselves;

(ii) the Morse function interpreted as time, the cobordism becomes a reversible de-
formation (i. e., a 1D–dimensional collection of slices) of one of its brims into the second
one.

Cobordism surpasses in its versatility other types of topological deformations. Thus,
for example, a circle is cobordant, but neither isotopic, nor homotopic to two disjoint
circles : cf. Figure 2 (Left). In this case, the deformation transforms the circle into the

2



      

Figure 2. Left: A circle is cobordant to two circles.
Right: A circle is homotopic but neither isotopic, nor cobordant to a point.

figure of eight, and then separates two circles by splitting their joint into two points. It is
this splitting that is iso– and homotopically unavailable.

The versatility of cobordism as deformation is a by-product of its another attractive
and important quality. By contrast with other known topological deformations which could
be described as pointwise, cobordism is a shapewise, or pointless, deformation which does
not trace the trajectories of individual points of shapes : see for details §§3, 7.

Finally, in the most important for Computer Graphics interval of dimensions, 1 ≤
dim ≤ 4, the cobordism deformation technique has the advantage of theoretical predictabil-
ity : given two manifolds of the same dimension, M0 and M1, one can, at least theoretically,
decide whether there exists a cobordism deforming M0 into M1. An efficient construction
of such a cobordism is another matter : see for details §§5, 7.

We work here with only smooth cobordisms which generate deformations without,
or with only a finite number of isolated non-degenerated singularities. This restriction is
important : folding and shrinking (Figure 2 (Right) : a circle is homotopic but neither
isotopic, nor cobordant to a point) are, for example, out of reach for smooth cobordisms.
And so are all deformations producing shapes with singular curves, as in the case of Figure
3, where a torus detaches itself from a plane through a circle (see for details §6).

Cobordisms with singularities [14], which are the subject of our forthcoming paper
[5], are powerful enough to imitate deformations with isolated singular sub-manifolds
(see for details §§6, 7). Still, even such cobordisms cannot be held accountable for all
“meaningful”piecewise-smooth deformations emerging in Computer Animation.

The truth is, a “realistic”animation scenario might involve such complicated self-
intersections, foldings, and other “wild”singularities, that it becomes impossible to for-
mally and exhaustively treat it with any available to date topological methods, cobordisms
included (see for details §7).
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3. Theory of Cobordismswithout Singularities at Glance :
BasicDefinitions

To be more (topologically) specific, manifold X will mean throughout the paper a
compact, smooth, orientable or non-orientable n–dimensional (nD, for short; n ≥ 1) man-
ifold, with boundaries, ∂X = Y 6= ∅, dimY = dimX − 1, or without boundaries (closed
manifold), ∂X = ∅.

Thus, the left (respectively, right) brim of the cobordism of Figure 2 (Left) is a com-
pact, smooth, closed orientable 1D manifold with one (respectively, two) component(s).
Smoothness of a manifold is permitted to be disrupted by a finite number of isolated
non-degenerate singularities.

Two smooth closed manifolds M0 = Mn
0 , M1 = Mn

1 of the same dimension n are
cobordant, if their disjoint union is diffeomorphic to the boundary of a compact smooth
manifold M = Mn+1, called cobordism :

M0 ∪M1
∼= ∂M.

If M0 , M1 are cobordant, then there exists on M a Morse function f , such that

f : M → [0, 1], f(M0) = 0, f(M1) = 1.

Since (by definition of Morse function) f has neither degenerate singularities, nor critical
multiple values, all “slices”

Mt = f−1(t), 0 ≤ t ≤ 1,

of the manifold M are smooth (sub-)manifolds, with the possible exception of a finite
number of slices Mtk with a single non-degenerate singularity corresponding to a critical
value t, 0 < t1 < ... < tr < 1.

Defintion : Cobordism as a Shapewise, or Implicit, Deformation.
(1) We interpret the one-parameter family

{Mt, 0 ≤ t ≤ 1}

as a shapewise (or pointless) deformation of M0 into M1 which does not, and has no
standard intrinsic means to, trace the trajectories of individual points of shapes.

(2) Compare this deformation to pointwise deformation of, say, isotopy [7]. A shape-
wise deformation achieves the similarity of neighbouring shapes Mt and Mt+ε not because
of the proximity in Mt+ε of images of proximate points in Mt, but because of the proximity
of two shapes in the ambient manifold M of the cobordism.

4. Virtual, or Implicit, Animation Paradigm

Traditionally, a computer animation scenario is understood as a continuous, tempo-
rally arranged collection of deformations of a (typically, but not necessary, 2D) shape
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“floating”in an ambient (typically, 3D) space. In the light of the cobordism deformation
techniques, this vision lends itself to the following far reaching generalization :

Virtual, or Implicit, Animation Paradigm : Pulling a Source into a Target
along a Deformation Scene.

(1) The topological formalism and problem. Given two intrinsically or extrinsi-
cally defined manifolds S and T (called source and target), and a manifold M , (called de-
formation scene), with two sub-manifolds Sr, Tr ⊂M (called source and target receivers),
find

(i) immersions
g : S =⇒ Sr;h : T =⇒ Tr;

(ii) and a deformation deform, carrying (or, if one prefers, pulling) the embedded
source S′ = g(S) ⊆ Sr into the embedded target T ′ = h(T ) ⊆ Tr through (respectively,
along) M .

A cobordism–related solution of this problem in low (one to four ) dimensions is
discussed in §5. See below Claim : Virtual Animations are Cobordisms.

(2) Visually explicit deformations. The collection B of all shapes created by
deform on its way from S′ to T ′, these two shapes including, is called deformation body.
The deformation is visually explicit if the source, target, and deformation scene are defined
as manifolds in an ambient “screen”space Rn. An heuristically created sample of a visually
explicit deformation [1] is discussed below, §6.

(3) The visualization stage of the paradigm. Suppose the mathematical part of
the problem has been successfully resolved. If the constructed deformation is not visually
explicit, one needs to meaningfully visualize S, T , M , Sr, Tr, g, h, deform, B, by sinking
them into an ambient “screen”space, with the whole gamut of options, from pure theoretical
observations to computer implementation.

Claim : Virtual Animations are Cobordisms. Any virtual animation carrying
a shape S into a shape T , can be viewed as a cobordism supplied with a Morse function
induced by the animation. And vice versa, a pair (cobordism, Morse function), with the
brims of the cobordism “cut off”, respectively, by the values 0 and 1 of the Morse function,
gives rise to a virtual animation carrying the shape of the 0–brim into the shape of the
1–brim.

5. Theory of Cobordisms without Singularities at Glance :
Problem of Cobordants

In the formal framework of Cobordism Theory, realization of the above Virtual Ani-
mation Paradigm becomes

Problem of Cobordants. Given two shapes (compact, smooth, closed manifolds)
M0 and M1, determine whether they are cobordant. If the answer is positive, find the
cobordism, its Morse function, and the corresponding shapewise deformation.

If dim(M0) = dim(M1) ≥ 5, no general answer to the problem is known, apart from
a beautiful reduction of this “differentiable”problem to the open combinatorial problem of
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computing homotopy groups of the manifold [7], [11].

Fortunately for us, visualizing mostly one- to four-dimensional shapes [2], the solution
of the problem of cobordants in the dimensions below 5 is at a much more advanced stage.

Problem of Cobordants in Low Dimensions.

dim = 1. 1D manifolds without boundaries are finite collections of disjoint circles, the
number of circles (components of the manifold) being the only and full characteristics (or
invariant) of a 1D manifold [7]. Why two different 1D manifolds are cobordant, and how
to build their cobordism, with an associated Morse function, can be easily surmised from
Figure 2 (Left), where a circle is demonstrated to be cobordant to two circles.

dim = 2. A compact, smooth, closed surface is either orientable, – and then diffeo-
porphic to the sphere S2 with a finite number of handles, or non-orientable, – and then
diffeomorphic to the projective plane RP 2 with a finite number of handles [7]. It is not
difficult to see, extending the device of Figure 2 (Left) to the two-dimensional case, why
any two orientable (respectively, non-orientable) surfaces are cobordant, and how to ef-
fectively build a cobordism and an associated Morse function which attaches (or, in the
opposite direction, removes) a new handle. On the other hand, RP 2 is not cobordant to
S2, and any deformation of RP 2 into S2, and vice versa, necessarily passes by a stage with
a “wild”singularity.

dim = 3. Using complicated and tricky geometry, Vladimir Rokhlin has proved in
1951 that any two 3D compact, smooth, closed manifolds are cobordant [7], [12]. The
problem of effective procedure for this and the following, dim = 4, existence theorem is
discussed below, §7.

dim = 4. Orientable case (Rokhlin, 1952 [8], [13]). There exists an infinite series of 4D
compact, smooth, closed, orientable manifolds without boundaries which are mutually not
cobordant [8], with any other 4D manifold of this type being cobordant to some manifold
from the series.

6. Space-Time Deformations and Cobordisms

Two known heuristic deformation techniques,morphing and space-time deformation
method), incorporate, unknowingly to their inventors, some features of the above defor-
mation scheme. We illustrate here, on the example of the space-time deformation method,
or STDM [1], why and how these popular heuristic animation models might benefit from
an “infusion”of cobordisms-related methods.

The central idea of STDM is to see as the principal object of study and manipula-
tion not a shape by itself but its image in the space-time or, in our terminology, §4, its
deformation body. Take first the space-time image of a motionless shape M sinked into an
ambient space Rn, n = dim(M) + 2. This image is the cylinder M × I, with I being the
time interval, I = [0, 1]. Start to deform M × I in Rn, in one or another acceptable way.
The time cross-sections of the deformed cylinder generate a continuous transformation of
M .

One immediately recognizes in the STDM strategy some formal components of the
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above definitions of cobordism, §3, and virtual animation, §4. Since STDM does not care
about singularities (cf. the “flying”torus of Figure 3), its adequate interpretation would
need cobordisms with singularities.

Figure 3. A STDM deformation with a singular circle; the picture is borrowed from [1].

On the other hand, from a theoretical point of view, STDM , being a particular
case of what is called above visually explicit deformation is considerably weaker than
the cobordism deformation method. As a result, STDM lacks theoretical predictability of
cobordism deformations, §§3, 7. The last drawback is typical for other heuristic techniques
as well. It considerably restricts the purposefulness of the search for new non-trivial
artifacts : in many interesting cases, such artifacts are “stumbled upon”almost accidentally.

7. Open Mathematical Tool-Box

In this section, we list open problems suggested by the above exposition of the cobor-
dism deformation method.

Problem 1. (Cf. the remark at the end of §2.) Is there a more general than cobordism
topological concept of deformation, suitable for the needs of Computer Visualization ? The
question is neither intuitively straightforward, nor easy. We address it our forthcoming
paper [5].

Problem 2. (Cf. §3, Defintion of spacewise deformations.) Is there a “natu-
ral”parametrization of a cobordism transforming it into a pointwise deformation ? Such a
parametrization should handle splitting of points and of sub-manifolds, as it is clear from
Figure 2 (Left) and the related remark in §2.

Problem 3. (Cf. the remarks at the end of §2 and §7.) Is there an extension of
Smooth Cobordism Theory to manifolds with “wild”singularities, suitable for the needs of
Computer Visualization ? The answer is yes : cobordisms with singularities are studied
since the late sixties [14]. Unfortunately, the theory in question, as it stands now, is built
in a too abstract setting to be easily exposed and applied in Computer Visualization [5].

Problem 4. (Cf. §5, Problem of Cobordants in Low Dimensions, dim = 2, and §6.)
In particular, is there a 2D theory of cobordisms with singularities which could effectively
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simulate deformation of surfaces with “wild”singularities ? The answer is yes : see for
details our forthcoming paper [5].

Problem 5. (Cf. §5, Problem of Cobordants in Low Dimensions, dim = 3, 4.) Is
there an algorithmic procedure which, for a given pair of 3D (respectively, 4D) manifolds,
can effectively decide whether they are cobordant or not ? The difficulty of the problem is
apparent from the pioneering work [9]. There is a hope that Rokhlin’s pure geometric and
semi-constructive proof [12] can be made fully constructive. This direction is especially
promising for Computer Visualization, since any progress here depends on, and seems
likely to considerably improve, our techniques of modelling and manipulating 3D and 4D
manifolds.
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