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Energy decay rate of wave equations
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Abstract.  We consider the one-dimensional wave equation with an
indefinite sign damping and a zero order potential term. Using a shooting
method, we establish the asymptotic expansion of eigenvalues and eigenvectors
of the damped wave equation for a large class of coefficients. In addition, if
the damping coefficient is "more positive than negative”, we prove that the
energy of system decays uniformly exponentially to zero. This sharp result
generalizes a previous work of Freitas and Zuazua (1996).

Key words. indefinite damping, spectrum expansion, Riesz basis, expo-
nential decay rate.
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1. Introduction. We consider the Dirichlet problem of one-dimensional
wave equation with an indefinite viscous damping:

Yt — Yoo + 2€ay; + by = 0, 0<az<l,
(1.1) y(0,t) =y(1,¢) =0, Vt>0
y(z,0) = yo(z), wye(z,0) = 20(x)

where the variable coefficient a is allowed to change sign. Our goal is to
investigate the energy decay rate of the solution, if the coefficient a is assumed
to be "more positive than negative”, a conjecture put forward by Chen et al.
in [2].

We know that if @ is nonnegative and strictly positive on some subinterval
of [0,1], the energy of the solution of the equation (1.1) decays uniformly
exponentially to zero as ¢t goes to infinity (see Bardos et al. [1] and Chen et
al. [2]). Recently, Freitas and Zuazua [6] established the uniform stability in
the case of indefinite sign.



Now we define the linear unbounded operator A€ in the space Hj(0,1) x
L?(0,1) as follows :

(1.2) A= (a O_b 2;), D(A®) = (H*(0,1) N Hy(0,1)) x Hy(0,1).

Let v, be an eigenvalue of the operator (0y; — b), and v, be the associated
normalized eigenfunction in L?(0,1). In [5] Freitas proved that if e > 0 is
small enough, the following conditions are necessary for the stability of the
equation (1.1) :

(Ch) 0>y 272> 29 = —00,

1
(Cy) I, = / a(z)vi(z)dz > co > 0, Vn > 1.
0

Later on Freitas and Zuazua [6] established the uniform energy decay rate
in the case where a« € BV(0,1) and b = 0 for € > 0 small enough. Their
proof is based on a shooting method developed by Cox and Zuazua [4] for the
wave equation. But in the absence of an adequate ansatz for the asymptotic
expansion, the problem remained open in the general case, even when b is a
constant.

In this work, we will establish the exponential stability in the case where
a € BV(0,1) and b € L'(0,1) for € > 0 small enough. We will employ a
shooting method used in Rao [10] for the Rayleigh’s beam equation. This
approach consists in constructing, without any a priori ansatz, an explicit
approximation of the characteristic equation of the underlying system. In
sections 2, 3 we establish the asymptotic expansion of the eigenvalue Ay, :

1
1
(1.3) A = —e/ a(z)dx £inm + (1 + 6)0R<—>
o n
where Ogr(&) ~ € is a real number. Section 4 is devoted to a detailed study of
the system of eigenvectors. We first determine the number of eigenvalues of low
frequency. Next we prove that the system of eigenvectors of A€ is equivalent

to the usual orthonormal basis of the energy space H}(0,1) x L%(0,1).
Finally recall that the general one-dimensional damped wave equation

(1.4) pyut — (oY), + 2eay; + by =0

can be reduced into the form (1.1) by the change of z-variable and the unknown
y. Therefore under suitable conditions on the coefficients p, o, a,b, we can
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establish the uniform stability of the general one-dimensional damped wave
equation (1.4) without any difficulty.

2. A special case. In this section we consider the special case where
b is a constant. From the condition (C), we notice that —~,, = n?m? +b >
724+ b>0foralln > 1. Forall n > 1 we define u4, by the equation :

1
(2.1) /p?,, + b+ eag = Linw where Re pa, <0, a9 = / a(s)ds.
0

From the condition (C3), we have ag > 0. Then Re p4, < 0 implies that
Im pp >0and Im p_, < 0. It follows that

|Min — (eag F i1/ n?n? —I—b)‘ > ‘Im Ptn T V/n2r? —I—b‘ > \/n2r2 +b.

A direct computation gives that

,uin—(eao Fivn?n? + b)2 = (Min‘|‘b)_(€a0 ZFinW)ZZFZieao(\/ n?n? +b—nm).

Using (2.1), it follows that

(2.3) ‘/,thn — (eap Fiv/n?w? 4+ b)z‘ =

‘ 2eagbt 26HaHoo|b|
nw + vn2r2 + nw

Combining (2.2) and (2.3) we get :

2 b C
2.4 4+n + €ag Fivn?n? +b| < ellal] ||:=6 L
,u v/
nmw

In particular, for 0 < € < 1 we have :

< la|loo + C1 + /72 + |b].
Next for all n > 1, we define the region G4, as :

(2.6) Gin ={|A = pxa| < €/n}.

Let A € G4p. Then using (2.1) and (2.5), we find that

Hin
25 ‘
2.5) :

A2 0] > [y + 0] = A+ pnlIA — o]
2 €/, €
>(nr — elao])? = = (2lpnl + )

5T (1 o+ G4 V) >



provided that € > 0 is small enough :

2

™
<1
30(1 + [lallos + € 4 /7% + [b])

Hence we can choose 0 < Arg(/\2 +b) < 2r for A € G, and —27 < Arg(/\2 +
b) < 0 for A € G_,, such that the function A — /A2 + b is analytic in each
region G4,.

(2.7) €< €=

As in Cox and Zuazua [4], we consider the initial value problem :

(2.8) {/\Qy—ym—l—Qea/\y—l—by:O, 0<z <1,

y(0) =0, . (0)=1

From the classical theory of ordinary differential equations we know that the
problem (2.8) has a unique solution which is analytic with respect to the pa-
rameters €, A (Coddington and Levinson [3]), and A4, is an eigenvalue of the
operator A€ if and only if A4, is a zero of the function A — y(1,¢). Further-
more the eigenvalue Ay, is geometrically simple and the algebraic multiplicity
of Aty is the order of A1, as a zero of the function A — y(1, ) (Neimark [9]).

Following an idea used in Rao [10], we will construct an explicit approx-
imation of the solution y of the initial value problem (2.8). In fact if a,b are
constants, the frequencies of the problem (2.8) are given by

r=+ /\2—|—2ea/\—|—b:i\//\2—|—biea—|—0<ﬁ>.

This suggests us to approach the solution y of (2.8) by

sinh (\/ AN 4+ba—+ /OI ea(s)ds).

(2.9) v(x, \)

1
B VA2 4+ b+ €ea(0)

By virtue of (2.6), we see that the denominator /A% + b + €a(0) in (2.9)
doesn’t vanish in the region G, for 0 < € < €. We notice that v satisfies
the initial value conditions of (2.8). We will justify that v is indeed a good
approximation of the problem (2.8).

Lemma 2.1. Assume that a € L*>°(0,1) and b is a constant. Then there
exists a constant Cy > 0, depending only on ||a||« and b, such that for all
n > 1 and 0 < € < € the solution y of the initial value problem (2.8) satisfies
the following estimation:

Cs

2.10 y < ——2
(2.10) lyl < peRy

, VA€ Gqp.
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Proof Let A € G1,. Then we have A = p4, + erne? with 0 < r, < 1/n.
By virtue of the choice of Arg(A\* +b), we see that Im /A2 +b > 0for A € G,
and Im VA2 +b <0 for A € G_,,. Therefore we obtain that

(2.11) ‘\/W—(eaoqiinﬂ')‘ > ‘Im /\2—|—b:|:n7r)‘ > nmw.
Using (2.1) we have
AN +b = /,thn—|—2€,u:|:n7‘n€i6—|—627“i€i29—|—b = (eao ZFinﬂ')z—I—QGMinrnew—l—leieiw.
Then using (2.5), we deduce that
(2.12) ‘/\2 + b — (eap F inﬂ')z‘
< 96(r2 + ralial) <26(1 + flalloo + Cy + /7T T ) i= 26Cs.

Combining (2.11) and (2.12), we have

2
(2.13) ‘ A2 + b+ (eap F inﬂ')‘ < €Cs < eCl.
It follows that from (2.13) that
(2.14) |Rev/ A2 +b| < €(||al|loc + C3) < 2eC5 < 1

where the last inequality is due to (2.7). Next using (2.5) and (2.13) we obtain
that

(2 15) |/\| < |/u:l:n|—|_6 < |Min/n|+1 < C3 <%
’ VN2 40| T nr—2eC3 T wm—2eC3 T m—2eC3 T 2

where the last inequality is due to (2.7).

Now setting
1 .
z(x) = ﬁ sinh /A2 +b z,

then from the variation of constants formula we have
y(z) = z(x) — 26/\/ a(s)y(s)z(xz — s)ds.
0

It comes from (2.14) and (2.15) that

cosh 1

ly(z)| < W

+ Cs coshl/ la(s)]|y(s)|ds.
0
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Applying Gronwall’s inequality, we obtain that

h1 1
ly(2)] € ———e exp (03 coshl/ |a(5)|d5) N T
A% + 0] 0 |AZ 4 b|

The proof is complete.

Theorem 2.1 Assume that « € BV(0,1) and b is a constant. Then
there exists constant Cy > 0, depending only on a,b, such that for all n > 1
and 0 < € < ¢; the following estimations hold for the solution y of (2.8) :

1 . r 006
. y(z,\) — ———— NYENY < _0°
(2.16) y(x, \) Tl sinh ( AN +ba+ /0 ea(s)ds> S Dz

for all A € G4.,.
Proof Putting :
Lv = A\ — vy + 2ea)v + bv,

then a straight forward computation gives that

€ , v

- h({vVAZ+0b —I—/ d

T eal0) {a cos (\/ x i ea(s) 3)

2ab *
2 : 2
+ (ea + —/\ n m) sinh (\/ AN 4+bax—+ /0 ea(s)ds) }
Since A € G4y, from (2.4), (2.7) and (2.13) we deduce easily that
(2.18) ‘Re (\/ AN 4+bax+ / ea(s)ds>
0

(219)  2|V/A2+b—ea(0)] > /[N +b] + nw — 3eC3 > \/|\2 + ),
(2.20) N+ VA2 +b| > nr+V/n?r2+b—2eC5 > 2.
Inserting (2.18), (2.19) and (2.20) into (2.17) gives
2¢

2.21 Lv)| < ——(|al® + |al|b| + |a'| ) cosh 1.
(221) L) < g (laf? + lalll + [o])

(2.17) Lv =

< 3603 < 1,

Applying the variation of constants formula and using (2.10), (2.21), we obtain
that

(2.22) ol X) = (e W] < [ [Eots Vlly(e = s, )lds
0
2¢Cycosh1 1 9 eC!
L Z€2cosh ] b+ |a'|) ds 1= ——0__
e | (1a + falit + 1a') s isa
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Finally inserting the estimation :

1 ] * 2¢||al| oo cosh 1
2.23) |v(x, A —*Slﬂh( /\2—|—b:c—|—/ easds)‘g
(2:28) Jole: 2 = g b (v o ) pe
into (2.22) gives (2.16) with Co := C§ + 2||a||cc cosh 1. The proof is thus

complete.

Now let Cy be the constant appearing in the estimation (2.16). For all
n > 1 and 0 < € < €; we define the region I'y,, as follows:

1
2.24 Tin = N — pian| < epn ), n =200 ———.
(2.24) 4n = {|A — ptn| < €pn} p Co b

Assume that

(2.25) €< €= min{el, 26710 7w — |b|}

Then we have the inclusion: '+, C G4, for all n > 1.

Lemma 2.2 Assume that ¢ € BV(0,1) and b is a constant. Then the
following estimation holds for € > 0 small enough:

. Coe
(226) sinh (\/ A2 + b + 6@0) > ﬁ’ A € arin

Proof We first assume that 0 < € < €. Let A € 9T'y,, then A =

ftn + epnew. Since ImvVA24+b > 0for A € T, and Im VA2 +b < 0 for
A €T'_,, then have

2eCoe"’?
(2.27) ‘\/ AN+ b—eag£inm+ o
nw
2¢C;
Z‘Im /\2—|—b:|:n7r‘ _ o
2eCy nm
>nm — > —
- T = 2
On the other hand, using (2.1) we get
2¢C 16 2
(2.28) (/\2 +b) — (eao FinmT — c-oc )
nw
=u’, 4 2epitnpne’® + € p2e* £ b — (eag F inn)?
2 i 2 0\ 2
L eCope (cao F in) _( eCoe )
nw nm
‘ ; 2a9Cpe? 2eCpet? \ 2
=2¢e'? (i pn F 120, 2 2 i26 4 4 € 40t0 _( 0 )
€e </,Lp +1 0)+€pn€ + nw nmw



From (2.4), we deduce that

. 1
(2.29) |t pn F 12C0| < 2€Co(|ao] + Cl)\/i a2 1 b

Combining (2.28) and (2.29), it follows that

16
(2.30) ‘(/\2 +b) — (eao Finm — 265(: )2‘
1 1 |a0| |a0| Cl
<40 =4+—)e* +4C .= C,é?
- 0(772+|71|> * 0( \/WT \/m>€ 4€

which together with (2.27) gives

17 2
(2.31) ‘\/ A2+ b+ eag Finmw — 2¢Coc < 2C4e .
nm nm
Now using (2.31) and the inequality :
(2.32) ‘smhoz—l—zﬁ ‘ \/ozz—l—ﬁz Va,8 € R, |B] < g
we find that
2
(2.33) ‘sinh(\/ A2 —I—b—l—eao)‘ > £<@ — Cae )
T\ nw nm
Once again from (2.31), we get :
(2.34) VA2 4+ b > nr — €(]|alle + Co + Cy)
which combined to (2.33) gives (2.26), if € > 0 satisfies :
4 —
(2.35) € < €3 := min {62, ( m)Co }
7T<4C4 + Co(][a]|cc + Co + 04))

The proof is thus complete.

Theorem 2.2 Assume that « € BV(0,1) and b is a constant. Then for
0 < € < €3 the operator A° admits a unique eigenvalue in G4, for each n > 1.
Moreover, we have the asymptotic expansion

(2.36) ‘/\:l:n + €ag Fiv/nin? + ‘ < e(— + Co )

nn? 45
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Proof From (2.16) and (2.26), we deduce that
1

1 ;
y(1,\) — ——=sinh (/A2 + b+ ea —————sinh (VA2 4+ b+ ea
for any A € dI'1,. Via Rouché’s theorem, there exists one simple zero Ay, €
Iy, of the function A — y(1, A). In particular, we get

<|

2006

2.37 Adn — fan| < —
(2.37) [Atn = prtnl e

, Vn > 1.

which together with (2.4) implies (2.36). The proof is thus complete.

Remark. Let Ay, be an eigenvalue of the operator A¢ and ug, =
(Ytn, AMtny+n) be the associated eigenvector. We should prove (but we leave
it to Theorem 4.3) that the system of eigenvectors (u4p)n>1 forms a Riesz
basis in the space HJ(0,1) x L?(0,1).

3. High frequencies in the general case. In this section we will
consider the general case. Assume that € > 0 is small enough. Then from the
condition (Cy), we see that the eigenvalues Ay, are complex. Moreover we
have the expession :

¢ fol alysq|*de
T .
fo |y:l:n|2d‘r

We will prove that the real part of the eigenvalues of high frequency can be
uniformly localized to the left of the imaginary axis of the complex plan.

We will assume that ||a]|cc # 0 (the contrary case is trivial). On the
other hand, in order to clarify the independence of the various constants C's
appearing in the estimations on the parameter €, we assume that 0 < € <
1. Therefore we consider the equation (2.8) only for |ReA| < 2||allo. We
will construct an explicit approximation of the solution y of the initial value
problem (2.8). We use the same idea as in the previous case. But this time
we neglect the zero order potential by and we approach the solution y of (2.8)
by v:

(3,1) ReAy,, =

= ﬁa(o) sinh (/\:c + 6/0 a(s)ds).

Theorem 3.1 Assume that a« € BV(0,1), b € L'(0,1). Let |A] > 2|/a|co
and |Re)| < 2|la]loc. Then there exists constant Cs > 0, depending only on

(3.2) o
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a and b, such that the solution y of equation (2.8) satisfies the following
estimations :

(3.3) ‘y(x, A) — %sinh (/\:L’ + 6/0“3 a(s)ds) < |§—|52,
(3.4) Yz (2, \) — cosh (/\:c + 6/0 a(s)ds) < %

Proof Let y be the solution of (2.8). We first prove that there exists Cs,
depending only on a and b, such that the following estimations hold:

C
(3.5) ly| < |—/\6| Y| < C.

In fact using the variation of constants formula, we have
1 “ 2aeXN +b
y= sinh Az — / % sinh A(z — s)y(s)ds.
0

It follows that

cosh(2]a||s0)

I b
ol < A=) commalall) [ (21l + 571
0

2||alloo

Jly(s)lds.

Using Gronwall’s inequality, we obtain

cosh(2]|all) ! b
yl < ——7 h(2||all s 2 ds) = Cs.
ol < T e (coshi2lall) / (2lal + 5 ) ds) = C

This implies that

v 0] /
lyz| < cosh(2||a]|s) + Cs cosh(2]|al| >/0 (2el + znauoo) $:=Cs

Taking Cg as the maximum of Cs and C} we obtain the estimations (3.5).
On the other hand, a straight forward computation gives that

ea’ b— e2a?

_m cosh (/\:[:—I—e /017 a(s)ds) —I_m sinh (x\aj—l—e /OI a(s)ds) )

It follows that

Ly =

2 cosh(3||al| oo )

3.6 ILv| <
(3.6) B

(la'l + lal* + [b]).
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Once again using the variation of constants formula, we have

(3.7) v(z,\) —y(z,\) = / Lo(s, Ny(z — s, \)ds.
0

From the estimations (3.5)-(3.6) comes that

38)  [ie ) = e N < [ L) lyGe — s 0)lds

205 cosh(3]lalloc) [ - C5(Ta, ||all2, ||b
< 5COS|/\T2 HaH ) / <|CL/| + |CL|2 + |b|)d8 — 5( G‘SHZ‘? H Hl)
0

where T}, denotes the total variation of the function a.
Differentiating the equation (3.7) gives

Ug(x, A) — yu(z,\) = / Lo(s, N)yz(z — s, \)ds.
0
Using (3.5) and (3.6), it follows that
(3.9) |02, A) = yu(z, M)

1 !
< [ 1 Mllste - s, \)ds < C5(T“"||‘;’|‘2”‘b”1>.
0

Finally using the explicit expression (3.2) into (3.8)-(3.9) gives the estimations
(3.3)-(3.4) with the constant C5 = Cf+2 cosh(3||a||s). The proofis complete.

Now let C5 be the constant appearing in the estimations (3.3)-(3.4) and
N be an integer. We define the regions I'y,;:

{I’in:ﬂ/\—l—eaoqiinﬂgcg/n}, n> N,

(3.10)
'y ={—||la]jcc £ ReX <la||co;, —Nm <Im\< Nrl.

Lemma 3.1 There exists an integer NV, depending only on a and b, such
that for all n > N the following estimation holds

Cs

(3.11) | sinh(\ + €ag)| > o

AETL,.

Proof Let A\ € Tx,. Then \ + eag = xinm + Cse'®/n. Applying (2.32)

we obtain that
‘ sinh(\ + eao)‘ = ‘ sinh(f+inm 4+ 056“9/71)‘ = ‘ sinh(C%eia/n)‘ > =,

11



Since |A| > nw — |ag| — C5 for A € T'y,,, we get the estimation (3.11) provided
that

(O ) Gy

0 " llalleo

(3.12) n > max{

Here we add the second term in (3.12) to guarantee that I'y, is included in
the strip {|ReA| < 2|ja||eo, | > 2]la|lo0}-

Theorem 3.2 Assume that a« € BV(0,1) and b € L'(0,1). Then for
n > N the operator A admits a unique eigenvalue in each I'y,, and a finite
number of eigenvalues in the region I'y. Moreover, we have the asymptotic
expansion:

1
(3.13) Adpn = —€ag £ inw + (€ + i)OR<—)
n

where Og(€) ~ & denotes one real number.

Proof We first notice that the spectrum of A€ is discrete, therefore there
exists at most a finite number of eigenvalues in the compact region I'y.
Next combining (3.3) and (3.11) we obtain that

1 1
y(1,\) — Xsinh(/\ + eao)‘ < ‘X sinh(\ + €eag)

for any A € OT'y,,. Via Rouché’s theorem, we deduce that there exists one and
only one eigenvalue Ay, € I'y,. In particular we have the following rough
estimation:

Cs

n

(3.14) ‘Ain ¥ eap T mw‘ <
Putting
z 1
(3.15) £(x) :/ a(s)ds — 1;/ a(s)ds
0 0

then using (3.3), (3.4) and (3.14), we find easily

1 . . Cs
. Yin(z) — ' <=
(3.16) ‘yin(r) o sinh (ef(;v) + ln’ﬂ'l‘)‘ <3
(3.17) ‘yim(:ﬁ) — cosh (ef(”c) + 'inﬂ'x) < %, Vn > N
n

12



where we have put

Cs = (1 + cosh(?)HaHoo))C

From (3.16) we see that the leading term of the eigenfunction y4, doesn’t
depend on the coefficient b. By virtue of the expression (3.1), we see that
ReAy,, doesn’t depend on b either. We first calculate

1
(3.18) 2/ al sinh(ef(z) £ inmz)|*da
0
1 1
= ao/ cosh(2ef(z))dx —I—/ a(x) cos 2nmade,
0 0
1 1
(3.19) 2 | |sinh(eé(z) + innz)|*dr = / cosh(2ef(z))dx
0 0
From (3.16) we can write

1
(3.20) ‘|yin(iﬂ)|2 |2|smh e€(z) + in7z) ‘ ‘<

At

with
CZ + 2Cs cosh(2]|al| o)

3

Cr =
n

Inserting (2.18) -(3.20) into (3.1) gives that

2|lao—allec C7|Atn|?
n3

fol a(z) cos 2nrwadz| +
fol cosh(2ef(z))dx — 2072%"'2

(3.21) ‘Re/\in + eao‘ <e

Since

/1 cosh(2ef(x))dx > 1,

T,
(3.22) ‘/ )cos 2nradr| < —

n

?

— < Ain| < 2nm.

Then inserting (3.22) into (3.21), we obtain that

(3.23) |[ReAsn + €ao| < %(Ta +167%Crllall o) = Cre

’
n
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provided that
(3.24) n > 1672Cr.

The proof is thus complete.

4. Low frequencies and root system. Let us denote by Aij the
eigenvalues of A contained in the region I'y with the algebraic multiplicity
ma4yr > 1. For e small enough, the eigenvalues are complex and appear in
conjugate pairs. Thus we have my = m_j. We choose i such that I'm Ay > 0,
and A_; such that Im A_; < 0. Accordingly, we denote by (uikJ);nik
arbitrary orthonormal basis of the eigenspace Ker(A — Ayg)™**.

Let n > N, we denote by 4y, = (Y4n, Atn¥y+n) the eigenvectors of high
frequency. On constructing the corresponding biorthogonal system as in Cox-

Zuazua [4], it is easily seen that the system of eigenvectors

—; an

(4.1) (Utk j)i<k<i,1<j<myr Y (Utn)n>N

is linearly independent in the energy space H}(0,1) x L?(0,1). We arrange
the eigenvectors of low frequency in the following way :

(4.2) Utk j = Utn, n=7j+ ka-

Here we have used the symbol u4, to avoid possible ambiguity with the eigen-
vectors u4,, of the high frequency. Setting N = Eﬁ:l my, we write the system
of eigenvectors in the following form:

(43) (ﬂin)lsnsﬁ U (U:I:n)n>N

Theorem 4.1 The operator A° has exactly 2N eigenvalues in the region
In.

Proof 1In the case ¢ = 0, A° is skew adjoint and has a compact resol-
vent. The corresponding system of eigenvectors (ﬂi")lgngﬁ U (u%,)n>n 18
complete, orthogonal and almost normal, therefore forms a Riesz basis in the

energy space H'(0,1) x L?(0,1). Let us denote by e4, the usual orthonormal
basis of Hj(0,1) x L*(0,1):

1 . N
(4.4) exn = < inw Slnhm7m> 7 .

4+ sinhinwzx -

14



Assume that N < N, from (3.16)-(3.17) it follows that

Z Hﬁ(in - ein”?{é(o,l)xLQ(O,l) + Z Hu(:)l:n - ein”?{é(o,l)xL%O,l) < t+oo.
1<n<N n>N

Thanks to Bari’s theorem, we find that the subsystem (e+n), . xU(€xn)n>nN,

<n<
which is quadratically close to the Riesz basis (uY.,,) FU (u%,)n>nN, would

1<n<
also be a Riesz basis in the energy space H}(0,1) x L?(0,1). This contradicts

the linearly independenceNof the system (€4, )n>1. Changing the role of u,

and eq, we obtain that N = N. Now there is no more ambiguity, we can
replace ©9,, by u%,, in (4.2). The proof is thus complete.

Theorem 4.2 Assume that « € BV(0,1) and b € L'(0,1). Then for
€ > 0 small enough the operator A° admits exactly 2N eigenvalues in the
region ['y.

Proof We first write

1 0 (0pr —b)7! 2(0pr —b)"ta 0
(4.5) (A°) = (I . )—I—e( . 0) = (A%)" ' +eB.

Next for § > 0 small enough we define the region Dy as
(4.6) D = {]A — %] < o).

Since A™! is compact and skew adjoint, then the eigenvalues A%, are normal
points of (A%)~! and the contour D1y consists of regular points of (A%)~!.
Applying Theorem 1.3.1 in Gohberg and Krein [7], we conclude that there

exists €4 > 0 such that for 0 < ¢ < ¢4 the operator (AE)_1 has the same
number of eigenvalues than (A%)™! in each region Diy:

(47) Ai’ﬁj € Dik’ k= 1727. o 7]—{7 .] = 1727' Ty M4k

Since A€ is an analytic family (see Kato [8]), arranging the root vectors uty ;
in the same way as in (4.2), we find that

(4.8) lim ug,, = uoin, Vn > 1.

e—0

The proof is thus complete.

Now we introduce a subspace :
(4.9) V={yeH'(0,1): y(0)=0}
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and a linear application L :
(4.10) L(y,2) = (Ya,2),  (y,2) € V x L*(0,1).
Then we verify easily that L is an isomorphism from V' x L?(0, 1) onto L?(0, 1) x

L?(0,1).
Setting :

(4.11) €0 = uo = (0)

the extended system (€4y)n>1 becomes an orthonormal basis of V' x L?(0, 1),
and the extended system (¢4, )n>1 remains linearly independent in the space

V x L*(0,1).
Putting

(412) B = (cosh e€(x) sinhef(x) ) . (COSh (ef(;c) + in’m;) )
. sinh ef(t) cosh 65(.17) ’ sinh (65($) + anx)
we have

(4.13) B®Y, = o, Ley, = ®%,,, Vn > 0.

Since the matrix B¢ has a bounded inverse, we see that B¢ is a bounded
invertible linear operator of L?(0,1) x L*(0,1). Moreover, we verify easily that

(4.14) 1Bl < 2cosh(2llalloc), (B < 2cosh(2]|al|o)-

Theorem 4.3 Assume that « € BV(0,1) and b € L'(0,1). There exists
a linear bounded invertible operator S¢ of V' x L?(0, 1) such that

(4.15) Sqn = Ugp, Vn > 0.

Moreover we can find €5 > 0, depending only on a and b, such that the
following estimations hold

(4.16) sup ||S€| < +o0, sup H(SE)_IH < Ho0.
0<e<es 0<e<es
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Proof We first assume that 0 < € < €. Then using (3.16)-(3.17), we
calculate the high frequency:

(4.17) Z [ Lutn — (I)El:nHZLQ(,O,l)xL?(O,l)
n>N
C’Z(l+4ﬂ'2) C2(1—|—4772)7r2
< 6 6 .
- r;\f n? < 6

By virtue of the choice of eigenvectors u4, of low frequency and (3.17) we
have :

(418) > [ Lusn — 4,120 0.0 x12(0.1) < (2N +1)(1 + cosh(2[al|)).-
0<n<N

Combining (4.17) and (4.18) we find a constant Cy, depending only on a and
b, such that

(4.19) Z | Lttn — ‘I’lnHQLz(,o,nxL?(o,l) < Cs.
n>1

Now defining the linear operator R as follows :
(4.20) Rexn=L'B®, —utn, Yn>0,

from (4.19) we deduce that

(4.21) IR < LYY I9%n — Luzall T,y xrzoay < Coll L7112
n>1

Therefore R¢ is a Hilbert-Schmidt operator of the space V x L%*(0,1). Now
setting

(4.22) S¢=L"'B°L - R",
then from (4.13) and (4.20) it follows that
S¢yn =L 'B°Let, — Reqp = L7'B®), — Rexn = usn, n>0.
Moreover using (4.14) and (4.22) we get easily that
IS < 2A LTI L] cosh(2llalloc) + Col LTH*, 0 < e <ea.
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This gives the first estimation of (4.16).

On the other hand, since the system (u4p)n>1 is linearly independent,
using Fredholm’s Alternative we show easily that S¢ has a bounded inverse
(S)~! in V x L%(0,1). If the second estimation of (4.16) fails, there would
exist a sequence u¢ € V x L*(0,1) such that

(4.23)  |lu“llvxrz01) =1, L 'BLuf — Ru® — 0, in V x L*0,1).
Let R° denote the limit operator of R¢:
(4.24) Rleyrn, =L7'0%, —ul, =¢%, —us,, Vn>0.

Then using (4.19) and Lebesgue’s convergence theorem, we can prove easily
that

(4.25) lim |[R°— R°||*> = 0.
e—0~+

Since B¢ — I, R — R° for the uniform topology of V' x L?(0,1) as ¢ — 07,
there exists a subsequence, still indexed by u€, which converges to u strongly
in V x L%*(0,1). Then passing to the limit in (4.23) we get

(4.26) lullvxrz(o,1) = 1, u— R = 0.

Then indeed let v = Y oo @tpetn. Using (4.24) we deduce easily that

(4.27) Y axnud, =0.

n>0

Since (uY,) is a Riesz Basis, it follows that at, = 0 for all n > 0. This
contradicts ||u|[v xr2(0,1) = 1. The proof is thus complete.

Theorem 4.4 Assume that the conditions (C4),(C3) hold. Let a €
BV (0,1) and b € L'(0,1). Then there exist positive constants ¢g > 0,w, M >
0 depending only on a,b such that for all 0 < € < ¢y, the solution y of the
system (1.1) satisfies the following estimation :

(4.28) Hy(t)%g(o,l) + e 720.1) < *’\46_‘06t<’\y0|\§{5(o,1) + ”y1H2LQ(O,1)>7

for all ¢ > 0.

Proof From the condition (C3) and the asymptotic expansion (3.16), we
deduce that I,, — ag > ¢g > 0. For the validity of Theorems 4.2, 4.3, we first
assume that € satisfies

€ < €5 := min{ey, €5}.
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Using the expansion (3.23) and taking into account the conditions (3.12) and
(3.24), we find that the eigenvalues of high frequency are to the left of the
imaginary axis:

Cp€

(4.29) ReAy, < —5
provided that

(4.30) n > Ng := max {1677207, 2087 3(C5 + lalloc) Cs }

ag 7T el
But from the condition A/, (0) = —I,, < —cg, we can find 0 < ¢ < € such
that for all 0 < € < ¢y the remaining 2N eigenvalues of low frequency satisfy
also (4.29).

Now let (yo,y1) € H3(0,1) x L?(0,1) such that
(431) y07y1 Z Z Q4k jULE, 5 + Z AtpUtn.
1<k<K 1<3<my n>N

Then the solution of the problem (1.1) is given by
(y(t), ye (1))
¢!
_ Atrt . . Atnt .
= Z K h Z Atk j Z (]._l)!uztk,l‘|‘ Z € E Qb pUsy.
1<k<K 1<3<my 1<I<y n>N
Using (4.15) and (4.29), we get

(4.32) ()l 0,1) + H‘yt(t)Hsz(o 1)

< |159)|? exp( coet{ Z Z sk |2 Z <( ) Z|ai" }

1<k<K 1<j<my
Recalling from Theorem 4.2 that the number of elgenvalues of low frequency
is exactly 2N, then the multiplicity mp < N. Hence we deduce that there
exists a constant C'y depending only on N such that

-1 2 N1 2 N
1<I<; 1<I<N
It follows that
(4.34) ly ()72 0,1) + Ne(BZ2 0,1

< ONIIS ISP (1 + 2V ) exp(—eoet) oll3s o1y + 1 o)

which together with (4.16) gives (4.28) with w < ¢g. The proof is thus com-
plete.

Acknowledgment The authors would like to thank the anonymous ref-
eree and V. Komornik for valuble comments and suggestions.

19



6. References.

[1] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the
observation, control and stabilization of waves from the boundary, STAM
J. Control Optim. 30 (1992), 1024-1065.

[2] G. Chen, S. A. Fulling, F. G. Narcowich and S.Sun, Exponential decay
of energy fof evolution equations with locally distributed damping, STAM
J. Appl. Math. 51 (1991), 266-301.

[3] E. Coddington and N. Levinson, "Theory of ordinary differential equa-
tions”, Mc. Graw Hill, 1955.

[4] S. Cox and E. Zuazua, The rate at which energy decays in a damped
string, Commun. in PDE. 19 (1994) pp. 213-244.

[5] P. Freitas, On some eigenvalue problem related to the wave equation with
indefinite damping, J. Diff. Equa. 127 (1996) p. 320-335.

[6] P. Freitas and E. Zuazua, Stability results for wave equation with indefi-
nite damping, J. Diff. Equa. 132 (1996) p. 338-352.

[7] I. C. Gohberg and M.G. Krein, "Introduction to the theory of linear
nonselfadjoint operators”, AMS, Providence, 1969.

[8] T. Kato, ”Perturbation theory for linear operartors”, Springer, New York,
1980.

[9] M. A. Naimark, ”Linear differential operators”, Vol. I, Ungar, New York,
1967.

[10] B. Rao, Optimal energy decay rate in the Rayleigh beam equation, in

”Optimization Methods in Partial Differential Equations”, ed. Cox and

Lasiecka, Contemporary Mathematics, 209 (1997 ) 211-229.

20



