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ENTROPY RIGIDITY OF ANOSOV FLOWS IN DIMENSION 3

Patrick Foulon
U.M.R. 7501 du C.N.R.S

Abstract
We show that for a smooth contact Anosov flow on a closed three manifold the
measure of maximal entropy is in the Lebesgue class if and only if the flow is up to
finite covers conjugate to the geodesic flow of a metric of constant negative curvature
on a closed surface.This shows that the ratio between the measure theoretic entropy
and the topological entropy of a contact Anosov flow is strictly smaller than one on
any closed three manifold which is not a Seifert bundle.



0 Introduction

Given a compact connected manifold and a flow ¢;,t € R, we can consider its
set M () of invariant probability measures. There is a welknown map h : M (¢) — R
which associates to each invariant probability measure its entropy. This notion is very
well adapted to the study of dynamics having a strong sensitivity to initial conditions
such as the Anosov flows.

In this case it is known that the maximum of h, called topological entropy, is
realized by a unique probability measure v called the Bowen-Margulis measure. A
natural question is : when is v in the Lebesgue measure class 7

This question is particularly relevant for the geodesic flows of Riemannian met-
rics of negative curvature. The subject matter of one of the entropy rigidity conjec-
tures is precisely that v is in the Lebesgue class if and only if the metric is locally
symmetric.

The geodesic flows, furthermore preserve the Liouville probability measure u,
whose corresponding entropy h,, is often called the metric entropy.

In that context this entropy rigidity conjecture admits the equivalent statement :
for negatively curved compact manifolds the metric entropy and the topological en-
tropy are equal if and only if the metric is locally symmetric. This conjecture is still
open, except in dimension two, when it was solved by A. Katok.

In order to get some rigidity results for Anosov flows, one has to assume further-
more that the flow is at least C?. Otherwise for instance, for any given C'*°- geodesic
flow, there always exists a time change such that, the Bowen-Margulis measure of
the new flow is in the Lebesgue class [Pa-Po|]. But then the reparametrised flow is
not in the C?-class.

I don’t know what can happen in higher dimensions. It seems nevertheless
reasonable to conjecture that the Bowen-Margulis measure of C?- Anosov flows on
compact three manifolds are in the Lebesgue class only for a well defined list of special
cases. I could not achieve this in that generality. I will furthermore assume some
regularity at infinity, namely, the associated canonical one form will be supposed to
be continuously differentiable.

This regularity condition is fulfilled for geodesic flows of smooth Riemannian
or Finsler metrics. More generally the set of such flows consists of constant time
suspensions of Anosov diffeomorphisms of the torus and of the contact Anosov flows.
Before stating the theorem, let us recall some notations, definitions and facts. In what
follows we only consider C*° Anosov flows. We could as well consider C? regularity.



0.1 Let M be a C*°-closed 3-manifold. The C*°-flow, ¢;, generated by the non-
singular smooth vector field X is an Anosov flow if there exists a flow invariant
splitting of the tangent bundle

TM =RX @ E°® E* | (1)

a Riemann metric on M and two positive real numbers a and b such that
(i) VZ e E°, Vvt >0, [|[Tp(2)]| < ae™||Z]]

If the canonical invariant one form A, given by
A(E°P® E*)=0, AX)=1 (3)

is a C'-contact form, that is A A dA is a volume form, one says that the flow is of
contact type. To be more precise the generator X is the Reeb field of the one-form
A, because from (3) it satisfies

A(X)=1,dA(X,)=0.

0.2 In general the splitting (1) is not much regular than Holder. But in dimension
three [HP1] M. Hirsh and C. Pugh have shown that the stable (unstable)distributions
RX @ E* and RX @ E* are C'.

If one furthermore assumes that the flow is of contact type, then the splitting (1)
is also C. All theses distributions are known to be integrable. Let W, W%, WS W,
denote respectively the strong stable, strong unstable, stable, unstable foliations. For
all these foliations the leaves are C°°-immersions of either R? or R such that their
jets of all orders are transversely continuous.
Let us recall the definition of the topological entropy of a flow on a compact manifold.
For any € > 0 and t > 0 one consider the “ball”

B(a,t,e) = {y| 0 <7 < t,d(pr(2), pr(y)) <} -
Then let N(e,t) be the minimal number of such open sets needed to cover the man-

ifold. The topological entropy is then given by the formula

—1
htop = 6lirn lim — Log N(g,t) .

—0 t—oot

The entropy h,,, associated to an invariant probability measure m, is less geo-
metrical, for its construction see for instance [M]. We know the following inequality

B < higop - (4)

The equality is achieved by only one probability measure v, known as the Bowen-
Margulis measure.



0.3 results

The main result of this paper is now.

Theorem.— Let ¢, be a C*™-contact Anosov flow on a closed 3-manifold M?3. If
its metric entropy is equal to its topological entropy, then up to finite covers, the
flow ¢, is C°°-conjugate to the geodesic flow on a closed surface of constant negative
curvature.

In a forthcoming paper we prove the existence of C'*°-contact Anosov flows on
closed 3 - manifolds which are not Seifert bundles. As a by product of the above
mentioned theorem, we may remark that in this case, the Bowen-Margulis measure
is not in the Lebesgue measure class and the ratio metric entropy / topological
entropy is strictly smaller than one.

As previously said, the case of geodesic flows on surfaces was solved by A. Katok
[Ka 1]. The methods involved are of a Riemannian nature as suggested by the title
of his paper ”four applications of conformal equivalence to geometry and dynamics*.
Here the main tool is the Livsic homological theorem, which plays a crucial role to
show that under our assumptions, the densities of the Margulis measures [M] of the
strong stable leaves are in fact differentiable.

Then, with some slight modifications, we can apply a theorem of L. Green to
show that the manifold is homogeneous. We prefer to give an alternative proof
which produces a C' — (SL(2,R), SL(2,R)) structure and a C'-conjugacy. The nice
regularity theorem for the conjugacy of Anosov flows in dimension 3 of [LM] provides
finally the desired C'*°-regularity.

All these techniques are well-known by experts and, in a sense, this theorem
could have been proved by any of them and may be considered as a folklore theorem.
Anyway, one should make it public.

Acknowledgments. I want to thank F. Ledrappier for interesting discussions.

1. The Margulis Measure

A contact Anosov flow is topologically mixing (see [Ha, K]). G.A. Margulis
proved that, for a topologically mixing Anosov flow, there exists a unique (up to
scalars) family v°* of measures supported by the weak unstable leaves such that

o o O = ehtyou (5)

and invariant by the holonomy of the strong stable foliation.
Similarly, there exists a family of measures v® supported by the strong stable leaves
such that

viop, =e MyS (6)

One can, roughly speaking, make the weighted product of these two measures,
(see [Ha, K| or [M]). I need to repeat briefly this construction. Each individual
leave of any of these invariant foliations is locally a smooth submanifold. Then,
any Riemannian metric ¢ on M induces a topology on the leaves. A subset A is
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open in a leaf W?(p) if A C W#(p) is open for the previous topology. This pair of
transversal foliations W* and W°® has a local product structure. Each p € M has
a neighbourhood U(p) which is a local product cube. U(p) = U°*(p) x U*(p) with
U°"(p) open in W°"(p), and U*(p) open in W*(p). Let Q C U(p) be an open set.
For ¢ € U°"(p), we introduce F4(q) := v*({g} x U*(p) N Q).

For z € U%(p), A C U°"(p) open, let

v, (A) = v (A x {z})

One may observe that v(Q) := [ Fg(x)dv,(z) is well defined and independent of z.
The independence with respect to z is achieved because the family of measure v° is
invariant by the holonomy maps of the strong stable foliation. The measure v is flow
invariant, and, when normalised to be a probability measure, it is the Bowen-Margulis

measure.
v=rv°xvo (7)

A similar construction may be performed for any pair u°%, u° of family of Lebesgue
measures. Again, the measure

u(®) = [ Fa)du (o)

is well-defined and independant of z because [An] the strong stable foliation is
Lebesgue absolutely continuous.
With this background material we can state the first Lemma

Lemma 1.— If the Bowen-Margulis measure is in the Lebesgue measure class, the
Margulis measures v* and v°" are Lebesgue measures that is, there exists densities

f%, f°* such that
dVS — deIL(/S7 dyou — fO’LLdMOu (8)

Proof : Let us recall that a contact flow preserves the volume form A A dA and the
associated Liouville probability measure .

One may assume that the foliation W°" is orientable (otherwise one can take a
two-sheeted cover). Let us choose some Riemannian metric. The unique vector field
&", g-unitary, tangent to the leaves of W* and giving the orientation, is furthermore
C'! regardless to the regularity of the Anosov splitting. We have the same regularity
for the unique vector field £° tangent to the leaves of W* and such that

dA(&%,6") =1 (9)
The restrictions to the leaves of W* of the one form
as = dA(-, 5“)|Es (10)

is nowhere singular and equips the leaves of W* with a family of Lebesgue measures
1°. The same thing holds for

Woy = A() A dA(§S7 ')|RX®E“

5



with the corresponding family of measures u°“. One may easily observe that
/1/ — /J/S X 'U/O’U/
If we assume that the Bowen-Margulis measure is absolutely continuous with respect
to the Liouville measure, then by ergodicity they coincide.
Let us now only observe that v° is absolutely continuous with respect to p® (a
similar argument holds for the pair v°*, u*)
For this let A C U*(p) with v*(A) = 0, and set Q = U°*(p) x A.

Using the absolute continuity of the strong stable foliation, we observe that for
any q € U%*(p),

Fhlq) =

p*({a} x U*(p) N Q) = p*({p} x U*(p) N Q)
p(A)=0
and then 0 = p(Q) = v(Q).
This implies that F§(q) = 0, v°"-almost surely and then there exists gy € U°*(p)
such that v*(({go} x A) N Q) = 0. And we conclude by holonomy invariance.

Lemma 2.— There exists a positive function A € C*(M x R;R) such that

d(u® o 1) (x) -1
d—us = A" (z,1) (11)

Proof : It suffices to write the flow invariance of the unstable distribution E* under
the form

Ti(€") = Mz, t)€" (¢ () |
to get the regularity of A. The invariance of the contact form implies that for any
x € M and any vector Z° € T,,W?* one has

#10s(2°) = 0, (Tpi(29)) = dA,, (0) (Tei(29), € (4u(a))

— @dA% () (TSOt(ZS)vTSOt(ﬁu(w)))

S
1
= N ) as(Z%)
which gives (11).
Lemma 3.— The density of the Margulis measure v° satifies j-a.e the homological
equation
f? (gpt(ac)) = e_ht)\(a:, ) fi(x) . (12)

We still know that the family of measuresu® o g, u°, v° o ¢y, v° are absolutely
continuous, one with respect to the other. We deduced (12) from (6), (8), (11) and

WOPH _ o) =

dps o @y

dvi o, dv® du®

dvs  dps dus o oy



2. Regularity of the density.

The celebrated Livsic homological theorem immediately shows that the density
f* admits a representative b in C'(M,R). I just recall the statements. Given an
R-action ¢ over a manifold M, a R-multiplicative cocycle is a map C': M x R — R
such that

Clz,t+7) =C(p(x),7) - Cla,t)

One says that C' is a coboundary if there exists a boundary b: M — R* such that

C(a,t) = b(pe(x)) /b(x)

The Livsic homological theorem [Li] [LMM], now reads on.

Theorem (Livsic).— Let ¢; be a C%-Anosov flow, topologically transitive on
a closed manifold M. For a cocycle C having a Hélder regularity, the following
properties are equivalent

i) For any periodic point of period T

C(z, T)=1.
ii) There exists a Holder boundary b, such that

C(z,t) = b(cpt(x))b_l(x) . (13)

If furthermore @, preserves a Lebesgue measure m, then i) and ii) are equivalent to
iii) There exists a measurable function f : M — R such that m-almost every-
where

Clz,t) = f(pe(x)) f (=)
And if iii) is fulfilled, and if C is C*, k > 1, then b is C*.

As announced, the theorem applied to the density f* insures the existence of a
positive function b € C*(M,R™) representing it.



3. The local structure.

Let us consider the C'-vector fields over M, X* = b~1£5 X% = b¢*. We have
the following Lemma.

Lemma 4.— The vector fields X, X*®, X" satisfy the Lie bracket relations
[X, XY = —-hX" [X,X°]=hX? [X° X"Y]=-X . (14)

Proof : We will denote by ¢y, 7, ¢} the corresponding associated flows.
For the first Lie bracket, it is enough to observe that

%A@J)X“(%(@) ="' X" (pe(x))

where b is the C'* solution of (11). The argument for the second bracket is similar but
with (6). The third bracket is well defined and if we use the two preceding arguments,
we observe that the C%-vector field [X*, X“] is flow invariant due to,

T (X" (x)) =

(p:([XS,Xu](JJ)) — [SDIXS:SOIXu] — [efhth,ehtXu] — [XS,Xu]
Since the flow ¢, is Anosov, the invariance implies the existence of a real k such that
[X°, XY =kX

The constant k is, in fact, equal to 1, due to (9).

From this point, one can use the paper of L.W. Green [Gr] to obtain a C*-conjugacy
with an algebraic flow and jump directly to the last paragraph.

In what follows, we give a direct proof of the conjugacy.

To describe the corresponding local structure, one considers a point p, the flow orbit
~ crossing through p, the strong stable leave W*(p) and for any y € W*(p) the strong
unstable leave W (y).

We choose three vector fields Xy, X§, X{, over the group SL(2,R), satisfying
(14). We also denote by v, ¢, 1, the corresponding one parameter subgroups.

Lemma 5.— For any point p in M, there exists € > 0 for which the connected
open neighbourhood U of the identity in SL(2,R), defined by

U=1{ge€SL(2,R),g=exptXg.expt, X .expt, X}, for (t,ty,ts) €]—¢, +e[*}, (15)
is such that the map

F:U— M, F(g9) = ¢} op; opip)

is a C' diffeomorphism on its image V. Furthermore, F locally conjugates the fol-
lowing flows

i) " and p*

ii) ¢ and ¢ ,

iii) ¥° and ¢°®.



Proof : The map F is well defined and C'. From the definition one has
TFra(Xg™?) = (X"%), (16)

and then for some €, F' is a local diffeomorphism by the inverse mapping theorem.
Remark that any g € U may be expressed as

g9 =1, otf, o (Id)
This shows i) because, for any g € U, 3 n(g) > 0 such that V ¢, €] —n(g),n(g)],
Fo Yy .(9) =Fi 4, 09t o(Id))
= Pi 411, O PL, © P (p)
= ¢y (F(9)) -

ii) Let us introduce the set Sy = {g € U, (t,tu,ts) €] —€,€[*> x {0}}. The set
S = F(Sy) is a connected submanifold and by the definition of F, S C W°*. The
same argument shows that for g € Sy there exists n such that for ¢, €] —n, n[ one has

F(lbf; (9)) = ng(F(g)) :

This in turn may be rephrased by introducing f = F|s,. The restrictions 78 of the
vector field X to Sy is tangent to Sy and X ® the restriction of the vector field X*

S

to S is also tangent to S. Then we have f,(X,) =X .
Furthermore there exist two functions a,b € C'(S,R) such that with the notations
X = X|s, X0 = Xo|g,f+(X0) = aX +bX " .

We may observe that in the set v = F(vg) withvg = {g € U, (¢, tu,ts) €]—¢,€[x{0}?}
one has a|, = 1, b|, = 0. Using the invariance of the Lie bracket by diffeomorphisms,
we may write

—hX’ = f*(=hX) = f*[Xo, X = [aX + X, X ]
For which we may deduce the pair of equations,
—da(X°) =0, ha +db(X") = +h

This shows that in S

a(tpfs (sot(p))) = a(e:(p)) =1

and then, for the same reason, we get b = 0 in S. So we have shown that

f(Xo)=X . (17)

A similar argument will help us to show that (17) may be extended to U. Again by
construction, there exists on F(U) three C'-real functions a, b, ¢ such that

F (X)) = X" Fu.(Xo)=aX +bX* +cX"

9



and furthermore along the piece of stable leave S, we have
as=1, bs=0, ¢sg=0
Using again the Lie bracket relation
F.([Xo0, Xg]) = [Fu(Xo), X*]
we immediately deduce
—da(X") - X —db(X") - X° —de(X") X" + ahX" — bX = hX" (18)

This implies b = 0, and then a = 1, and finally ¢ = 0.

iii) It remains to check that F.(X3) = X°. .
We still known it in S. Again, on U there exists three real C'-functions @, b, ¢ such
that .
F.(Xj)=a-X°4b-X"+¢X

with i
as=1, bsg=0, ¢g=0

Using our previous result F,(Xy) = X. We have,
F[X§, XY = Fu(—Xo) = =X = [aX® 4+ bX" + X, XY

which gives

da(X*) =0
db(X¥) = —¢h
di(X"“)=1-a

From Lemma 5 we can derive some information about the local structure.

Proposition 6.— Let M3 be a smooth 3-manifold carrying three C'-vectors fields
X, X%, X*® which satisfy the Lie bracket relations (14) then M3 admits a C'-(SL(2,R), SL(2,R))
structure.

Proof : We have observed (Lemma 5) that for any point p one can produce a C*-
chart, valued in SL(2,R).

Let us check that the change of charts is given by left multiplication in SL(2,R).
Consider two such charts (Uy, Fy), (Us, F») as before. If Fy(Uy) N F»(Us) # 0 then
the C'-diffeomorphism

Fio=F, 'Fy : F{ Y(FL(Uy) N Fy(Uy)) — Fy Y(FL(UL)) N Fa(U))

10



is such that by Lemma 5 i), ii), iii)
Fio.Xo = Xo, Fio.X¢ = XY, Fio.X§ = X§ .

Furthermore choose x € Fy(u1) N Fy(uz), x = F1(g1) = F2(g2) then Fi2(g1) = g2 and
on SL(2,R) the map g195 'F admits a fixed point and preserves the left invariant
vector fields, hence it is the identity on its domain.

Global structure and conjugacy. We first produce a global C'-conjugacy.
Let us recall that to give a C* — (SL(2,R), SL(2,R)) structure is equivalent to the
existence of a C'*-vector field on M x SL(2,R), transverse to the fibers. The choice
of a base point and of a leaf determines a developping map D : M — SL(2,R). We
equip the manifold M with the Riemannian metric g for which the vector fields X%
form an orthonormal frame, and SL(2,R) with the left invariant Riemannian metric
go associated to the triple X;*". By that construction the developping map D is a
local isometry from the geodesically complete manifold (]T/f g), (where g is the lift
of g to the universal cover), to (SL(2,R), go). Then D is a Riemannian covering,
hence D can be lifted to a global C-diffomorphism D : M — SL(2,R), such that
the following diagram is commutative

SL(2,R)

D/ l
M - SL(2,R)

and TD(X %) = X5,
Let v € m(M) and 0 : m (M) — szf(M) be a representation of the fun-

damental group. The diffeomorphism Do (y)D™! : SL( R) — SL( R) obvi-
ously preserves the left invariant vector fields. We then obtain a group morphism

p:m(M)— SL/(\Q/, R) given by
p(7) = Do(y)D7".
Whose image T" is a discrete subgroup. The C'- conjugacy F is provided by the

diagram

M 2 SLE2,R)

P1 lPQ

because for any # € Py {x}, F(z) = Py o 13(33) =Po E(U(’Y)i)

11



Now we can use the regularity result of [LM] which states that a C'-conjugacy of
two C'°°-Anosov flows on closed C'*°-3-manifolds is in fact a C'°°-conjugacy.
To conclude the proof of the theorem, one may use the classification of homogeneous

—

Seifert bundles of type I'\SL(2,R), where I' C SL(2,R) is discrete and cocompact
which has been established by [R.V].

Conclusion. It is not clear whether the C'-regularity of the canonical form is
really needed. It seems that one may conjecture that if ¢; is a C'"°°-Anosov flow on a
closed 3-manifold whose Bowen Margulis measure is in the Lebesgue class, then up
to finite covers the flow is C'"*°conjugate to an algebraic model, that is, a suspension
of a hyperbolic Linear automorphism of a 2-torus or the geodesic flow of a hyperbolic
closed surface.
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