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Defining Exponential Mixture Family with
Applications

Han-Ping LI

Université Louis Pasteur, Strasbourg, France

Résumé

Quite different to the classic notion of mixture and quite natural, the so-
called exponential mixture is defined, and the exponential mixture family is
obtained in this way. Different properties of the exponential mixture family
are studied. The associated problem of estimating the mixture coefficient is
studied by the likelihood approach and empirical function approach. The ex-
ponential mixture family gives us also another classification approach. Finally,
a kind of local exponential mixture family approximation is studied.

Key Words: Exponential family, Mixture, Exponentail mixture, Kullback in-
formation, Classification.

AMT Codes: 62A25, 62B10, 62E10, 62F10, 62H30

1 Introduction

Given (d+1) probability distributions Pg,Py,... P, defined on measurable space
(Q, &7), one can make up a mixture family in a classical way:

d
a= (o, ,0q) € R with «a; > O,Zai <1
=1
~ d
Pa = ZO&ZPZ + (1 — ZO@)PO.
=1 =1
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This mixture has of cause some advantages:
i) it is very simple;
ii) it has a Bayesian interpretation;
iii) we know how to generate the random variables with this distribution.

It has also some inconvenient, for example:
P, is no longer normal distribution even the P; are. This is not supprising because
the normal distributions possede a log-linear structure. With this point of view in
mind, we can define another mixture in the following way:

Let p be a dominating measure ( p = E?:o P; for example), fi(z) = Cg;i (),1 =

0---d, be their densities, make a convention as following: log 0 = 0, denote the set:

D= {a = (g, ,aq) € R? | /exp{z ailog(fi(x))—l—(l—z ;) log(fo(x))},u(dx) < oo}

For all element a of D, we can define

U(a) = log(/exp{z_d:ailog(fi Zj:ozz ) log( fo(x } (d.fl?))

falz) = exp{Zaﬂog(fi( ZQZ log( fo(x \I/(oz)}
P.(B) = /fa (dz) VBe .

Definition 1 The family {P,,a € D} is called the exponential mizture family of
Py, Py, ... Py

Why give-we it this name? The reasons are very simple. First of all, it is another
kind of mixture, quite different to the classic notion of mixture and rather natural.
In the classic definition, the mixture is made of a convex combination. Here, we just
take a normalized product:

If we denote for all element a of D, C = fﬂlefi(x)“ifo(x)(l_zgﬂ “y(de) =
exp(KIl(oz)) < 00, then



falz) = éH?:1fi($)ai folz) Tk,

Secondly, there is a tight link between the exponential family and the exponential
mixture family defined here. As a matter of fact, we have the following results:

Theorem 1

If Pi(dz) = eXp<< 0;,T(z) > —K(@))l/(dx), for i = 0,...,d; then their

exponential mixture is given by

d

P,(dz)= exp<< Zai(%,T(:c) > —K(Z aiﬁi)>y(d ).

i=0

2. Fvery full exponential family of distributions is an exponential mizture family.

3. If among Py, Py, ..., P, there is a distribution which dominates all others, then
{P,,a € D} is an exponential family of distributions.

Proof:
1) Trival.
2) Let {Py,0 € O} be an exponential family of distributions:

Py(dz) = eXp<< 0,T(z)> —K(@))V(d ),

where © = {0 : [exp(< 0,T(z) >)v(dz) < oo} is a convex of R% K(0) =
log<fexp(< 6,7 (x) >)V(dx)>. Let 6g,6,...0; be d+1 points of © such that 6, —
0o, ...0q — 0y, are linearly independent. Then for all § € O, il existe ay, ..., ay such
that  — 6y = Ele a;(0; — o) ,ie. 0= E?:o a;0; with ag =1 — Ele a;. Let fi(x)
be the density function of P; with respect to v,

_ dP;
- dv

filz) (x) = eXp(< 0;,T(x) > —K(@)),

then

Py(dz) = eXp<< Zazﬂi,T(az) > —K(Z aiﬁi))u(dx)

= GXP(Z ailog(fi(z)) — ¥(a))v(dz),
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with

U(a) = log (/ exp (i o; log<fi(x))>,u(d 7:)) = K(0) — iaﬂ((@i).

That is, this is also an exponential mixture family.
3) Conversely, suppose that P; << Py, = 1...d, we have then {z € Q|f;(z) >

0} C {x € Q|fo(x) > 0},7 = 1...d. If we denote T'(z) = (log<£g;)7... 710g<;zgg>>’

with the convention: log 0 = 0, then,

P,(dz)= eXp<< a,T(x) > —\Il(a))fo(m)u(d r) = eXp<< a,T(x) > —W(oz))y(d ).
Hence {P,,a € D} is an exponential family of distributions. O

Theorem 2 The family {Py,0 € O} is a full exponential family of distributions

if and only if for any finite number of members of the family Po, Py, ..., Py, their
exponential mizture P, , for all a € D still belongs to the family.

Remarks:

1. It is clear that P; € {P,,a € D},i = 0,...,d which correspond to 0 =

(0,...,0) e D and e = (0,,...,1,...,0) e D,i=1,...,d.
2. For multidimensional normal distributions P; = N(6;,%),: =0, ..., d, we have
simplely P, = N(6,%) for § = Z?:o a;b;.

For two Poisson distributions P; = Z();),¢ = 0,1, we have P, = Z()) for
A= Aol

3. Let Q = {ag,a1, - ,aq4}, o = Z(N) . Then the classe of all distributions
defined on it is given by:

d
P = {(pO;pl;"' 7pd)|p2 Z Oyzpz = 1}
=0

& is an exponential family:

P(dz) = exp(Z log(pi) I, )v(d z) with v({dz}) = 1.

1=0



Z is also an exponenetial mixture family of distributions:

((11—5(1;) = eXp(Z a;log(fi) — ¥(a))

1- %% log(p:
with u(a;) = 1/e, fi(z) = el,,(x), oy = log(pi)—l— %’T 10g(p ), 0=1,...,

d
and U(a) = M.

€

The expression is invariant with respect to the dominanting measure: if p
and p are two dominating measures , with p/ << u, we have f/(z) = 45

=4 =
%(37)5_5(5’3) = fi($);—5($), then

fule) = exp{ L, ailog(file)) + (1 = Xy ai)log(fo(w)) — ¥(a) } exp (log(22))
= exp{ XL, aulog(f(2)) + (1 = XL, a) log(fy() — ¥(a) }.

Here come some examples.

Example: Let fo(z) be a density with respect to the Lebesgue measure on R and let

®(t) = [exp(tz)fo(z)d x be the Laplace transforme . For all t € D = {t € R|®(¢) <
oo}, one can define another density on R by :

exp(te) fo(z)
fi(e) = o)

If we take fi(z) = % for a t; € D, t; # 0,then
1

ﬁ@=§$%gﬂ=w{%muw»Hvéy%%w%maﬂﬁﬂ:

0
this is an exponential mixture family.



Example: Let fy(z) be a density with respect to the Lebesgue measure on R? and

let ®(t) = [exp(< t,z >)fo(x)d z be the Laplace transforme . Forallt € D = {t €
R¥®(t) < oo}, one can define another density on R? by

_exp(<t,z>)fo(x)
MO m

Since D is convex and contains the origin, we can take to = 0 € D, t;, € D,
¢ = 1,...,d such that (t;, 7 = 1,...,d) is linearly independent. Therefore for all

t;,¢ )
t € D, we have t = 2?21 a;t;. If we take fi(x) = exp(< q)(z-)>)fo(l’)7 1=0,...,d;
then Z

exp(< t,z >)fo(x)
o(t)

= exp (ZL ailog (fi(2)) + (1 = L, a)log(fo(2)) — (log(@(t)) — XL, o 10g(<1>(ti))>>-

this is a exponential mixture family.

fe(z) =

Example: For normal distributions, P, = N(6;,%),¢ = 0,...,d, we have P, =
N(8,%) for § = L cub;.

Example: For two Poisson distributions P, = Z7();),1 = 0,1, we have P, = Z())
for A = oA\,

1

Example: Let P;(dz) = fi(z)dz = 7r<1 Y (r— ai)Q)

dz, 1 =0,1; be two Cauchy

distributions, then for all a € [0, 1],

P.(d) = exp (alog(fi(2)) + (1 - a)log(fo(x)) = t(a) ) (d2)

defines an exponential mixture family which contains the two Cauchy distributions.
We all know the difference between the binomial distribution and the hypergeometric
distribution. We can easily obtain an exponential mixture family which contains
these two distributions.

Consider two statistical models
(Q(l),ﬁ/(l), {Py|0 € ©}) and (Q(Q),ﬁ/@), {Qulb € @}) Suppose there exists two
Markov kernals 115 and Il5; such that

Pylly, = Qe and Q€H21 = P@a
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for all § € ©. Then they are called equivalent.
Chensov gave the following interesting result: (c.f.[2,1982])

Theorem 3 (Chensov)

The operation of the mixture
{P;,i=0,..,k}) — P,

is stable by Markov isomorphism: Consider two families of distributions {P;,1 =
0,....k} and {Q;,1 =0, ....k}. Suppose there exists two Markov kernals 1,5 and 11y
such that P11 = Q; and Q;lly; = P;,0 =0, ..., k. we have then,

PQHU = Qa and QQH21 = Pa \V/Oé € D7

that is, the two two statistical models generated by the exponential mizture family
are equivalent.

2  Properties linked with the Kullback informa-
tion and the Fisher information

Let us first of all take some notations:
1) Let P(dz) = f(z)u(dz) and Q(dx) = g(z)u(d ) be two probability distribu-

tions with respect to the dominating measure p, the Kullback information is defined

by:
K@) = [log(25) fonuta

2) Let X be a random variable and denote E,(X) whenever the distribution of X
is given by P,. Let {fi(z),7 =0,...,d} be d+1 densities with respect to a dominate
measure u, we define for all & = (ay,--- ,aq) € D,

x) = exp{iai log<f2- iaz )log( fo(x \I’(Oé)}v
W(a) = log( / exp{iai log (fi(x)) + (1 - Z o) log(fol2)) p(d z)).



Recall that 0 = (0,...,0) belongs to D and e; = (0,,...,1,...,0) is in D, for all

i=1,..,d.
Theorem 4
y D9 = kP,
2) 8\811(5) la=o = —K(Po, P;),
_ PV(a) dlog(fa(X)) f0log(fa(X))
3) (90@8(1]- N Ea << 8@2- ) ( 6%- ))

Proof: In fact,

exp(W(a) = [ exp{iaz- log (55} At o),

exp(lll(oz) ago(j) = /log(JJ:;((i))) eXp{Z Q; log(ﬁg;))}fo(x)u(dx),

therefore
el
K(P;,Py) = E. (1 (j:o((z))) a‘;f .
K (P, P;) = —Eo (10g(}{;((z)))> - - ago(;) .o

Theorem 5 Denote V, = (E, (log(fl(){))),...,Ea <1og<fd(){))>)’ we have

fo(X) fo(X)
D Bu(log(Z5)) =<y Va> —U(8) + ¥(y).
2) K(P,,Pp) =<a-—p0,V,>-VY(a)+ ¥(F).
3) K ( ) A(Pﬁapﬁ) II((PQ,PQ)—}—<§—&,%—V5 >
4) K (Pa,P ) - I((P57PW) = I((POMPﬁ)—I_ < ﬁ - ’vaoz - Vﬁ >



Proof: Trival computation. O

Theorem 6

1) The mapping &« — K(Po,P,) is convex on D.

2) For all @ € D,a # 0, the mapping t — K(Po,P¢,) s strictly
increasing on [0, 1].

In  particular, When d = 1, then the mapping t — K(Po,P¢) is strictly

increasing on [0, 1].

Proof: In fact, we have

falz) = exp{Z oy log<;;g;> — \I/(oz}fo(:l:),

(2) d
=2 il )+ ¥(a).
(z) il
=1
Taking expectation with respect to Pg, we see that
K(Po,P Zazlx (Po, P;) + U(a).

Now if we calculate the partial derivative with respect to the ith component of «,
that is «;, we have

0K (Po,P,)
(90@

*K(Po,P,)\ [ 0*¥(a)
80@80@ N 8042»6%

is a definite positive matrix because of the convexity of the function ¥(«).

0% (a)

= K(Pg, P;
X( 0, )‘I’ aO[Z

Hence,

Similarly,
log

(x)
=1 o; 10 —|— Y(ta
fm Z g © (ta).



Taking expectation with respect to P, we see that

d
K(Po,Peo) =1 Y aili(Po, Ps) + U(ta).
i=1
Here we calculate the derivative with respect to t, we have

d
dK P Pa (¢
< 0’ : g a; K (Py, i)‘|‘§ aiaaia)
=1 ¢

A2K ( PO, i 9*W(ta)
o0 > 0.
DI a%
i=1 j7=1
. dK(Po,Pta) - . . . i
Therefore the mapping ¢ — =3~ is a strictly increasing function, for all

€ [0, 1]. Consequently, for all ¢ € [0, 1]

dK(Po,Py,)  dK(Pg,Py,)
. >
dt dt

But

dK(Pg, Py.)
dt

= Zog]& (Po, P ZO(Z a% .
- Z%A Po,P Zazlx Py, P;) = 0.

t=0

Therefore for all ¢ € [0, 1]

dK(Po, Pio)
' dt
that is, the mapping t — K(Po,Pt,) is a strictly increasing function. O

>0,

3 Estimations

Suppose that {log<%((X¢))),i = 1,...,k} are linearly independent (c.f.[7,1982],
0

[8,1985]) for some sufficient conditions ). then « is unique: {P,,a € D} is identi-
fiable. Suppose that (Xi,- -, X,) be a sample from the distribution P, belonging to
{P,,a € D} an exponential mixture family of Py, Py, ..., P,;. Consider the problem
of estimating the mixture coefficient «.
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3.1 The maximum of likelihood method
Since the likelihood is given by

Lo(X1,---, X, _exp{ZZOzzlog X;)) = nW(a) I, folX;)

7=1 =1

so the maximum likelihood estimator & of o must satisfy the following equation:

e = s (£0)

Remarks:
1) Since the function ®(«) is convex, the solution, if it exists, is unique.
2) It may exist when n is sufficient large:

—Zlog ) €E, (Jfo((X))) - ag)s‘).

Example: Let P, = N(6;,%),: =0, ...,d; then we have P, = N(Zj:o a;0;,%). Since
File) = exp (< N0, > —L9n10; 4+ Lopxn10, — c), 50

i 1,
log(j:o( )) = (6: = 6)X "0 — S0;5710, + 50,56,

We can easily see that K(6) = %9'2_10 — (', hence

V(a) = K aifl) — Z o K (6;)

11



Therefore the maximum likelihood estimator @ of a will satisfy

d
(6: — 00)'S7' () @ibi) = (0; — o)L ' X.

=0

It is clear that {10g<£((Xi))), i =1,..., k} are linearly independent if and only

if (61 —6o), ..., (0x —0p) are linearly independent. As a consequence, the maximum
likelihood estimator @ of o will satisfy

In particular, if d = 2, 6, = ( (1) ),92: ( (1) ) and 6y = < 8 ),thenwehave
X

When d =1, 0, =b, g = a, a # b, then &; = =2
They are quite logic!

3.2 The minimum distance method:

Let .# be a class of integrable functions , y be a signed measure, we define

!\u!\zsupl/fdul-
fez

Let (Xy,---,X,) be a sample from the distribution P,, P Z Ix,<z) be
the empirical distribution function. We then define he estimator o Of o E D.

a:arg(ig]f)HPa—Pn Il -

We know also that if X, ---, X, are i.i.d. then || f’n — P, || converge to zero for
any V.C. class .. We know by the Glivenko-Cantelli theorem that the V.C. class
is much richer than the class {/(_q,a € R}. (c.f.[9,1984]
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4 Classification

Suppose that one makes a number of measurements on an individual and wishes
to classify the individual into one of several categories or populations on the basis of
the information gotten from these measurements. We assume that there are only a
finite number of categories or populations from which the indivudual may have come
and each population is characterized by a probability distribution of measurements.
Thus an individual is considered as a random variable from this population. The
problem is how to determine the population from which the the individual may have
come?

Let Pog,..., Py be (d+ 1) probability distributions defined on a measurable space
(Q, o). Let (X1,...,X,) be a random sample having come from one of these popu-
lations. Let {P,,a € D} be the exponential mixture family of Py,... Py
And let & = (@, ..., 0d4) be an estimator of & = (g, ..., ay) based on (X7,...,X,).
Consider the following testing hypotheses problems:

(4)

Héi) co; < @; against the alternative H;” : o; > a;,

i =0,...,d. Since {P,,a € D} is a multiparameter exponetial family, we know that
there are uniformly most powerful unbiased tests ¢; for testing the hypotheses HSZ)

against the alternative Hl(i), t =0,,...,d. (c.f.]4,1986]) Let 3; be the power of ¢, at
the point o; = 1. We then decide to classify X into the ith population if

fi = min 3.
When d =1, D is just an interval of R.

fi(2)
fo(2)

where ay = a, ap = 1 — a. Consider the following testing hypotheses problems:

fa(@) = exp{alog(fi(2))+(1-a) log(fo(x) ~¥(a) } = exp{alog(2- 1) ~W(a) } folw),

Héi) ca; < @; against the alternative Hl(i) Do > a;,

1 =0,...,1. So the uniformly most powerful tests ¢; is given by

1 if fi(z) C
¢1={ W15

0 ifm<01

i’ { 1 if§f§§)>(]o
0 = -¢ folz

0 1fm<00
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and §; ~ Pi($9 > 0) for j # i.
In particular, suppose that f(z,0) = exp(a:@ - K(@)) is a symetric function
when 6 = 0 (for example, the one-dimensional normal distribution .#'(6,c*)) and

that Py(dz) = f(z — b)dx, Po(z) = f(x — b)dz, with b > a; we have P,(dz) =

f(x — (ab+ (1 - a)a))dx =, and & = {1
We then have
Cl — T = _(00_5)7

51:P1(f—b>01—b), ﬁozpo(f—a<00—a).

It follow that

/31</30(:>(Cl—b>a—00)@(Cl—b>a—25—|—01>(:><b—f<f>.

That is T is nearer to b than a.
So the classification rule will be

d— fi fb—-72<T—a
|l fo Hb—T>T—a

5 Local Approximation by an exponential mix-
ture family of distributions

Let {Py|0 € ©}, © C R* be a parametric family of distributions. Let §* € © be
a point of the parameter space. Suppose that we are asked to approximate the family
locally in a neightbourhood of #* by a nice family. Under some regular conditions,
the family {Py|6 € ©} can be considered as a Riemannian manifold (c.f.[1,1985]).
The only reasonnrable Riemannian metric is given by Fisher information matrix, and
the only reasonnrable affine connexion are given by Chentsov-Amari a-connexions.
(c.f.[5,1986], [6,1993]). If we take Chentsov-Amari 1-connexions (a = 1), then the
exponential family is a flat-space, that is, a space on which the Riemann-Christoffel
curvature vanishes identically, just like a hyper-plane in an Euclidean space. The-
refore, we are often asked to approximate the family locally in a neightbourhood of
0* by an exponential family.

We propose the following approach:

Choose (d 4 1) points fg,...,0q in a neightbourhood of #*. Then project the
family {P4|0 € O} on the exponential mixture family of Py, Py, ..., Pg,. Let the

14



(d + 1) points y,...,0; trend to *, and the limit of the projection family obtained

in this way is then what we wish.
dPy,

Intuitively, let 4 be a dominating o-finite measure, denote f(z,0;) = i (),00 =
(001, ceey 9019)/7 and
VZ(H()): 810g<f($,00))77810g<f(x,00)) ,
8901 aeok
. Then
dP,
Fle) = T
d d
= GXP{Z o 10g<f($,9i)) +(1- Zai)log(f(f’/‘a@o)) - ‘I’(a)}
=1 =1

= exp{zd: Q; <log<f(x, 92)) - 10g<f($7 90))) - \I’(O‘)}f(l';@o)

=1

d
- exp{z i {0; 00, V1(00) ) - \Il(a)}f(x, o) + op, (1)
=1
We can also see this by the following consideration:
The family {Py, 8 € O} is called localement asymptotically quadratique at
point 0*, i =1,....d. (c.f.[3,1990]) if:

1) 6* € intO,
2) There exists a sequence of matrices which trends toward to 0 4, for all boun-
ded sequence ty: sup,, [ty'ty| < oo, we have

P(n)

(n)
orsatn I>Po 7

that is, for all event B7P£’7—?5ntn(3) if and only if P(en)(B).

3) The logarithm of the likelihood ratio can be written as:

A =lo <%>—<S t >—lt "Kpty + op, (1)
O+8ntn,0 = 108 dPén) = ny ln 9 n Hpln Py .
where S is a random vector and Pe(n)([(nis definte positive) = 1.
We know that if Pg,n) is the joint distribution of n independent variables:

ZL( Xy, ,X,) = Pén) , and if the distribution of each variable is absolutely
continous with respect to a dominating measure v: Z(X;)(dz) = fi(z,0)v(dz)

15



and if the square root of the density is differentiable in quadratique mean, then,
{Pén), 0 € ©} is locally aymptotically quadratique, and that the matrices K, trend
toward to a constant matrice K. (c.f.[3,1990]).

Under these conditions, {Py,0 € O} is locally approximatively an exponential
mixture family:

Let to = 0, and let tq, ..., tq be a base of R% then for all t = Z a;t;, we have:

Noysneo — Y Cilops,gs = —(%t’lx”nt—zi i3t Kyt )+0p9(1>

=1

( fRE— 3 1a21ti’[x’ti> +op, (1).

Therefore

d
dP}. s ..
Py s ((dx) ~ exp (Z a; log <%) - ql(oz)) v(dz)

1=0

with U(a) = (t[t—z %t'[xt)
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