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ON CERTAIN PROBABILITIES EQUIVALENT TO COIN-TOSSING,

D’APRÈS SCHACHERMAYER

S. Beghdadi-Sakrani and M. Émery

L. Dubins, J. Feldman, M. Smorodinsky and B. Tsirelson have constructed in
bd4ce and bd5ce a probability

�
on Wiener space, equivalent to Wiener measure,

but such that the canonical filtration on Wiener space is not generated by any�
-Brownian motion whatsoever! Dreadfully complicated, their construction is

almost as incredible as the existence result itself, and these articles are far from
simple. In this volume, W. Schachermayer bd14ce proposes a shorter, more accessible
redaction of their construction. We have rewritten it once more, for two reasons:
First, the language used by these five authors is closer to that of dynamical systems
than to a probabilist’s mother tongue: where they use a dependence of the form
X = f(Y ), we work with X measurable with respect to a σ-field; having both
versions enables the reader to choose her favorite setup. Second, a straightforward
adaptation of Tsirelson’s ideas in bd16ce gives a stronger result (non-cosiness instead
of non-standardness).

We warmly thank Walter Schachermayer for many fruitful conversations and
helpful remarks, and for spotting an error (of M. É.) in an earlier version. We also
thank Boris Tsirelson for his comments (though we disagree with him on one point:
he modestly insists that we have given too much credit to him and to his co-authors)
and Marc Yor for his many observations and questions.

1. — Notations

Probability spaces will always be complete: if (Ω,A, � ) is a probability space, A
contains all negligible events. Similarly, we consider only sub-σ-fields of A containing
all negligible events of A. For instance, the product (Ω1,A1, � 1)⊗(Ω2,A2, � 2) of two
probability spaces is endowed with its completed product σ-field A1⊗A2, containing
all null events for � 1× � 2. L0(Ω,A, � ) (or shortly L0(Ω, � ), or L0(A) etc. if there is
no ambiguity) denotes the space of equivalence classes of all a.s. finite r.v.’s; so
L0(Ω,A, � ) = L0(Ω,A, �

) if � and
�

are equivalent probabilities.
When there is an ambiguity on the probability � , expectations and conditional

expectations will be written � bdXce and � bdX|Bce instead of the customary � bdXce
and � bdX|Bce.

An embedding of a probability space (Ω,A, � ) into another one (Ω,A, � ) is a
mapping Ψ from L0(Ω,A, � ) to L0(Ω,A, � ) that commutes with Borel operations on
finitely many r.v.’s:

Ψ
(
f(X1, . . . , Xn)

)
= f

(
Ψ(X1), . . . ,Ψ(Xn)

)
for every Borel f

and preserves the probability laws:

�
[
Ψ(X) ∈ E

]
= � bdX ∈ Ece for every Borel E.



          

If Ψ embeds (Ω,A, � ) into (Ω,A, � ) and if
�

is a probability absolutely continuous
with respect to � , then Ψ also embeds (Ω,A, �

) into (Ω,A, �
), where

�
is defined

by d
�
/d � = Ψ(d

�
/d � ). If � and

�
are equivalent, so are also � and

�
.

An embedding is always injective and transfers not only random variables, but
also sub-σ-fields, filtrations, processes, etc. It is called an isomorphism if it is
surjective; it then has an inverse. An embedding Ψ of (Ω,A, � ) into (Ω,A, � ) is
always an isomorphism between (Ω,A, � ) and

(
Ω,Ψ(A), �

)
.

Processes and filtrations will be parametrized by time, represented by a subset�
of � . We shall use three special cases only:

�
= � +, the usual time-axis for

continuous-time processes,
�

= − � = {. . . ,−2,−1, 0} and
�

finite (and non-
empty). In the first case (

�
= bd0,∞)), filtrations are always right-continuous; for

instance, the product of two filtrations F1 and F2 is the smallest right-continuous
filtration G on (Ω1,A1, � 1)⊗ (Ω2,A2, � 2) such that Gt ⊃ F1

t ⊗F2
t . If F = (Ft )t∈ � is

a filtration, we set

F−∞ =
⋂

t∈ �
Ft and F∞ =

∨

t∈ �
Ft ;

so F−∞ = F0 when
�

= � + and F∞ = F0 when
�

= − � . If (Ω,A, � ,F) and

(Ω,A, � ,F) are two filtered probability spaces, the filtrations F and F are called
isomorphic if there exists an isomorphism Ψ between (Ω,F∞, � ) and (Ω,F∞, � ) such
that Ψ(Ft ) = Ft for each t. For instance, if two processes have the same law, their
natural filtrations are isomorphic.

A filtration indexed by � + is Brownian if it is generated by one, or finitely
many, or countably many independent real Brownian motions, started at the origin.
It is well known that two Brownian filtrations are isomorphic if and only if they
are generated by the same number ( � ∞) of independent Brownian motions.
(For if X is an m-dimensional Brownian motion in the filtration generated by an
n-dimensional Brownian motion Y , there exist predictable processes Hij such that
dXi =

∑
j H

ij dY j ; they form an m×n matrix H verifying H tH = Idm almost
everywhere on (Ω× � +, d � ⊗dt), whence m � n.)

A filtration indexed by − � is standard if it is generated by a process (Yn)n � 0

where the Yn’s are independent r.v.’s with diffuse laws. It is always possible to choose
each Yn with law N (0, 1), so all standard filtrations are isomorphic.

2. — Immersions

Definition. — Let F and G be two filtrations on a probability space (Ω,A, � ).
The filtration F is immersed in G if every F-martingale is a G-martingale.

This is inspired by the definition of an extension of a filtration, by Dubins,
Feldman, Smorodinsky and Tsirelson in bd4ce, and by that of a morphism from a
filtered probability space to another, by Tsirelson in bd16ce; see also the liftings in
Section 7 of Getoor and Sharpe bd6ce. (In these definitions, both filtrations are not
necessarily on the same Ω.) Our definition is but a rephrasing of Brémaud, Jeulin
and Yor’s Hypothèse (H) in bd2ce and bd9ce.

Immersion implies in particular that Ft is included in Gt for each t, but it is
a much stronger property. As shown in bd2ce, it amounts to requiring that the G-
optional projection of any F∞-measurable process is F -optional (and hence equal



         

to the F -optional projection), and it is also equivalent to demanding, for each t,
that F∞ ∩ Gt = Ft and that F∞ and Gt are conditionally independent given Ft. We
shall only need the weaker sufficient condition given by Lemma 1 below, concerning
independent enlargements.

Lemma 1. — Let F and G be two independent filtrations (that is, Ft and Gt are
independent for each t). If H is the smallest filtration containing both F and G,
F is immersed in H.

Proof. — By a density argument, it suffices to show that every square-integrable
F -martingale M is anH-martingale. For s<t, Fs ∈ L∞(Fs) and Gt ∈ L∞(Gt), one can
write �

[
MtFsGt

]
= � bdGtce � bdMtFsce = � bdGtce � bdMsFsce = �

[
MsFsGt

]
. As products of

the form FsGt are total in L2(Fs⊗Gt), Mt−Ms is orthogonal to L2(Fs⊗Gt). The lemma
follows since Hs is included in Fs⊗Gt by Lemma 2 of Lindvall and Rogers bd10ce.

Another, very simple, example of immersion is obtained by stopping: if T is an
F -stopping time, the stopped filtration FT is immersed in F .

The immersion property is in general not preserved when � is replaced with
an equivalent probability; we shall sometimes write “ � -immersed” to specify the
probability. But it is preserved if the density is F∞- or G−∞-measurable:

Lemma 2. — Let F and G be two filtrations on (Ω,A, � ), F being � -immersed
in G; let

�
be a probability absolutely continuous with respect to � . If the density

D = d
�
/d � has the form D = D′D′′, where D′ is F∞-measurable and D′′ is

G−∞-measurable, then F is also
�

-immersed in G.

Proof. — By taking absolute values, we may suppose D′ � 0 and D′′ � 0. It suffices
to show that every bounded (Q,F) martingale M is also a (

�
,G)-martingale; by

adding a constant, we may also suppose M positive.
For t ∈ �

, the following equalities hold
�

-a.s. (with bd0,∞ce-valued conditional
expectations; for the last equality, approximate D′ by D′∧n and use the � -immersion
hypothesis):

� bdM∞|Gtce =
� bdDM∞|Gtce

� bdD|Gtce
=
D′′ � bdD′M∞|Gtce
D′′ � bdD′|Gtce

=
� bdD′M∞|Gtce

� bdD′|Gtce
=

� bdD′M∞|Ftce
� bdD′|Ftce

.

So
� bdM∞|Gtce is Ft-measurable, hence

� bdM∞|Gtce =
� bdM∞|Ftce = Mt.

Definition. — Let X = (Xt)t∈ � be a process and F = (Ft )t∈ � a filtration, both
on the same probability space. The process X is immersed in the filtration F if the
natural filtration of X is immersed in F .

A process X = (Xi)1 � i � n is also said to be immersed in a filtration (Fi )0 � i � n if
the process (0, X1, . . . , Xn) is immersed in F .

Recall that X is adapted to F if and only if the natural filtration of X is included
in F . Saying that X is immersed in F is much stronger: it further means that for
an F -observer, the predictions about the future behaviour of X depend on the past
and present of X only.

As for an example, remark that the same name, Brownian motion, is used for
two different objects: first, any continuous, centred Gaussian process with covariance

� bdBsBtce = s for s � t (this definition characterizes the law of B); second, a process
such that B0 = 0 and Bt−Bs is independent of Fs with law N (0, t−s) (one often
says that B is an F -Brownian motion). The latter definition, involving the filtration,



         

amounts to requiring that B has a Brownian law (former definition) and is immersed
in F .

Similarly, a Markov process is F -Markov if and only it is immersed in F ; as a
consequence, if F is immersed in G, every F -Markov process is also a G-Markov
process, with the same transition probabilities.

Lemma 2 can be rephrased in terms of immersed processes:

Corollary 1. — If a process X is � -immersed in a filtration F , and if a
probability

�
is absolutely continuous with respect to � , with a σ(X)-measurable,

or F−∞-measurable density d
�
/d � , then X is also

�
-immersed in F .

Proof. — Apply Lemma 2 and the above definition.

Tsirelson has introduced in bd16ce the notion of a joining of two filtrations. The
next definition is a particular case of joining (we demand that both filtrations are
defined on the same Ω).

Definition. — Two filtrations F and G (or two processes X and Y ) on the same
probability space (Ω,A, � ) are jointly immersed if there exists a filtration H on
(Ω,A, � ) such that both F and G (or X and Y ) are immersed in H.

To illustrate the immersion property, and also to fix some notations to be used
later, here is an easy statement.

Lemma 3. — Denote by Ωn the set {−1, 1}n, by � n the uniform probability on Ωn
(fair coin-tossing), and by ε1, . . . , εn the coordinates on Ωn; endow Ωn with the
filtration generated by the process (0, ε1, . . . , εn).

If α = (αi)1 � i � n is a predictable process on Ωn such that |α| � 1 and if
Z = (Zi)0 � i � n is the � n-martingale defined by Z0 = 1 and

Zi = Zi−1(1 + αi εi) ,

the formula
�

= Zn· � n defines a probability law on Ωn.
Let X = (Xi)1 � i � n be a process with values ±1, defined on some (Ω,A, � )

and adapted to some filtration H = (Hi)0 � i � n. The process X has law
�

and is
immersed in H if and only if

∀i ∈ {1, . . . , n} ∀e ∈ {−1, 1} � bdXi = e|Hi−1ce = 1
2

(
1 + αi(X1, . . . , Xi−1) e

)
.

Remark. — Every probability
�

on Ωn is obtained from such an α, but this
correspondence between α and

�
is not a bijection: if

�
neglects some ω’s, the

martingale Z vanishes from some time on, and modifying α after that time does not
change Z nor

�
. When restricted to the α’s such that |α| < 1 and to the

�
’s that

are equivalent to � n, this correspondence is a bijection; in this case, α will be called
the α-process associated to

�
.

Proof of Lemma 3. — Clearly, Z is a positive martingale and
�

is a probability.
A process X with values ±1 has law

�
if and only if

∀i � bdX1 = e1, . . . , Xi = eice = 2−i Zi(e1, . . . , ei) ,

∀i � bdXi = ei |X1 = e1, . . . , Xi−1 = ei−1ce = 1
2 (Zi/Zi−1)(e1, . . . , ei)or

= 1
2

(
1 + αi(e1, . . . , ei−1) ei

)
,

∀i � bdXi = e |X1, . . . , Xi−1ce = 1
2

(
1 + αi(X1, . . . , Xi−1) e

)
.or



             

Now if X has law
�

and is immersed in H,

� bdXi = e |Hi−1ce = � bdXi = e |X1, . . . , Xi−1ce = 1
2

(
1 + αi(X1, . . . , Xi−1) e

)
.

Conversely, for a ±1-valued process X adapted to H such that, for each i in
{1, . . . , n} and each e in {−1, 1}, � bdXi = e |Hi−1ce =

(
1 + αi(X1, . . . , Xi−1) e

)
, one

has on the one hand � bdXi = e |Hi−1ce = � bdXi = e |X1, . . . , Xi−1ce and on the other
hand � bdXi = e |X1, . . . , Xi−1ce =

(
1 + αi(X1, . . . , Xi−1) e

)
; so X is immersed in H

and has law
�

.

3. — Separate σ-fields

Definition. — Given a probability space (Ω,A, � ), two sub-σ-fields B and C of A
are separate if � bdB=Cce = 0 for all random variables B ∈ L0(B) and C ∈ L0(C)
with diffuse laws. Two filtrations F and G on (Ω,A, � ) are separate if the σ-fields
F∞ and G∞ are.

Two independent sub-σ-fields are always separate; this can be seen by taking
a = p = 1 in Proposition 1 below. But observe that separation depends only on the
null sets of � , whereas independence, and more generally hypercontractivity, is not
preserved by equivalent changes of probability.

Proposition 1. — Let B and C be two sub-σ-fields in a probability space (Ω,A, � ).
Suppose that, for some p ∈ bd1, 2) and some a <∞, the following inequality holds:

∀B ∈ Lp(B) ∀C ∈ Lp(C) � bdBCce � a ‖B‖Lp ‖C‖Lp .

The σ-fields B and C are separate.

Proof. — Let B ∈ L0(Ω,B, � ) and C ∈ L0(Ω, C, � ) have diffuse laws µ and ν; the
measure λ = µ+ ν is positive, diffuse, with mass 2. For each n � 1 it is possible to
partition � into 2n Borel sets E1, . . . , E2n, each with measure λ(Ei) = 1/n. When
applied to the r.v.’s 1lEi◦B and 1lEi◦C, the hypothesis entails

�
[
B ∈ Ei and C ∈ Ei

]
� a � bdB ∈ Eice

1
p � bdC ∈ Eice

1
p

= a µ(Ei)
1
p ν(Ei)

1
p � a λ(Ei)

2
p = an−

2
p .

Summing over i gives

� bdB=Cce � �
[
B and C are in the same Ei

]

=
∑

i

�
[
B ∈ Ei and C ∈ Ei

]
� 2nan−

2
p = 2an

p−2
p .

Since
p−2

p
< 0, letting n tend to infinity now yields � bdB=Cce = 0.

Remark. — When a = 1, the inequality featuring in Proposition 1 is called
hypercontractivity (because it means that the conditional expectation operator

� bd |Bce is not only a contraction from Lp(C) to Lp(B), but also a contraction from
Lp(C) to the smaller space Lq(B), where q is the conjugate exponent of p).

The next proposition is one of Tsirelson’s tools in bd16ce. It uses Proposition 1 to
show separation for some Gaussianly generated σ-fields; Thouvenot bd15ce has another
proof, via ergodic theory, that does not use hypercontractivity.



            

Proposition 2. — Let X ′ and X ′′ be two independent, centred Gaussian processes
with the same law. For each θ ∈ � the process Xθ = X ′ cos θ + X ′′ sin θ has the
same law as X ′ and X ′′; for θ 6= 0 mod π the σ-fields σ(Xθ) and σ(X ′) satisfy
the hypercontractivity property of Proposition 1 with p = 1 + | cos θ| < 2 and a = 1,
and are therefore separate.

Proof. — The first property is well known—it is the very definition of 2-stability!—
and can be readily verified by computing the covariance of Xθ.

Hypercontractivity is a celebrated theorem of Nelson bd11ce. When X ′ is just a
normal r.v., a proof by stochastic calculus is given by Neveu bd12ce; a straightforward
extension gives the case when X ′ is a normal random vector in � n (see Dellacherie,
Maisonneuve and Meyer bd3ce); and the general case follows by approximating
B ∈ Lp

(
σ(Xθ)

)
and C ∈ Lp

(
σ(X ′)

)
in Lp with r.v.’s of the form B′ = f(Xθ

t1 , . . . , X
θ
tn)

and C ′ = g(X ′t1 , . . . , X
′
tn), where f and g are Borel in n variables.

Separation stems from hypercontractivity, as shown by Proposition 1.

Non probabilistic proofs of Gaussian hypercontractivity, as well as references to
the literature, can be found in Gross bd7ce and Janson bd8ce.

4. — Cosiness

Cosiness was invented by Tsirelson in bd16ce, as a necessary condition for a filtration
to be Brownian. There is a whole range of possible variations on his original
definition; the one we choose below is taylor-made for Proposition 4.

Definition. — A filtered probability space (Ω,A, � ,F) is cosy if for each ε > 0 and
each U ∈ L0(Ω,F∞, � ), there exists a probability space (Ω,A, � ) with two filtrations
F ′ and F ′′ such that

(i) (Ω,F ′∞, � ,F ′) and (Ω,F ′′∞, � ,F ′′) are isomorphic to (Ω,F∞, � ,F);

(ii) F ′ and F ′′ are jointly immersed;

(iii) F ′ and F ′′ are separate;

(iv) the copies U ′ ∈ L0(F ′∞) and U ′′ ∈ L0(F ′′∞) of U by the isomorphisms in
condition (i) are ε-close in probability: �

[
|U ′−U ′′|>ε

]
� ε.

When there is no ambiguity on the underlying space (Ω,A, � ), we shall often
simply say that the filtration F is cosy.

This definition is not equivalent to Tsirelson’s original one. In his definition, the
notion of separation featuring in condition (iii) is a bound on the joint bracket of
any two martingales in the two filtrations, in terms of their quadratic variations.
Other possible choices would be for instance a hypercontractivity inequality, as in
Proposition 1, or a bound on the correlation coefficient for two r.v.’s in L2(F ′∞)
and L2(F ′′∞), or, when time is discrete, a bound on the predictable covariation

� bd(X ′n+1−X ′n)(X ′′n+1−X ′′n)|Fnce of any two martingales in the two filtrations. In any
case, the basic idea is always the same: we have two jointly immersed copies of the
given filtration, that are close to each other as expressed by (iv), but nonetheless
separate in some sense. As for an example, with the weak notion of separation we
are using, a filtration F such that F∞ has an atom is always cosy. Indeed, it suffices
to take (Ω,A, � ,F ′) = (Ω,A, � ,F ′′) = (Ω,A, � ,F); (i), (ii) and (iv) are trivial,
and (iii) is vacuously satisfied since no F∞-measurable r.v. has a diffuse law! When
dealing with such filtrations, other definitions of separation are more appropriate.



           

Another, more superficial, difference with Tsirelson’s definition is that, instead of
fixing U and ε, he deals with a whole sequence of joint immersions, and condition (iv)
becomes the convergence to 0 for every U of the distance in probability d(U ′, U ′′).

The use of a real random variable U could also be extended to random elements
in an arbitrary separable metric space, for instance some space of functions; by
Slutsky’s lemma, it would not be more general, but it may be notationally more
convenient.

Notice that conditions (i) and (ii) involve � and the whole filtration F in an
essential way, whereas conditions (iii) and (iv) act only on the end-σ-field F∞ and
on the equivalence class of � . Cosiness is not always preserved when � is replaced
by an equivalent probability (see Theorems 1 and 2 below); but it is an instructive
exercise to try proving this preservation by means of Lemma 2—and to see why it
does not work.

Lemma 4. — Let (Ft )t∈ � be a cosy filtration. If (tn)n � 0 is a sequence in
�

such
that tn−1 < tn for all n � 0, the filtration H = (Hn)n � 0 defined by Hn = Ftn is
cosy too.

Proof. — It suffices to remark that if a filtration (Ft )t∈ � is immersed in a filtration
(Gt)t∈ � , then (Ftn)n � 0 is immersed in (Gtn)n � 0. The lemma follows then immediately
from the definition of cosiness and the transitivity of immersions.

Lemma 5. — A filtration immersed in a cosy filtration is itself cosy.

Proof. — If (Ω,A, � ) is endowed with two filtrations F and G, if F is immersed
in G and if Ψ is an embedding of (Ω,G∞, � ) into some probability space, then the
filtration Ψ(F) is immersed in Ψ(G). The lemma follows immediately from this
remark, the definition of cosiness and the transitivity of immersions.

Corollary 2. — Let (Ω,A, � ,F) and (Ω′,A′, � ′,F ′) be filtered probability spaces
and Ψ be an embedding of (Ω,A, � ) into (Ω′,A′, � ′), such that the filtration Ψ(F)
is immersed in F ′. If (Ω′,F ′∞, � ′,F ′) is cosy, so is also (Ω,F∞, � ,F).

Proof. — This filtered probability space is isomorphic to
(
Ω′,Ψ(F∞), � ′,Ψ(F)

)
,

which is cosy by Lemma 5.

We now turn to a very important sufficient condition for cosiness, or conversely
a necessary condition for a filtration to be Gaussianly generated. It is due to
Tsirelson bd16ce, who devised cosiness to have this necessary condition at his disposal.

Proposition 3. — The natural filtration of a Gaussian process is cosy. More
generally, let X = (Xi)i∈I be a Gaussian process and F = (Ft )t∈ � a filtration.
If there are subsets It ⊂ I such that Ft =

⋂
ε>0

σ(Xi, i ∈ It+ε) for each t ∈ �
, the

filtration F is cosy.

(In this statement, It+ε should be taken equal to It when the time
�

is discrete.)

Proof. — We may suppose X centred. Call (Ω,A, � ) the sample space where X
is defined. On the filtered product space (Ω,A, � ,F) = (Ω,A, � ,F)⊗ (Ω,A, � ,F),
the processes X0(ω) = X0(ω1, ω2) = X(ω1) and Xπ/2(ω) = Xπ/2(ω1, ω2) = X(ω2)
are independent copies of X. For θ ∈ � , the process Xθ = X0 cos θ + Xπ/2 sin θ is
yet another copy of X; notice that Xθ and Xθ+π/2 are independent.

Every r.v. U ∈ L0(F∞) has the form u(Xi1 , . . . , Xik , . . .), where u is Borel and
(i1, . . . , ik, . . .) is a sequence in I. This makes it possible to define an embedding Φθ



            

of (Ω,F∞, � ) into (Ω,F∞, � ) by Φθ(U) = u(Xθ
i1
, . . . , Xθ

ik
, . . .). When θ → 0, Xθ tends

to X0 almost surely, hence also in probability, and Φθ(U) → Φ0(U) by Slutsky’s
lemma (see Théorème 1 of bd1ce); so, given U and ε, Φθ(U) is ε-close to Φ0(U) in
probability if θ is close enough to 0.

To establish cosiness, we shall take F ′ = Φ0(F) and F ′′ = Φθ(F) with θ close (but
not equal) to 0. By the preceding remark, condition (iv) is fulfilled for some such θ;
as θ 6= 0, condition (iii) stems from Proposition 2, with X ′ = X0 and X ′′ = Xπ/2.

To prove (ii), we shall establish that each filtration Fθ = Φθ(F) is immersed
in the product filtration F . The latter is the smallest right-continuous filtration
such that Ft ⊃ F0

t
∨ Ftπ/2. Now Fθ

t
=
⋂
ε>0 σ(Xθ

i , i ∈ It+ε) ⊂ F0
t+ε
∨ Fπ/2t+ε , whence

Fθ
t
⊂ F0

t
∨ Ftπ/2 by applying twice Lemma 2 of Lindvall and Roger bd10ce; this

yields the inclusion Fθ
t
∨ Ftθ+π/2 ⊂ F0

t
∨ Ftπ/2. The inversion formulae

X0 = Xθ cos θ −Xθ+π/2 sin θ and Xπ/2 = Xθ sin θ +Xθ+π/2 cos θ

give the reverse inclusion, so Fθ
t
∨ Ftθ+π/2 = F0

t
∨ Ftπ/2, and F is also the smallest

right-continuous filtration such that Ft contains Fθ
t
∨Ftθ+π/2. As Fθ and Fθ+π/2 are

independent filtrations, Fθ is immersed in F by Lemma 1.

Corollary 3. — A Brownian filtration (Ft )t � 0, a standard filtration (Fn)n∈− � ,
are always cosy.

Remarks. — Proposition 3 becomes false if it is only supposed that F∞ is
Gaussianly generated, without assuming the same for each Ft. In that case, the same
construction as in the above proof can be performed, yielding filtrations enjoying
(ii), (iii) and (iv). But the immersion property (i) may fail, because F0

t
∨ Ftπ/2

and Fθ
t
∨ Ftθ+π/2 are no longer equal. For instance, the σ-field of any Lebesgue

space is always generated by a normal random variable, and yet there exist non-
cosy filtrations F such that (Ω,F∞, � ) is a Lebesgue space. Some examples are
the filtered probability spaces constructed by Dubins, Feldman, Smorodinsky and
Tsirelson (Theorems 1 and 2 below); other examples are the natural filtration of a
Walsh process, shown by Tsirelson bd16ce to be non-cosy, and of a standard Poisson
process (by the same argument as in the next paragraph).

Proposition 3 also becomes false if “Gaussian” is replaced with “α-stable for some
α < 2”, because the separation property (iii) is not suited to those processes. For
instance, let X be a Lévy α-stable process; call Ψ(λ) its characteristic exponent (so
exp bdiλXt+tΨ(λ)ce is a martingale for each λ), call T the first time when |∆XT | � 1
(so 0 < T < ∞), and let h > 0 be such that � bdT<hce � 1/3. Suppose we have
two copies X ′ and X ′′ of X, jointly immersed in some filtration H, with separate
filtrations.

The H-stopping times T ′ = inf {t : |∆X ′| � 1} and T ′′ = inf {t : |∆X ′′| � 1}
verify T ′ 6= T ′′ a.s. by separation. Let Yt = X ′T ′′+t −X ′T ′′ . As T ′′ is an H-stopping
time and X ′ is immersed in H, the processes expbdiλYt+tΨ(λ)ce are H-martingales,
and Y has the same law as X. But on the event {T ′′<T ′<T ′′+h}, a jump larger
than 1 occurs for Y at time T ′−T ′′, that is, between the times 0 and h. So, by
definition of h, one has � bdT ′′<T ′<T ′′+hce � 1/3; and similarly, by exchanging
X ′ and X ′′ in the definition of Y , � bdT ′<T ′′<T ′+hce � 1/3. Taking the union of
these two events and using T ′ 6= T ′′ gives �

[
|T ′−T ′′|<h

]
� 2/3. This bounds

below the distance in probability between T ′ and T ′′, and condition (iv) in the
definition of cosiness cannot be satisfied.



             

The next proposition, a sufficient condition for non-cosiness, summarizes the
strategy of Dubins, Feldman, Smorodinsky and Tsirelson in bd4ce.
Proposition 4. — Let (Ω,A, � ,F) be a filtered probability space and (εn)n<0 a
sequence in bd0, 1) such that

∑
n<0 εn < ∞. Suppose given a strictly increasing

sequence (tn)n � 0 in
�

(that is, tn−1 < tn), and an � − � -valued random vector
(Un)n � 0, with diffuse law, such that Un is Ftn-measurable for each n and U0 takes
only finitely many values.

Assume that for any filtered probability space (Ω,A, � ,F) and for any two
filtrations F ′ and F ′′ isomorphic to F and jointly immersed in F , one has for
each n < 0

� bdU ′n+1 =U ′′n+1|Ftnce � εn on the event {U ′n 6=U ′′n}
(where U ′n and U ′′n denote the copies of Un in the σ-fields F ′∞ and F ′′∞).

Then F is not cosy.

The hypothesis that the whole process (Un)n � 0 has a diffuse law is of course
linked to the separation condition we are using. But notice that each Un taken
separately is not necessarily diffuse; in the situation considered later (in the proof
of Theorem 1), each Un can take only finitely many values.

Proof. — By Lemma 4, we may suppose
�

= − � and tn = n without loss of
generality.

If F ′ and F ′′ are isomorphic to F and immersed in F , we know that

� bd1l{U ′
n+1
6=U ′′

n+1
}|Fnce � (1−εn) on the event {U ′n 6=U ′′n} .

By induction on n, this implies

1l{U ′n 6=U ′′n } � bd1l{U ′
n+1
6=U ′′

n+1
} . . . 1l{U ′0 6=U ′′0 }|Fnce

� 1l{U ′n 6=U ′′n } (1−εn) . . . (1−ε−1)

for n < 0, and a fortiori

(∗) ∀n � 0 � bdU ′0 6=U ′′0 |Fnce � ε on the event {U ′n 6=U ′′n} ,
where ε > 0 denotes the value of the convergent infinite product

∏
n<0

(1−εn).

To establish non-cosiness, consider any two isomorphic copies of F , jointly
immersed in F and separate. As the law of (Un)n � 0 is diffuse, the separation
assumption gives � bd∃n � 0 U ′n 6=U ′′nce = 1, and there exists an m < 0 such that

� bd∃n∈{m,m+1, . . . , 0} U ′n 6=U ′′nce � 1
2 .

The F -stopping time T = inf {n : m � n � 0 and U ′n 6=U ′′n} verifies � bdT<∞ce � 1
2

and U ′n 6=U ′′n on {T = n}. The minoration (∗) gives � bdU ′0 6=U ′′0 |FT ce � ε on {T<∞},
whence � bdU ′0 6=U ′′0 ce � � bdU ′0 6=U ′′0 , T<∞ce � 1

2 ε. As U ′0 and U ′′0 assume only finitely
many values, their distance in probability is bounded below, and condition (iv) in
the definition of cosiness is not satisfied.

5. — The main results

The following two theorems are the rewriting, in the language of cosiness, of the
amazing results of Dubins, Feldman, Smorodinsky and Tsirelson bd4ce and bd5ce; see
also bd14ce.



              

The canonical space for a coin-tossing game indexed by the time
�

= − � will be
denoted by (Ω,A, � ,F), where Ω = {−1, 1}− �

is endowed with the coordinates εn,
Fn is generated by σ(εm,m � n) and the null events, A = F0 = F∞ and � is the fair
coin-tossing probability, making the εn’s independent and uniformly distributed
on {−1, 1}.
Theorem 1. — Given δ > 0, there exists on (Ω,A) a probability

�
such that

(i)
�

is equivalent to � and
∣∣∣d

�

d � − 1
∣∣∣ < δ ;

(ii) F = (Fn)n � 0 is not cosy on (Ω,A, �
).

By Corollary 3, (ii) implies that (Ω,A, �
,F) is not standard.

If X = (Xn)n � 0 is a process with law
�

(defined on some probability space),
its natural filtration is isomorphic to F under

�
; by Theorem 1 and Corollary 2,

X cannot be immersed in any cosy filtration whatsoever, nor a fortiori in any
standard filtration (Corollary 3).

Let (W,B, λ,G) denote the one-dimensional Wiener space: On W = C( � +, � ),
wt are the coordinates, λ makes w a Brownian motion started at the origin,
G = (Gt)t � 0 is the natural filtration of w , and B = G∞.

Theorem 2. — Given δ > 0, there exists on (W,B) a probability µ such that

(i) µ is equivalent to λ and
∣∣∣dµ
dλ
− 1
∣∣∣ < δ ;

(ii) G = (Gt)t � 0 is not cosy on (W,B, µ).

By Corollary 3, (ii) implies that the filtration G on (W,B, µ) is not Brownian.
If X = (Xt)t � 0 is a process with law µ (defined on some probability space),

its natural filtration is isomorphic to G under µ; by Theorem 2 and Corollary 2,
X cannot be immersed in any cosy filtration whatsoever, nor a fortiori in any
Brownian filtration (Corollary 3).

Proof of Theorem 2, assuming Theorem 1. — Given δ > 0, Theorem 1
yields a probability

�
on Ω, such that (Ω,A, �

,F) is not cosy, and whose density
D = D(εn, n � 0) = d

�
/d � verifies |D − 1| < δ. Denote by Hn the σ-field G2n on

W and by H the filtration (Hn)n � 0.
Define a mapping S : W → Ω by S = (Sn)n � 0 with Sn(w) = sgn(w2n−w2n−1);

the law λ◦S−1 of S under λ is � . Define µ on W by dµ/dλ = D′ = D◦S. On
(W,B, λ), the vector (Sn+1, . . . , S0) and the σ-field Hn are independent; hence, S is
λ-immersed in H. By Corollary 1, S is also µ-immersed in H. Now the law µ◦S−1

of S under µ is
�

since, for A ∈ A,

µbdS ∈ Ace = µbd1lA◦Sce = λbd1lA◦S D′ce = λbd(D1lA)◦Sce = � bdD1lAce =
�

(A) .

So the mapping Ψ : L0(Ω,A, �
) → L0(W,B, µ) defined by Ψ(X) = X◦S is an

embedding of (Ω,A, �
) into (W,B, µ). The filtration Ψ(F) is the natural filtration

of S, so it is µ-immersed in H. Since (Ω,F∞,
�
,F) is not cosy by definition of

�
,

neither is (W,H0, µ,H) by Corollary 2, nor (W,G∞, µ,G) by Lemma 4.

6. — Proof of Theorem 1

From now on, we follow closely Schachermayer’s simplified exposition bd14ce of the
construction by Dubins, Feldman, Smorodinsky and Tsirelson.



           

Definition. — Let p � 1 be an integer and M the set of all rectangular matrices
τ = (τ ji )1 � i � p,1 � j � 2p with entries τ ji in {−1, 1}. Two matrices τ ′ and τ ′′ in M are
close if for at least 2p/p values of j, there are at most p12/13 values of i such that
τ ′ji 6= τ ′′ji .

Lemma 6 (Schachermayer’s Combinatorial Lemma). — For each p large enough,
there exist 24p matrices in M that are pairwise not close.

Schachermayer’s proof below uses very rough combinatorial estimates and can
give 22p/p pairwise not close matrices, instead of the mere 24p needed in the sequel;
this overabundance is already present in the original proof by Dubins, Feldman,
Smorodinsky and Tsirelson.

Proof. — Let π denote the uniform probability onM; π chooses the entries τ ji by
tossing a fair coin. It suffices to show that for each τ ∈ M, the “neighbourhood”
Cτ = {σ ∈M : σ and τ are close} has probability π(Cτ ) � 2−4p. So fix τ and let
sji = −τ ji . As

Cτ = {σ ∈M : for at least 2p/p values of j,
there are at most p12/13 values of i such that σji = sji } ,

one has
Cτ =

⋃

J⊂{1,...,2p}
|J|=d2p/pe

⋂

j∈J
Cjτ ,

where
Cjτ = {σ ∈M : for at most p12/13 values of i, σji = sji}

and

π(Cjτ ) =
1

2p

{(
p

0

)
+

(
p

1

)
+ . . .+

(
p

bdp12/13ce

)}
.

For p large enough, the sum has less than p/2 terms and the last one is the largest,
giving

π(Cjτ ) � 1

2p
p

2

(
p

bdp12/13ce

)
� 1

2p
p

2
pp

12/13

;

lnπ(Cjτ ) � −p ln 2 + ln
p

2
+ p12/13 ln p .

This is equivalent to −p ln 2 when p tends to infinity, so, for p large enough,
lnπ(Cjτ ) � − 1

2p ln 2 and π(Cjτ ) � 2−p/2.
The columns of a random matrix in M are independent for π; so the Cjτ ’s are

independent events, and, setting q = d2p/pe,

π(Cτ ) = π
[ ⋃

J⊂{1,...,2p}
|J|=q

⋂

j∈J
Cjτ

]
�

∑

J⊂{1,...,2p}
|J|=q

π
[⋂

j∈J
Cjτ

]
�
(

2p

q

)
(2−p/2)

q
.

Using
(a
q

)
� aq

q!
� aq

(q/3)
q , one gets

π(Cτ ) �
( 2p

q/3
2−

p
2

)q
�
(
3p 2−p/2

)q

and
1

4p
lnπ(Cτ ) � 1

4p

⌈2p

p

⌉ (
ln (3p)− p

2
ln 2

)
.

This tends to −∞ when p tends to infinity, so π(Cτ ) � 2−4p for p large enough.



            

The next lemma is the Fundamental Lemma of Dubins, Feldman, Smorodinsky
and Tsirelson bd4ce; we borrow it from bd14ce. Recall the notations of Lemma 3: � n is
the uniform law (fair coin-tossing) on Ωn = {−1, 1}n.

Lemma 7. — For every p large enough, there exists a set Q2p of probabilities on Ω2p

with the following three properties:

(i) Q2p has 24p elements;

(ii) each
� ∈ Q2p satisfies ∣∣∣ d

�

d � 2p

− 1
∣∣∣ � p−1/4 ;

(iii) for any two different probabilities
� ′ and

� ′′ in Q2p and any two {−1, 1}-
valued processes X ′ and X ′′, indexed by {1, . . . , 2p}, with laws

� ′ and
� ′′, defined

on the same probability space (Ω,A, � ) and jointly immersed, one has

�
[
X ′i = X ′′i for all i ∈ {1, . . . , 2p}

]
� p−1/4 .

Since
� ′ and

� ′′ are not far from � 2p by (ii), hence not far from each other, it is
always possible to find two processes X ′ and X ′′ with laws

� ′ and
� ′′ and such that

� bdX ′ = X ′′ce is close to 1. What the lemma says, is that if X ′ and X ′′ have these
laws and are jointly immersed, then � bdX ′ = X ′′ce must be small.

In bd16ce, Tsirelson shows that a Walsh process cannot be immersed in a cosy
filtration. A key step in his method is a lower estimate of the expected distance

� bdd(X ′, X ′′)ce, where X ′ and X ′′ are two Walsh processes embedded in a common
filtration. The majoration of � bdX ′ = X ′′ce in Lemma 7 is a discrete analogue of this
minoration.

Proof. — The 24p probabilities to be constructed on Ω2p will be defined
through their α-processes (notations of Lemma 3). More precisely, to each matrix
τ ∈ M (notations of Lemma 6), we shall associate an ατ and a

� τ such that
|d � τ/d � 2p−1| � p−1/4. Then we shall prove that if τ ′ and τ ′′ are not close, any
two processes X ′ and X ′′, having laws

� τ ′ and
� τ ′′ and jointly immersed, verify

� bdX ′ = X ′′ce � p−1/4. As Lemma 6 gives 24p such matrices τ , the 24p associated
probabilities will pairwise have property (iii), and Lemma 7 will be established.

As was already the case for Lemma 6, the proof works for p � p0 where p0 is an
unspecified constant. The symbol

•� will be used for inequalities valid for p large
enough.

Step one: Definition of a probability
� τ for each matrix τ , and two estimates on

� τ .

We shall slightly change the notations: a matrix τ ∈ M will not be written (τ ji )
with 1 � i � p and 1 � j � 2p as in Lemma 6, but (τ

e1,...,ep
i ), where i ranges

from p+1 to 2p and e1, . . . , ep are in {−1, 1} (use an arbitrary bijection between
{1, . . . , 2p} and {−1, 1}p).

The matrix τ ∈ M is fixed. The coordinates on Ω2p are ε1, . . . , ε2p. Define a
predictable process on Ω2p by

βi =

{
0 for 1 � i � p
η τ

ε1,...,εp
i for p+1 � i � 2p,

where η = p−11/12 is a small positive number. (This β is not the promised ατ yet;
be patient!) A � 2p-martingale Z = (Zi)1 � i � 2p is defined on Ω2p by Z0 = 1 and

Zi = Zi−1(1 + βiεi) for 1 � i � 2p ;



           

it verifies Zi = 1 for 1 � i � p. Set γ = p−2/7, introduce the stopping time

T = 2p ∧ inf {i : |Zi− 1| > γ} ,
and remark that p < T � 2p. The probability

� τ will be ZT · � 2p ; in other words, the
martingale associated with

� τ is the stopped ZT , and the corresponding α-process
(notations of Lemma 3) is β up to time T and 0 after T .

Now, by definition of T , 1−γ � ZT−1 � 1+γ � 2, so

|ZT−1| � |ZT−ZT−1|+ |ZT−1−1| � η ZT−1 + |ZT−1−1| � 2η + γ
•� p−1/4 ,

yielding property (ii).

Observe that

∥∥ZT−1
∥∥2

L2( � 2p)
=

2p−1∑

i=p

∥∥ZTi+1−ZTi
∥∥2

L2( � 2p)
�

2p−1∑

i=p

∥∥ZTi+1−ZTi
∥∥2

L∞

�
2p−1∑

i=p

η2
∥∥ZTi 1l{T>i}

∥∥2

L∞
�

2p−1∑

i=p

4η2 = 4pη2 ;

this gives the estimate

� 2pbdT < 2pce � � 2p

[
|ZT−1| > γ

]
� 4pη2

γ2
,

whence, using property (ii),
� τbdT < 2pce �

(
1 + p−1/4

)
� 2pbdT < 2pce � 8pη2γ−2 •� 1

4 p
−1/4 .

Step two: If two matrices τ ′ ∈ M and τ ′′ ∈ M are not close, any two jointly
immersed processes X ′ and X ′′ with laws

� τ ′ and
� τ ′′verify � bdX ′ = X ′′ce � p−1/4.

We are given two matrices τ ′ and τ ′′, not close to each other; the construction of
Step one, performed for τ ′ and τ ′′, yields on Ω2p two martingales Z ′ and Z ′′, two

stopping times T ′ and T ′′, and two laws
� τ ′ and

� τ ′′ .

LetX ′ andX ′′ be two processes indexed by {1, . . . , 2p}, defined on some (Ω,A, � ),
jointly immersed in some filtration (Hi)1 � i � 2p, with respective laws

� τ ′ and
� τ ′′ .

The processes X ′ and X ′′ can be considered as Ω2p-valued random variables; as X ′

and X ′′ are H-adapted, S′ = T ′◦X ′ and S′′ = T ′′◦X ′′ are H-stopping times, as well
as S = S′ ∧ S′′.

One has � bdS′< 2pce =
� τ ′bdT ′< 2pce � 1

4 p
−1/4 and similarly for S′′; hence

� bdS < 2pce � 1
2 p
−1/4, and to establish the claim of Step two, it suffices to show

that � bdX ′=X ′′ and S = 2pce � 1
2 p
−1/4.

Fix e1, . . . , ep ∈ {−1, 1}p. For i such that p+1 � i � 2p, set t′i = τ ′e1,...,epi

and t′′i = τ ′′e1,...,epi . On the event Ee1,...,ep = {X ′1 = X ′′1 = e1, . . . , X
′
p = X ′′p = ep},

Lemma 3 and the definitions of
� τ ′ and

� τ ′′ yield for p+1 � i � 2p and e = ±1

� bdX ′i = e |Hi−1ce = 1
2 (1+ηt′ie1l{S′>i−1})

� bdX ′′i = e |Hi−1ce = 1
2 (1+ηt′′i e1l{S′′>i−1}) ;

hence, on the event Ee1,...,ep ∩ {S > i−1}, one has

� bdX ′i = e |Hi−1ce = 1
2 (1+ηt′ie) and � bdX ′′i = e |Hi−1ce = 1

2 (1+ηt′′i e) .



            

Consequently, on the same event, if t′i 6= t′′i , that is, if t′it
′′
i = −1, one can write

� bdX ′i =X ′′i |Hi−1ce � � bdX ′i = t′′i or X ′′i = t′i |Hi−1ce
� � bdX ′i = t′′i |Hi−1ce+ � bdX ′′i = t′i |Hi−1ce
= 1

2 (1+ηt′it
′′
i ) + 1

2 (1+ηt′′i t
′
i) = 1

2 (1−η) + 1
2 (1−η) = 1−η ;

and on Ee1,...,ep , one has 1l{S>i−1} � bdX ′i =X ′′i |Hi−1ce � 1l{S>i−1} (1−η)
1lt′
i
6=t′′
i . Since

the events

Ai = Ee1,...,ep ∩
{
X ′p+1 =X ′′p+1, . . . , X

′
i =X ′′i , S > i−1

}

verify Ai ∈ Hi and Ai = Ai−1 ∩ {S > i−1} ∩ {X ′i = X ′′i }, one can write for
p+1 � i � 2p

� bdAi |Hi−1ce = 1lAi−1
1l{S>i−1} � bdX ′i =X ′′i |Hi−1ce

� 1lAi−11l{S>i−1} (1−η)
1lt′
i
6=t′′
i � 1lAi−1 (1−η)

1lt′
i
6=t′′
i .

By induction, this gives for i � p

� bdAi |Hpce � 1lEe1,...,ep (1−η)
1lt′
p+1
6=t′′
p+1

+···+1lt′
i
6=t′′
i ;

taking i = 2p, we finally get

1lEe1,...,ep � bdX ′=X ′′, S= 2p |Hpce � 1lEe1,...,ep (1−η)
Card {i : t′i 6=t′′i }.

Unfix e1, . . . , ep and write

� bdX ′=X ′′, S= 2pce = �
[ ∑
e1,...,ep

1lEe1,...,ep � bdX ′=X ′′, S= 2p |Hpce
]

� �
[
(1−η)

N ]
,

where N denotes the number of i’s such that τ ′
X′1,...,X

′
p

i 6= τ ′′
X′1,...,X

′
p

i . Since the
α-process associated to

� τ ′ is zero on the interval {1, . . . , p}, X ′1, . . . , X ′p are
independent and uniformly distributed on {−1, 1}. Now τ ′ and τ ′′ are not close,
so for less than 2p/p values of (e1, . . . , ep), there are at most p12/13 values of i such
that τ ′e1,...,epi 6= τ ′′e1,...,epi , and

�
[
N � p12/13

]
� 1

p
.

This implies

� bdX ′=X ′′, S= 2pce � � bd(1−η)
Nce � 1

p
+ (1−η)

p12/13

� p−1 + e−η p
12/13

= p−1 + e−p
1/156 •� 1

2 p
−1/4 .

The proof of step two and of Lemma 7 is complete.

As we shall use Lemma 7 only in the case when p has the form 2k−1, it is
convenient to re-state it in this case:

Corollary 4. — For every k large enough, there exists a set Q2k of probabilities
on Ω2k with the following three properties:

(i) Q2k has 22k+1

elements;

(ii) each
� ∈ Q2k satisfies

∣∣∣ d
�

d � 2k
− 1
∣∣∣ � 2−(k−1)/4 ;

(iii) for any two different probabilities
� ′ and

� ′′ in Q2k and any two {−1, 1}-
valued processes X ′ and X ′′, indexed by {1, . . . , 2k}, with laws

� ′ and
� ′′, defined

on the same probability space (Ω,A, � ) and jointly immersed, one has

�
[
X ′i = X ′′i for all i ∈ {1, . . . , 2k}

]
� 2−(k−1)/4 .



           

Proof of Theorem 1. — We may and shall suppose that δ < 1
2 . Let k0 be a

number such that Corollary 4 holds for k � k0 and that
∏

k � k0

(
1− 2−(k−1)/4

)
> 1−δ and

∏

k � k0

(
1 + 2−(k−1)/4

)
< 1+δ .

Instead of working with the sample space {−1, 1}− �
, we shall consider

Ω =

k0∏

k=∞
Ω2k = . . .× Ω2k × . . .× Ω2k0

endowed with the product probability � = . . .× � 2k × . . .× � 2k0 . The projection of Ω
on the factor Ω2k will be called X−k. The coordinates on Ω2k will not be denoted by
ε1, . . . , ε2k , but by ε−2k+1+1, ε−2k+1+2, . . . , ε−2k . This identifies Ω with the canonical
space of a coin-tossing game indexed by the integers � −2k0 (this is {−1, 1}− �

up
to a translation of the time-axis). The factor space Ω2k corresponds to time ranging
from −2k+1+1 to −2k. The filtration F = (Fi )i � −2k0 is the one generated by the
coordinates (εi)i � −2k0 .

For each k � k0, notice that the sets Ω2k+1 and Q2k have the same cardinality
by condition (i) of Corollary 4, and choose a bijection Mk from Ω2k+1 to Q2k . For
x−k−1 ∈ Ω2k+1 , Mk(x−k−1) is a probability on Ω2k ; this defines a Markov transition
matrix Mk(x−k−1, x−k) from Ω2k+1 to Ω2k . Its density

mk(x−k−1, x−k) =
Mk(x−k−1, x−k)

� 2k(x−k)
=
Mk(x−k−1, x−k)

2−2k

verifies �
[
mk(X−k−1, X−k)

]
= 1, and also |mk(x−k−1, x−k)− 1| � 2−(k−1)/4 by

condition (ii) of Corollary 4. The infinite product

D(ω) =
∏

k � k0

mk

(
X−k−1(ω), X−k(ω)

)

satisfies ∏

k � k0

(1−2−(k−1)/4) � D(ω) �
∏

k � k0

(1+2−(k−1)/4) ,

whence |D(ω)−1| < δ and � bdDce = 1 by dominated convergence. This defines a
probability

�
= D · � on Ω, satisfying condition (i) of Theorem 1. For

�
, the process

X = (. . . , X−k, . . . , X−k0
) is Markov, with the Mk’s as transition matrices, as can

readily be checked by setting Dk = � bdD|F−2kce = �
[ ∏
` � k−1

m`(X−`−1, X−`)
]

and
writing

� [ k⋂

`=k0

{X−` =x−`}
]

=
k−2∏

`=k0

M`(x−`−1, x−`) �
[
Dk 1l{X−k=x−k}

]

=
k−2∏

`=k0

M`(x−`−1, x−`)
� bdX−k =x−kce .

To complete the proof, it remains to establish that (Ω,F∞,
�
,F) is not cosy;

this will be done by applying Proposition 4 to (Ω,F∞,
�
,F), with t` = −2−` and

U` = X`. The random vector X = (X`)` � −k0
can be identified with (εi)i � −2k0 ; its

law
�

is diffuse, for it is equivalent to � . So, to apply Proposition 4 (with the index
−k0 instead of 0; this is irrelevant), it suffices to establish the following lemma.



           

Lemma 8. — On some (Ω,A, � ), let F ′ and F ′′ be two filtrations isomorphic
to F , jointly immersed in some filtration F ; call X ′ and X ′′ the copies of X in
the σ-fields F ′−2k0

and F ′′−2k0
. For every k > k0, on has

� bdX ′−k+1 = X ′′−k+1|F−2kce � 2−(k−2)/4 on the event {X ′−k 6= X ′′−k} .
Proof. — In the filtration F , X is a Markov process with transition probabilities
the Mk’s. By isomorphic transfer and immersion, so are also X ′ and X ′′ in F .

Fix k � k0, fix x′ and x′′ in Ω2k such that x′ 6= x′′. Take an arbitrary
F−2k -measurable event A included in {X ′−k = x′, X ′′−k = x′′}, introduce the new
probability � A = � bd |Ace, and observe that the density � A/d � is F−2k -measurable.
By Corollary 1, X ′−k+1=(ε′−2k+1, . . . , ε

′
−2k−1) and X ′′−k+1=(ε′′−2k+1, . . . , ε

′′
−2k−1) are

� A-immersed in the filtration (F−2k+1,F−2k+1, . . . ,F−2k−1). Since their respective
laws under � A are Mk−1(x′) and Mk−1(x′′), two different probabilities in Q2k−1 ,
property (iii) of Corollary 4 gives � AbdX ′−k+1 = X ′′−k+1ce � 2−(k−2)/4. As A is an
arbitrary F−2k -measurable event included in {X ′−k = x′, X ′′−k = x′′}, this implies

� bdX ′−k+1 = X ′′−k+1|F−2kce � 2−(k−2)/4 on {X ′−k = x′, X ′′−k = x′′} .
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