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Abstract

The local Harnack inequality bounds from above the number of ovals which
can appear in a small perturbation of a singular point. As is known, there are
real singular points for which this bound is not sharp. We show that Harnack
inequality is sharp in any complex topologically equisingular class: every real
singular point is complex deformation equivalent to a real singularity for which
Harnack inequality is sharp. For semi-quasi-homogeneous and some other
singularities we exhibit a real deformation with the same property. A refined
Harnack inequality and its sharpness are discussed as well.
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1 Introduction

The Harnack theorem [6] states that a real plane projective curve of degree d has
at most £(d — 1)(d — 2) + 1 connected components, and for any degree d curves
with this number of components (M-curves) do exist. Every M-curve of degree d
is nonsingular and can be considered as a nonsingular perturbation of an ordinary
homogeneous singularity of multiplicity d: pick a generic system of affine coordinates
and consider the family f.(z,y) = e?f(c~'z,ely), where f = 0 is an equation of
the curve.

Small nonsingular real perturbations (further on referred to as smoothings) of
an isolated real plane curve singular point is subject to the local analogue of the
Harnack bound: the number v of closed components (further called ovals) of a
smoothing satisfies the inequality

pw—r-4+1, if the singularity has a real branch,

2 < { (1)

w—r+3, otherwise
where p is the Milnor number and r the number of complex branches of the singular
point (see [1, 16]). The question on the sharpness of this estimate (i.e., on the
existence of M-smoothings) turned to be more subtle than for projective curves: as
it is proven in [16], (1) is sharp for unibranch singular points (see [15] for a different
proof); on the other hand, there are singular points which have no M-smoothing (see
[9]). It brings us before the task to describe the class of singular points for which
(1) is sharp. The present paper is devoted to this problem (additional information
is found in [10] and [4]; [4] contains some mistaken statements, easily recognizable,
cf., remarks below).

We prove that for any singular point there exists a singular point which is topo-
logically equivalent to it over C and has M-smoothing (more detailed statement is
given in Theorem 1, section 3.2). Another result of the present paper (Theorem
2(2) in section 4) states that varying a real nondegenerate semi-quasi-homogeneous
point through the real nondegenerate semi-quasi-homogeneous points one can ob-
tain a point which has M-smoothing. The proofs are constructive. The proof of
the first statement is based on a local version of the original Harnack construction
for curves (cf., [16, 10]). The proof of the second one is based on the Viro patch-
working method, which is a far-reaching generalization of the Harnack one (see [22]).
Under some additional hypothesis on the singular point the above methods provide
M-smoothings without any preliminary equisingular deformation of the singularity
(Proposition 1 in section 3.1 and Theorem 2(1, 3) in section 4).

In addition, in section 5 we consider an improved local Harnack bound, which
takes into account the arrangement of nonclosed components of smoothings, and
we show that this improved bound is sharp in the real equisingular class of any
Newton-nondegenerate singular point (Theorem 5 in section 5).

In the last section we discuss some open problems.

Acknowledgment. We are grateful to S. Orevkov for stimulating discussions:
Theorem 1 answers one of his questions.



2 Preliminaries

2.1 Smoothings of singular points

A holomorphic curve C' in C? or in another complex surface with complex conju-
gation is called real, if C' is invariant under complex conjugation. A real isolated
singular point is a germ (C,z) C (C?, z), z € R?, of a real plane reduced holomorphic
curve C'. With usual for isolated singularities ambiguity, we denote by B(C,z) a
Milnor ball (see [14] or [2]; recall that each branch of C' meets dB(C, z) transver-
sally and along a smooth circle) whose radius we diminish, if necessary, when making
perturbations.

A real holomorphic curve C” in the Milnor ball B(C, z) is called a real smoothing of
C if there exists a real-analytic 1-parameter family Cy, ¢t € [0, 1], of real holomorphic
curves in B(C, z) such that Co = C, C" = (' and each C; with ¢ > 0 is nonsingular
and transversal to the boundary of B(C,z). We call such a family a smoothing out
deformation of (C, z).

The real part Cy of C' consists of finitely many ovals and nonclosed components.
The number of nonclosed components is equal to the number rg of real branches of
(C,z). The number v of the ovals satisfies (1), and C’ is called an M-smoothing if

(1) turns into equality, i.e., v = 2(p—r+1) if rg > 0, and v = L(p—r+3) if rg = 0.

Recall that £(p — 4 1) is equal to the genus of smoothings (as well as to the
number ¢ of virtual double points, which is the maximal number of double points
appearing in small perturbations of the singularity, diminished by r — 1). If an
isolated plane curve singular point is given by a polynomial or power series equation
f =0 and the truncations of f to the edges of the Newton diagram I'(f) of f have
no critical points in (C*)?, then

1

Hp—r 1) = #(i(D) 122 2
where D is the domain bounded in R* by I'(f) and the coordinate axes and Int
states for the interior (this formula can be found already in [3], for far-reaching
generalizations and a modern exposition see [11, 12]). Singular points satisfying the
hypothesis of the above statement are called Newton nondegenerate (shortly ND).

An isolated singular point (C,0) is called semi-quasi-homogeneous if in some local
coordinates it is given by an equation f = 0 such that the truncation f” of f to an
edge v of I'(f) has no critical points in C*\{(0,0)}. It is equivalent to

fz,y) = ax®y’ _H(y" — oqz?), (3)

where: ¢ and d are coprime; ay, ..., a, are distinct and nonzero; a # 0 and a,b €
{0,1}. The numbers oy, ..., o, are called peripheral roots of f. Note, that adding z*
or y’ with big 7,7 we don’t change the singularity up to isomorphism (see [21]) and,
in particular, can make I'(f) compact, i.e., containing vertices on the both axes.



2.2 Topological equivalence of singular points

We distinguish equivalences over C and over R. A topological equivalence over C
(resp., over R) of two (real, in the case of the real equivalence) singular points (C, z)
and (D, w) is a homeomorphism ¢ : B(C,z) — B(D,w) which takes C' N B(C, z)
to DN B(D,w) (and commutes with the complex conjugation in the real case).
Singularities (C,z) and (D, z) are called topologically equisingular (or deformation
equivalent) over C (over R) if there exists a real-analytic family of topologically
equivalent over C (resp., over R) complex (resp., real) singularities (Cy, z) C B(C, z),
t € ]0,1], connecting (C, z) and (D, z). As is known, a real-analytic family satisfies
this property (both in the complex and real cases) if, and only if, the Milnor number
is constant (see, for example, [13]).

Recall also the following known facts: (1) topologically equivalent isolated plane
curve singularities are topologically equisingular over C (see [19]); (2) if two real
unibranch singular points are topologically equivalent over C, they are topologically
equisingular over R; (3) any real plane curve singular point is topologically equivalent
over C to a singular point with all local branches real; (4) two real ND singular points
are topologically equivalent over R if their equations have the same Newton diagram
and for any edge of the diagram the truncations of the both have the same numbers
of positive and negative peripheral roots; (5) replacing a real isolated singular point
f=0by Tf =0 where Tf is the Taylor polynomial of f of degree > 4+ 1 we do

not change the singularity up to real analytic coordinate transformation (see [21]).

3 M-smoothings

3.1 Prélude: blowing-up construction

The blowing-up method for construction of smoothings of an isolated real plane
curve singularity is described in details in [16]. Here, we give an application of this
method, which allow us to deliver some information on the class of singularities
which have M-smoothing and to recall the principal ingredients of the method.

Proposition 1 Any singular point whose branches all are real and nonsingular, has
M-smoothing.

Proof. We make induction by blow-ups introducing a stronger statement which
takes into account the position of the smoothing with respect to a straight line.

Let (C, z) be a singular point with r branches which all are real and nonsingular,
and L be a real straight line through z transversal to the branches of C'. Let us
fix an orientation of Ly and denote the components of B(C, z)g\L by By and B_.
We say that a real smoothing C” of (C, z) is of type (e,d) with respect to L, where
g,0 = %1, if C' has a nonclosed real component which starts in B, then successively
intersects L at r points ordered in accordance with the fixed orientation of Ly, and
ends in Bjs (see Figure 1; it specifies also the convention distinguishing By and B_).
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Figure 1: M-smoothings of a singular point with nonsingular branches

Prove that under the above hypothesis on (C, z) and L, given ¢, = £1 such that
ed = (—1)", there exists an M-smoothing of (C, z) of type (e,d) with respect to L.

Proceed by induction on u(C, z). If u(C, z) < 1 the statement is trivial, so assume
that u(C,z) > 1. Blow up the point z. The strict transform C* of C intersects the
exceptional divisor F at real points zy, ..., z,,, and all local branches of C'* are real,
nonsingular and transversal to £. Without loss of generality suppose that § = +1,
and fix an orientation of Ky as in Figure 2a. By the induction assumption the
singular points (C*, z1), (C*, z3), ..., (C*, z;,) have M-smoothings C7, ..., C! of types
(+1,e1), (1,€2), -y (Em—1,Em), respectively, with respect to E (see Figure 2b).

Now, to finish the proof use the recursive Harnack procedure. Pick up r — 1 real
holomorphic nonsingular curves L(10)7 - Li,o_)l crossing I transversally at r—1 distinct
points positioned as in Figure 2b (these curves are shown dashed), and deform the
union of the smoothings C17,...,C/ in the family C, = Ci..Cl + tL(lo)...Lff)_)l At
is small and of proper sign, the curve C, has only one real component intersecting
E U L*; this component is nonclosed and crosses Ep at r — 1 points and L} at
one point as shown in Figure 2c. In the next step pick up r — 2 real holomorphic

(1)

nonsingular curves Lj ,...,Lf,l_)Q crossing F transversally at r — 2 distinct points
positioned as in Figure 2¢ (these curves are shown dashed), and deform C, in the
family Ch + tL(ll)...Li,l_)Q. Thus, one obtains a curve 62, whose only real component
intersecting FFU L* is non-closed, meets Eg at r —2 points and Lj at two points and
is located as shown in Figure 2d. Repeat this procedure alternating the position
of auxiliary curves with respect to L* until obtaining a curve C,, whose only real
component intersecting /U L™ does not meet Er. Then, this real component crosses
L} at r points as shown in Figure 2e. Blowing £ down transforms ), into an M-
smoothing of (C, z) of type (¢,41) (computations similar to those done in the proof
of Theorem 1 show that the total number of ovals obtained is %(/l —r+1)). O

Remark 1 A similar result, but for a more restricted class of singularities is con-
tained in [4].

It may be interesting to study the class of M-smoothings obtained by the blowing-
up construction. More precisely, let us call a BM-smoothing an M-smoothing ob-
tained by the algorithm proposed in [16] or by another inductive algorithm which
depends only on the topology of the intermediate germs of curves with respect to
the resolution trees. Then, as it follows from the simultaneous resolution theorem
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Figure 2: Construction of M-smoothing for a singular point with nonsingular
branches

(see [20]), the family of isolated real plane singularities which have BM-smoothing is
closed under equisingular deformations over R.

3.2 M-smoothing versus complex equisingular deformation

Theorem 1 Any real isolated plane curve singular point can be connected by a
topologically equisingular over C family of complex singular points to a real singular
point which has M-smoothing.

According to remark (3) in section 2.2, we may assume that the initial real
singular point have only real branches. Thus, throughout this section we consider
only the real singular points which have no imaginary branches.

Note also that due to remark (1) in 2.2, instead of connecting singularities by
topologically equisingular families it is sufficient to check their topological equiva-
lence. This is the point of view which we adopt in the main steps of the proof of
Theorem 1 below.

Definition 1. Let Ly, Ly be two real straight lines through a real singular point
z of real plane curves ' and D which do not contain Ly, L, as components. The
germs (C, z) and (D, z) are called topologically (L1 L;)-equivalent over C (or, shortly,
(L1 Ly)-equivalent) if there is a homeomorphism¢ : B — B, B= B(C,z) = B(D, z),
such that o(C) = D, ¢(L1) = L1, ¢(L2) = Ly. Given only one line Ly through z,

we similarly define (topological) Li-equivalence over C.
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Figure 3: Blowing up a singular point

In the above notation, assume that L, L, are the coordinate axes in some local
coordinate system (z,y). For the singular point (C,z) we define the 2 x 2 matrix
A(C, z) = (a;j)i j=1,2 over Z/2Z so that a;; is the mod 2 residue of the number of the
real demi-branches (components of €' N (B(C,z)r\{z})) of €' in R}, = {z(-1)' <
0, y(—1) <O0}.

Proposition 2 If A(C,z) # 0 then there is a germ (D, z) such that (C,z) and
(D, z) are (L1 Ls)-equivalent over C and

A(D, =) = A(C,2) + J, J:G D .

Proof. A nonzero matrix A(C,z) contains two or four units. If A(C,z) has two
units, one obtains the required germ (D, z) by means of transformations (z,y) —

(—2,y) and (z,y) = (=, —y).
If all the entries of A(C,z) are units we apply induction on the Milnor number

w(C,z). In the case u(C,z) = 1, which corresponds to an ordinary node, it is
sufficient to rotate one line (or to make a linear transformation).

Assume that u(C,z) > 1 and blow up the point z. Denote by E the exceptional
divisor, by U a neighborhood of Eg in the blown up R? by C*, Li, L} the strict
transforms of C, Ly, Ly, respectively, and by 27 = ENLY, z; = ENL5 the intersection
points. Denote by a}; € Z/2Z (resp. by a}; € Z/2Z), 1,5 = 1,2, the mod 2 residue
of the number of real demi-branches of (C*, z7) (resp. (C*,z;)) in the corresponding
component of U\ Eg (see Figure 3). Finally, denote by b, € Z/2Z, i = 1,2, the
mod 2 residue of the number of real demi-branches of C* which are centered on
FEr\{z7, z5} and contained in the corresponding component of U\ Er (see Figure 3).
In the above notation

b, b a’ a a'a
Y " 1 2 1 _ 21 11 "no__ 11 22
A= (§p) = ()= (G )

Since the Milnor numbers of the points of C* are strictly less than u(C, z), the
induction assumption applies to them. If A’ # 0 (or A” # 0), by induction one

7
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Figure 4: (ij, kl)-regular M-smoothing

can convert A’ into A’ + J (resp. A” into A” + J), then blow down and obtain the
required germ with A(D,z) = 0. If A’ = A” = 0 then at least one of b; and by is
equal to 1, and in this case we move all the points C* N (Fr\{z7, 25 }) along E¢ into
one interval of Fg\{z},25}), obtaining after blowing down the required germ. O

Definition 2. Let (C, z) be a singular point, Ly, L2 be two distinct real straight
lines through z which are not components of C, and n; = (C o L;),, i = 1,2, be
the intersection numbers. Choose real local coordinates z,y so that L; = {y = 0},
Ly = {z = 0} and assume that A(C,z) # J. An M-smoothing C’ of (C, z) is called
(17, kl)-regular (with respect to Ly, L), where ¢, 7, k, [, € {1,2}, if C' contains a non-
closed branch A which goes from ]R?j to R%, and, first, successively crosses L; at n;
points x5, s = 1,...,n1, such that

(=1)'zy > ... > (=1)'z,, >0
and then successively crosses L, at ny points y,, s = 1, ..., ng, such that
0<(=D'yr < oo < (=1)'yn,

(see Figure 4). Clearly, K —¢ =ny mod 2 and [ — 5 =ny; mod 2.

Note that if there exists an M-smoothing (77, kl)-regular with respect to two lines,

then A(C,z) # J.

Proposition 2 and Proposition 3 below complete the proof of Theorem 1.
Proposition 3 Let (C,z), Ly, Ly be as in Definition 2.

o If A(C,z) = 0, there exists a singular point (D,z) such that: (C,z) and
(D, z) are (L1Ly)-equivalent ;, A(D,z) = 0 and (D, z) has a (11,11)-reqular
M-smoothing.

o IfA(C,z) # J and a;; = ap = 1 (in particular, (A(C,z) # 0), there exists
a singular point (D, z) such that: (C,z) and (D,z) are (LiLs)-equivalent,
A(D,z) = A(C,z) and (D, z) has an (17, kl)-regular M-smoothing.

8
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Figure 6: Smoothings regular with respect to a line

Proof. We start with the following observations:

(1) If a singular point (D, z) with A(D, z) = 0 has a (11, 11)-regular M-smoothing,
then one of the reflections (z,y) — (£x, 2y) transform (D, z) in a (L Ly)-equivalent
singularity which has an (ij,j)-regular M-smoothing for prescribed ¢,7 = 1,2 (see
Figure 5a).

(2) If a singular point (D, z) with A(D, z) different from 0 and J has an (i3, kl)-
regular M-smoothing D', then the non-trivial reflection 7'(z,y) = (+x, £y) such that
A(T(D),z) = A(D, z) takes D' into a (kl,ij)-regular M-smoothing of (T'(D), z) (see
Figure 5b). Similarly, if the statement of Proposition 3 is proven for germs with

A(C, z) = A different from 0 and J, then it holds for germs with A(C,z) = A+ J.

(3) Let (C,z) be a singular point and L be a real straight line through z which
is not a component of C. If Proposition 3 is proven for (C, z) equipped with any
Ly, Ly as in Definition 2, then, appending any generic real straight line L’ through
z, one derive from Propositions 2, 3 that if the intersection number (C' - L), = n is
odd (even) then there exists a singular point (D, z) such that (C,z) and (D, z) are
L-equivalent, all the branches of (D, z) are real and (D, z) has an M-smoothing with
a non-closed branch intersecting L at n real points in a prescribed way as shown in

Figure 6a, b (resp. Figure 6¢, d).

Now, proceed by induction on the Milnor number p(C, z) (using, as in the proof
of Proposition 2, that u decreases after a blow-up). The case u(C,x) =1 is trivial.
Assume that u(C,z) > 1.

Blow up the point z. In the notation of the proof of Proposition 2, the strict
transform C* of (C, z) decomposes into germs (C*, z7), (C*, z3) and germs centered



at points on F\{z7, z5} (some of them may be empty).

In what follows we replace the germs of C* by (F,L})-, or (E,L3)-, or E-
equivalent germs, and move the germs (C*,w), w € E\{z], 23}, along E\{z], 25 }.
These operations give after blowing down a singular point (D, z) which is (L1, L2)-
equivalent to (C,z) and has A(D,z) = A(C,z) or A(C,z)+ J. Then, according
to the second observation above, it remains to construct a regular M-smoothing of
(D, z). (the case (A(C,z) =0,A(D,z) = J) is excluded, since, as it is shown below,
(D, z) has a regular M-smoothing).

Denote by [z7, 23] the segment in Eg which is the common boundary of the images
of R}, and R2, in the blown up plane (see Figure 3), and place all the germs of C*
centered on Er\{z],z3} to the interval Fg\[z], 23] so that the germs (C*,w) with
odd intersection numbers (C* o E),, are in a neighborhood of z7 and the germs with
even (C* o F),, are in a neighborhood of z}. For the sake of simplicity we use the
same symbol C* in the notation of new germs.

Construction of a regular M-smoothing depends on the matrices A(C*,z7),
A(C~, z3) with entries af;, a}; distributed as shown in Figure 3 and the multiplicity
m of (C,z), which is equal to the total intersection number of C* with . By the
induction assumption and according to Proposition 2 and the remarks made in the
beginning of the proof, for any possible combination of m, A(C*, z7), A(C*, z5), we
can replace each germ (C*, w), w € E, with a suitable regular M-smoothing as shown
in Figures 7, 8 (changing (C*, w) if necessary in its topological (E, L})-, (E, L})-,
or F-equivalence class), where the triples m, A(C*, z7), A(C*,z;) are encoded by
symbols (odd, A;, A;) or (even, A;, A;) with

11 00
01 10 10 0 1
A2_<1 o) o (0 1)’ A3_<1 o) o <o 1)'

Denote the union of the smoothed germs by Co.
Since § = £(p + r — 1) drops by tm(m — 1) when blowing up (see [7]), the total

number of ovals in Cj 1s

o p(C* w) —r(C* w) + 1
Up = Z 9

_ p(Coz)—r(Cz)+ 1 —I—#(C*OE)—l—m(mQ_ 1) .

Next we deform Co in the following m-step recursive procedure. At the first step,
we vary CoUE in a linear pencil generated by CoU E and a real divisor intersecting
E at m — 1 points. Namely, in terms of the equations in an affine chart of U, we
define O = ECy+ tL(lo)...Lgr?)_l, where 1 is a small real parameter and L(IO), e ng)_l
are real holomorphic curves crossing F transversally at m — 1 distinct points in the

interior of [z], 23] (one can take the strict transforms of appropriate straight lines

10
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Figure 7: Regular M-smoothings in the blown up plane |
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Figure 8: Regular M-smoothings in the blown up plane II
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L% L% L% L%
(odd, A, A,)

Figure 9: Smoothing C,

through z). In any of the situations shown in Figures 7, 8 and under proper choice
of the sign of ¢, C'y has
C,z)—r(C 1 -1 -2
= vt = 0 By < MO MO+ (m= Dim =
ovals, #(C* N F) — 1 non-closed real branches which do not intersect £ U L} U L3,
and one non-closed real branch which intersects: L} at (C* o L7).» + 1 real points,
Ly at (C* o L3).: + 1 real points, and E at m — 1 real points (see Figure 9 for the

cases (even,Ag,Ag), (odd,Ag,Ag); lines L(10)7 e L

m—1

are shown dashed).

Let us assume that ék, 1 <k < m, is a real holomorphic curve in a neighborhood

of F such that: it has
M(C,Z)—T(C,Z)—I—l (m_k)(m_k_l)
vp = _
2 2

ovals, #(C* N FE) — 1 non-closed real branches which do not intersect £ U L} U L3,
and a non-closed real branch which is shaped as shown in Figure 9 and intersects
Ly at (C* o L}).x + k real points, L; at (C* o L}).x + k real points, and E at m —k
real points. Then, we define

Cryr = CoE + L. L™

Cm—k-1

(k)

where t is a small real parameter, L, ..., Lgf)_k_l are real holomorphic curves meet-
ing E transversally at m — & — 1 distinct real points in the interior of that interval
between zj, z; which does not contain the points of Cy N E. It is easily seen that
6k_|_1 possesses the same properties as C, with substitution of k + 1 for k.
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Do L%y, L%
(even, A, A)) (odd, A, A))

Figure 10: Smoothing Ch

The curve C,, has v,, = 1(u(C,2z) —r(C,z) + 1) ovals, #(C*N E) — 1 non-closed
real branches which do not intersect U LU L3, and a non-closed real branch which
intersects L} at (C*-L}).:+m = (CoLy), real points, Lj at (C*oLj).s+m = (ColLy),
real points, and does not intersect £. This branch is located as shown in Figure 10
for the cases (even,Ag,Ag), (odd,Ag,Ap), and similarly in the other cases. Blowing

down K, one converts (), into a required regular M-smoothing. O

4 M-smoothing of semi-quasi-homogeneous and
Newton nondegenerate singular points

Theorem 2 (1) Any real semi-quasi-homogeneous singular point which has no pe-
ripheral real roots of different signs admits an M-smoothing.

(2) Any real semi-quasi-homogeneous singular point is deformation equivalent
over R to a singular point admitting an M-smoothing.

3 Any real Newton nondegenerate singular point without real branches has an
y ) g p
M—smoothingy.

Remark 2 Similar to Theorem 1, the first and third parts of Theorem 2 can be
proven by methods of [16] (cf., lemmas IV.3.3 and IV.3.4 in [4], where the statements
are not proven as stated and, in part, are wrong without additional hypotheses).
Here we prove all the parts in one manner using Viro method (cf., [17]).

4.1 Patch-working of polynomials

Here and further, we denote by A(F'), where F' is a polynomial or a power series in
two variables, the Newton polygon of F.

Recall the notion of charts of polynomials, which is crucial for Viro patch-working
method. Given a real polynomial F with Int A(F) # @, consider the union A,
of the (mirror) images A.s, €,0 = +1, of A = A(F) with respect to reflections
(z,y) — (ex,dy) and introduce the map ua : (R*)? — A, defined by

14



Z(i,j)eAnW(i -signz, j - Signy)|$|i|y|j‘
2 tijyeanze 12|yl ’
it takes (R*)? diffeomorphically onto | JInt A.s. The chart ChF of F is the clo-

sure of ua({F = 0} N (R*)?) (more precisely, the pair (A, ChF')) considered up to
homeomorphisms of A, preserving each A, s and its edges and vertices.

(z,y) € (R7)* = pa(e,y) =

If F and its truncations to the edges of A(F') have no singular points in (R*)?,

then ChF' is a topological curve with boundary properly embedded in A,. Polyno-
mials satisfying the hypothesis of the above statement are called completely Newton
nondegenerate (shortly CND).

Theorem 3 (see [22]) Let Fi,..., Fn be CND polynomials whose Newton polygons
Ay, ..., Ay have non empty interior and form a subdivision of a convex polygon
A. If all F; are the truncations of the same polynomial ® = E(m’)eAnZ? Ajxtyl
and there is a convexr piece-wise linear function v : A — R whose linearity do-
mains are Ay, ..., Ay, then for any sufficiently small t the polynomial F(z,y) =
E(m.)eAnZQ A t"0Dgiyi s a CND polynomial and ChV = |J ChF:.

Remark 3 The function v in theorem 3 can be corrected by a linear function in
a way that on two prescribed neighboring facets o1,05 of A, or in some Ay, the
coefficients of V' will coincide with A;;.

The patch-working construction from Theorem 3 feats into framework of toric
varieties, see [22]. In particular, with any convex lattice polygon A is associated
its toric surface KA, which is a real algebraic surface obtained by some natural
identification of edges of A,. This surface has at most isolated singular points, they
correspond to a subset of vertices of A. To each edge v of A there corresponds a
real divisor K+, which is topologically a circle. It intersects only the circles of the
neighboring edges, and each one only at one point. These 2 points divide K~ in
2 intervals K+v4. For any CND polynomial F' with Newton polygon A the image
KChF of ChF in KA is a closed topological 1-submanifold of the smooth part of
TA. The intersection points of K ChF with K+, are the positive and with K~_ the
negative peripheral roots of F'.

Under integral translations of A the pair (KA, KChF') does not change, and
under a SLy(Z) transformation of A it is replaced by a canonically homeomorphic
pair and the canonical homeomorphism respects the stratification of KA.

If, in notation of Theorem 3, KChF' is an M-curve (Harnack maximal), then
KChF;is an M-curve for any 7,1 <1 < N. The inverse is not true. To remedy such
a difficulty we introduce some natural regularity conditions.

A real quasihomogeneous polynomial is called steady, if it has no critical points
in (C*)? and has no real peripheral roots of different signs (in particular, it can have
only imaginary roots). A polynomial with Newton polygon A not reduced to an
edge is called steady if it is a real CND polynomial with steady truncations to the
edges of A.

15



Figure 11: Weakly regular and regular intersections

Let F' be a real CND polynomial with IntA(F) # (). Suppose that F for some
edge v of A is steady. Denote by 71,72 the neighboring to 7 edges of A. We
speak of the weakly reqular intersection of F' and ~, if there is a component of
KChF\ UW,;Jéw K~" which passes through all the points of KChF N K~ and these
points are placed in K+ in the same order as in this component. We call a weakly
regular intersection of F' and v regular, if the above component continued joins the
point of KChFNK~ most close to v, with a point on v, and the point of KChFNK~
most close to 2 with a point on v, (see the lower part of Figure 11). If F7 has at
least one (resp. two) real roots, then there are exactly two isotopy types of regular
(resp, weakly regular) intersection of F' with v (see Figure 11).

Let v = A1 N Ay be a common edge of Newton polygons Aj, Ay of polynomials
Fy, F; with the same truncation on 4. Assume that both polygons have a nonempty
interior. Regular, or weakly regular intersections of Fi, I, with v are called compat-
ible, if ChFy U ChF, contains #(vy N Z?) — 2 ovals intersecting v and its symmetric
copies, and not intersecting the other edges (see Figure 12).

Theorem 3 is applied to patch-work smoothings of singularities. In particular, it
has the following straightforward consequence.

Theorem 4 (see [22]) If in notation of Theorem 3, Ay intersects both the coordi-
nate axes and Aq,...,An_1 fill the domain D bounded by Ayn and the coordinate
axes, then the singular point (C,0), where C is defined by Fy = 0, has a smoothing
C" with (Br(C,0),Ck) homeomorphic to (D, Uf\;_l ChF;).

1

(D. states for the union of the four mirror copies of D.)

4.2 Auxiliary M-polynomials with Newton triangles

A CND polynomial F is called M-polynomial if ChF N(R*)? has #(Z*NIntA(F))+1
ovals for the case when F has no real peripheral roots, or has #(Z*NIntA(F)) ovals
otherwise. Note that in the second case all noncompact components of Ch# N (R*)?
belong to one component of KChF.
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Figure 12: Compatible regular intersection

Proposition 4 Let Vi, V3, and Vs be integral points of R% which form a nondegen-
erate triangle T with edges S; = [Va, V3], Sy = [V1, V5], and Sz = [Vi, V3], and let
h be a steady quasihomogeneous polynomial with A(h) = Sy and with at least one
real peripheral root. Then there exists an M—polynomial F with A(F) = T such
that: h = F5; F% and F*% are steady and have only real peripheral roots; the
intersections of F' with S1, S, and S3 are reqular, and the isotopy type of the regular
intersection with Sy can be prescribed.

Proof. We proceed by induction on the number s of integral points inside 7'. If
s = 0, a suitable SLy(Z) transformation combined with a translation takes 7" into
a triangle with vertices (0,0),(0,1), (k,0), or (0,0),(2,0),(0,2). For such a triangle

the statement is obvious.

Assume that s > 0. Take the closest to S integral point V' € Int T" and divide T
into the triangles

= conv{V, Vo, V3}, 7 = conv{V,V;,V3}, 73 = conv{V,V;,V,}

(conv states for the convex hull). Inside each of 71,73, 73 there are less than s in-
tegral points, and we can apply the induction assumption. First, take a steady
M-polynomial F; with: A(Fy) = 7, Fls1 = h and the isotopy type of regular inter-
section with S} which is prescribed for F. Thus, in a prescribed quadrant R? the
components of ChF intersecting S; are placed as shown in Figure 13a. In addition,
ChF; has in some other quadrant, say, in the positive one, an arc connecting the
edges [V, V3], [V, V5] (see Figure 13a). Then, pick a steady quasihomogeneous poly-
nomial A" with: A(R') = [V, V4], all peripheral roots real and the same coefficient at
V as in Fj. By induction assumption, there exist steady M-polynomials Fj, F3 with
A(Fy) = 19, A(F3) = 73 and F‘ Wl FVV = k', and which have a compatible
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Figure 13: M-polynomials with Newton triangles

regular intersection with [V, V] such that ChF; (resp. ChFs) has in 7 (resp. 73)
an arc connecting the edges [V, V1], [V, V3] (resp. [V, V1], [V, V2]). By construction,
V. V,, V3 are the only integral points on the edges [V, V4], [V, V5], and the sign of the
coefficient of Fy, Fy (resp. Fi, F5) at Vs (resp. V3) is the same. Hence we can equalize
the coefficients of Fy, Fy (resp. Fi, F3) at V3 (resp. V2) by a suitable transformation

Fy(z,y) = XoFo(Mz, Aay), Fi(z,y) — A\gFa(Mz, Nyy), A, Ai>0, 1=0,1,2,
(4)

keeping the truncation A’ on [V, Vi]. The isotopy type of regular intersection of Fj
and F3 with this edge is preserved by such transformations.

Now we apply Theorem 3 and Remark 3 to Fi, F5, F3 and get a polynomial V
with V;° = h: the convex function v can be constructed by a perturbation of a
linear one. The polynomial V' thus obtained is an M-polynomial, since ChV has:
> #(Int(r;) N Z?) ovals coming from [J(ChF; N (R*)?); #([V,Vi] N Z*) — 2 ovals
coming from gluing ChF, and ChFj along [V, V;] and its symmetric copies; and one
more oval appearing around the point V' (see Figure 13a), which gives a total of

D #(Int(r) N Z%) + #([V, VI N Z2) — 2 + 1 = #(Int(T) N Z?)

ovals.

Further, F' has regular intersections with Sy, 53,53 and the type of the regular
intersection with Sy is as prescribed. Indeed, R? is not the positive quadrant (see
above), and, thus, the only arc of ChF; N R? with the endpoint on [V, V3] does not
go to the edge [V, V1] (the intersection of F; with this edge is regular); hence, it goes
to the edge Sy, completing the prescribed regular intersection of F' with S;. O

Proposition 5 Let T C R? be a triangle whose vertices Vi, Va, Vs have nonnega-
tive integral coordinates and the edges Sy = [Vi, V3], S5 = [V1, V4] contain no inte-
gral points except for Vi, Vo, V3. If h is a steady quasthomogeneous polynomial with

A(h) = [Va, V5] and without real peripheral roots, then there exists an M-polynomial
F with A(F) =T and h = F*', where S, = [V,, V3].

18
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Figure 14: M-smoothing of regular semiquasihomogeneous singular point

The proof is a word-by-word copy of the proof of Proposition 4. Note, that for
any M-polynomial F' as in Proposition 5, ChF' has in T' and in one of its copies,
T. 5, an arc joining Sy with Ss.

Proposition 6 Let T be a triangle with integral vertices Vi = (0,0), Vo = (0,2p+1),
Vs = (2q,1) and h a steady quasihomogeneous polynomial with A(h) = [Va, V3] which
has no any real peripheral root. Then there exists an M-polynomial F' with A(F) =T
and FV2Vsl = b whose chart crosses the vertical coordinate axis.

Proof. Apply Theorem 3 to suitable polynomials Fi, Fy, F3 with Ay =
conv{V, Vo, V5}, Ay = conv{Vi,V,V5}, Az = conv{V},V,V2}, where V = (1,2).
Namely, choose as F; an M-polynomial from Proposition 5 having in A; an arc
connecting [V, V3] with [V, V5], and as F3, F3 polynomials from Proposition 4 having
regular intersections with [V}, V], containing an arc connecting [Vi, V] with [V, V3],
V1, V3], respectively, and such that F:)EVl’VQ] has real roots. (The coefficients of F3
and Fj are equalized by transformation (4), as in the proof of Proposition 4.) The
charts Ch(F}), Ch(F3), Ch(F5) have arcs which glue into an oval of ChF embracing
the point V. This oval together with other #((Int(A;) U Int(A3) U Int(Az)) N Z?)
ovals of Fi, Fy, F3 in (R*)? gives a total of #(Int(7") N Z?) ovals. Hence, F is an
M-polynomial. O

4.3 Proof of Theorem 2(1)

Adding z° and y’ with big ¢ and j, if necessary, and making a coordinate change,
we may suppose that the Newton diagram of the given semi-quasi-homogeneous
singular point has vertices at the points

(0, ¢s), (ds, 0), or
(0, es+¢), (1, es), (ds+1,0), or
(0, es+1), (ds, 1), (ds+d', 0), or
(0, es+1+¢), (1, es+1), (ds+1,1), (ds+d +1,0),

where ¢ > ¢/d, d' > d/c. In all these cases we construct the required M-smoothing
applying Theorem 4: divide the domain bounded by the Newton diagram and the
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Figure 15: M-polynomials with Newton quadrangles 1

coordinate axes into triangles as shown in Figure 14 (the existence of an appropriate
convex function v follows from the convexity of the Newton diagram) and then patch-
work suitable M-polynomials from Propositions 4, 5 with these Newton triangles and
given truncations on the edges on the Newton diagram (note that the edges inside
the diagram are without integral points in their interior and recall that 1(u(C, z) —
r(C,z) + 1) is equal to the number of integral points in the interior of the domain
bounded by the coordinate axes and the Newton diagram). For instance, in the case
when the singularity is given by equation (3) with ¢ = b = 0 and c¢s, ds both even,
if the peripheral roots are all imaginary we use the subdivision into three triangles
shown in Figure 14a (in each triangle two edges have no integral points in their
interior) and patch-work three M-polynomials given by Proposition 5. The result
provides an M-smoothing with 1(u(C,z) — r(C, z) + 3) ovals: namely, +(u(C,z) —
r(C,z) + 1) — 1 ovals come from the ovals in (R*)? of the polynomial with Newton
triangle conv{(1,1),(0,c¢s),(ds,0)}, one more oval appears around the point (1, 1),
and one more around (—1,—1). O

4.4 Auxiliary M-polynomials with Newton quadrangles

Let p, g, s be positive integers. Consider the polygons Q] . = conv{A, B,C, D} and

pgs = conv{A’, B,C, D} where A = (0,0), B = (0,p), C = (¢,p+1), D = (¢+s,1),
and A" = (0,1). Note that the edges [AD] and [BC|] contain no integral point in
their interior, and, thus, real polynomials corresponding to them are all steady, each

of them has only one peripheral root and this root is real.

Proposition 7 Let hy and hy be steady quasi-homogeneous polynomials with
A(hy) = [BC] and A(hy) = [CD]. Assume that p and s are even, hy and hy
have the same coefficient of x%yP™t, and hy has no real peripheral roots. Then there
exist M-polynomials F' and F" with A(F') = Q,,., A(F") = Q},, (F")BCT = py,
and (F”)[CD] = hsy.

Proof.  Take the closest to [C'D] integral point V of Int(Q;,,) and divide

bgs into four triangles joining V' with the vertices of Q) . (see Figure 15a):

7 = conv{B,C,V}, 7 = conv{A, B,V}, 73 = conv{C, D, V}, 74 = conv{A, D, V}.
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Let Fi be an M-polynomial with A(F;) = 7y and (Fl)[BC] = hy given by Propo-
sition 4. Its chart has an arc connecting [BC| and [C' D] in 7 or in one of the sym-
metric copies of 71; without lost of generality, we may suppose that it happens in ;.
Proposition 4 provides an M-polynomial F, with A(Fy) = 7, (Fy)BY] = (F)BV],
and such that F; and F, have a compatible regular intersection with [BV]. In par-
ticular, Ch(F3) has in 75 an arc connecting [BV] and [AV]. By Proposition 5 there
exists an M-polynomial F5 with A(F5) = 73, (F3)[CD] = hy, and Ch(F5) joining [C'V]
and [DV] in 75 by an arc.

By construction, [C'V] has the endpoints as its only integral points, the coefficients
at the monomial z7y?*! corresponding to C in F} and F3 coincide, and the coefficients
at the monomial z"y" corresponding to V' in Fy and Fj have the same sign. One
can equalize the latter coefficients by a suitable transformation (4) applied to F5,
preserving all the properties of Fj cited above. Finally, Proposition 4 provides an M-
polynomial Fy with A(Fy) = 74, (F4)[AV] = (Fg)[AV], and such that Fy and F, have
a compatible intersection with [av]. In particular, Ch(F3) has in 74 an arc joining
[AV]and [DV]. It implies that the coefficients at the monomial z?**y corresponding
to D in F5 and Fy have the same sign, and to equalize the truncations of F3 and Fj
onto [DV], one has only to correct the absolute value of this coefficient in Fy, which
can be made as in (4).

Now, it remains to apply Theorem 3 and patch-work Fy, Fy, F3, and Fy (a suitable
convex function v is obtained by a small variation of a linear function). The result
is an M-polynomial, since its chart has: Ule #(Int(7;) N Z?) ovals which come from
the ovals of the glued charts, #((Int[AV] U Int[BV]) N Z?) ovals which come from
gluing compatible intersections along [AV] and [BV] and their symmetric images,
and one more oval around V.

The polynomial F” is constructed in the same way (see Figure 15b). O

Proposition 8 Let hy and hy be steady quasi-homogeneous polynomials with
A(hy) = [BC] and A(hy) = [CD]. Assume that p,s are coprime and hy, hy have the
same coefficient of x9yP*l. If p is odd and q,s are even, assume additionally that
the peripheral roots of hy, hy have the same sign. Then there exist M-polynomials F'
and F" with A(F') = Q' ., A(F") = Q" ., (F)B = hy, and (F")€Pl = h,.

Pgs’? pgs’?

Proof. Assume that B, C', and D are not collinear mod 2, i.e.,
pg—s=1 mod?2. (5)

Divide Q,,, into two triangles: 7 = conv{B,C, D} and 1, = conv{A, B, D} (see
Figure 16a). By Proposition 4 there exists an M-polynomial F; with A(Fy) = 7,
FI[BC] = h; and regular intersection with [BD]. Since the vertices of 71 are not
collinear mod 2, suitable transformations (4) followed by Fi(z,y) — +Fi(+z,+y)
makes the coefficient at z97*y corresponding to D in F} equal to that in A, keeping
the truncation to [BC]. Complete the construction of F’, patch-working F; with
an M-polynomial Fy which has A(F;) = 75 and FQ[BD] = I[BD], and whose chart

intersects [BD] compatibly with Ch(F}).
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Figure 16: M-polynomials with Newton quadrangles I1

Assume (5) does not hold and hq, hy have peripheral roots of the same sign, say,
all the roots are positive. Then, by Proposition 4 there exists an M-polynomial F}
with A(Fy) = 7, Fl[BD] = hy, and whose chart has in 7; an arc joining [BC] and
[C D] (see Figure 16b). This means, in particular, that the sign of the coefficient
at z?97%y in h, and F) is the same, hence one can equalize these coefficients by a
transformation (4) applied to Fi, and, thus, complete the construction of F’ as in
the previous case.

In the only remaining situation p,q,s are odd, and the peripheral roots of
hi,hy have different signs. Divide Q) = into 7 = conv{B’, B,C} and Q,, =
conv{A, B',C, D}, where B’ = (0,p — 1) (see Figure 16¢). Take any M-polynomial
G with A(G) = 7 and GIBY = b, Since [B'C] does not contain integral points in
its interior, and the points B’,C, D are not collinear mod 2, the construction as
in the case (5) provides an M-polynomial F with A(F) = Q,qs, FIPl = hy, and
FIB'Cl = GIP'Cl and it remains to patch-work G and F.

The polynomial F" with Newton polygon Q7 is constructed in the same way,

except for the case p = 1, ¢, s are odd, but in this case the statement is trivial, since

145 18 @ triangle without integral points in the interior. O

4.5 Proof of Theorem 2(3)

Given a Newton nondegenerate singular point with Newton diagram I', we divide the
domain D bounded by I' and the coordinate axes by the segments [(¢,7), (0,7 — 1)]
for any nonsmooth point (i,7) € I' (see Figure 17). Note that, up to vertical shifts,
the upper triangle in this subdivision is as described in Proposition 6, and the other
patterns are quadrangles as in Proposition 7. To obtain the required M-smoothing
we apply Theorem 4 and patch-work the charts of M-polynomials from Propositions
6, 7 (the existence of a suitable convex function v follows from the convexity of
Newton diagram). Since the segments dividing D have no internal integral points,
the smoothing obtained has #(Int(D) N Z?) ovals which come from the ovals of the
glued charts in (R*)? and at least one more oval which intersects the coordinate
axes. Hence, the total number of ovals is > #(Int(D) N Z*) + 1. Thus, according to
(2) and (1), it is equal to 2 (g —r+3) O
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Figure 17: M-smoothing of isolated Newton nondegenerate singular point

4.6 Proof of Theorem 2(2)

We assume that ¢,d in (3) describing the leading part f7 of the given real semi-
quasi-homogeneous singularity satisfy:

e c,d > 1, since otherwise, say, for ¢ = 1 a transformation y — y — Az? makes
all the real peripheral roots of f” positive and, hence, reduces the problem to

Theorem 2(1);

e d is odd, since ¢, d are coprime and we can interchange z,y if necessary.

Assume also that f7 has 2k imaginary, ky > 0 positive and k- > 0 negative
peripheral roots (otherwise, Theorem 2(2) follows from Theorem 2(1)). Trace a
segment [(7,7), (0,7 — 1)] for any integral point (¢,7) € v, ¢,7 > 0. We obtain a
polygon A which is either a triangle (case a = 0) or a quadrangle (case a = 1), has
v as an edge, and is subdivided in polygons (also triangles and quadrangles) A;,
1=1,...,k =2ky 4+ ks + k_, which we number from up downwards. Put

Q0:A1U...UA2kO, Qi:AQko—I—i; izl,...,k+—|—k‘_.

Pick: a polynomial kg with A(hg) = v N Qo which has 2k, distinct imaginary
peripheral roots; polynomials h;, ¢ = 1,...,k;, with A(h;) = v N Q; which have
positive peripheral roots; and polynomials h;, ¢ = k4 +1,..., ks +k_, with A(h;) =
v N Q; which have negative peripheral roots. Note that up to vertical shifts: @),
i =1,...,ky +k_—1, are quadrangles of type @}, ; Qo is a triangle as in Proposition
6 or a quadrangle of type @ ., according as a = 0 or 1 in (3); and Q, 1x_ is a

quadrangle of type Q) . or Q7 ., according as b =1 or 0 in (3). Note also that all
these polygons satisfy the corresponding conditions of Propositions 6, 7, 8, and the
case which is not covered by Proposition 8 (i.e. p is odd, g, s are even, the roots of

h1, hy have different signs) never occurs because of initial adjustment of ¢ and d.

Take an M-polynomial with A(Fy) = Qo and F)"° = hy which satisfies the
conditions of Proposition 6 or 7, according as ()g is triangle or quadrangle. By
induction, construct M-polynomials F;, ¢« = 1,...,ky + k_, with A(F;) = Q; and
FZin = h; satisfying the conditions of Proposition 8 so that F; truncated on the
upper edge of (); coincides with F;_; truncated on the lower edge of ();_;.
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Theorem 3 applied to F; as above gives us an M-polynomial F' with A(F) = A:
a suitable function v is constructed by induction, and F'is an M-polynomial since

ky+k_

Y #(IntQi N Z7) = #(IntA N Z2). (6)

The truncation f = "9 s a quasi-homogeneous polynomial obtained by patch-
working polynomials h;. Thus, f is Newton nondegenerate and it has the same
numbers of positive, negative and imaginary peripheral roots as f7. Therefore,
J = 0 defines at the origin a singular point deformation equivalent over R to f = 0.
It remains to observe that F' = 0 can be considered as an M-smoothing of f = 0:
a smoothing family is given by Fy(z,y) = t“F(xt=¢,yt~?), u = (2ko + ky + k_)ed +
ac + bd, and it is an M-smoothing due to (2) and (6). O

Remark 4 The end of the proof can be replaced by reference to Theorem 4. If
a =1 or b =1, then, first, A should be extended by one or two triangles, as well
as by the convex envelope of the Newton diagram, to fill completely the domain
between the diagram and the coordinate axes. The deformation type over R of the
singularity remains unchanged.

5 Weak M-smoothing of Newton nondegenerate
singular points

The local Harnack inequality (1) can be refined in the following way (see, for in-
stance, [8]). Given a real isolated singular point (C,z), the intersection of C' with
the circle dB(C, z)g is decomposed in pairs of points belonging to one branch of C.
Given a real smoothing C’ of (C, z), this decomposition is transported to the intersec-
tion of C’ with B(C, z)g: two boundary points of C} belong to the same pair, and
called boundary equivalent, if they belong to the same component of C'NJIB(C, z).
The refined inequality states that

— 3
vg%—l, (7)

where [ is the number of topological circles obtained from the union of nonclosed
components of C by identification of boundary equivalent points. A smoothing C’
is called a weak M-smoothing if it provides an equality in (7).

The Harnack inequality for CND polynomials is refined in a similar way. Given
a real CND polynomial F' in 2 variables, call two ends of {F = 0} N (R*)? =

Ch(F) N (IntA(F)). (as usually, (). stands for the union of four mirror images)
equivalent if they merge into the same end of {F = 0} N (C*)?, i.e., define the same
point on KA. The refined inequality states that

v < #(IntA(F)NZ? — 141, (8)

24



where v is the number of ovals of {F' = 0} N (R*)? and [ is the number of topological
circles obtained from the union of nonclosed components of { ' = 0} N(R*)? by iden-
tification of equivalent ends. A real CND polynomial is called a weak M-polynomial
if it provides an equality in (8). (For related information see section 6.)

The following simple lemma and its corollary are well known (see, [10]).

Lemma 9 A smoothing C' (respectively, a real CND polynomial F') is a weak M-
smoothing (respectively, a weak M-polynomial) if, and only if, Ci.\ Cg (respectively,
{F =0} N (C)*\ {F =0} N (R*)?) is the disjoint union of two spheres with holes.

Corollary 9 If in notation of Theorem 3 (respectively, Theorem /) Fi,..., Fy (re-
spectively, Fiy, ..., Fn_1) are weak M-polynomials, the adjacency graph of the decom-
position A = AjU---UAp (respectively, AyU---UAN_1) is a tree, and the adjacency
edges A; N A; are without internal integral points, then F' is a weak M-polynomial
(respectively, weak M-smoothing).

Theorem 5 Any Newton nondegenerate singular point is deformation equivalent
over R to a Newton nondegenerate singular point which has a weak M-smoothing.

Remark 5 The number [ in (7) is 0 if rp = 0 and > 1 if /g > 1. For the
weak M-smoothings which we construct in the proof of Theorem 5 it can be es-
timated as follows. Call a real branch of a singular point a (0,1)-branch (or (1,0)-
branch) if its intersection number with a real line through the singular point is
even (resp. odd) if the line is tangent and odd (resp. even) otherwise. Then,
[ < 14 min{#((0,1)-branches), #((1,0)-branches)}. Note also that a weak M-

smoothing with [ = 1 is an M-smoothing.
In the proof of Theorem 5 we use the following auxiliary polynomials.

Proposition 10 Let p, g, s be positive integers and hy, hy polynomials with A(hy) =
[BC| and A(hy) = [CD], where B = (0,p), C = (¢,p+ 1), and D = (¢ + s,1).
Assume that p and s are coprime, q and s are even, p is odd, the (only) peripheral
root of hy is positive, and the (only) peripheral root of hy is negative.

(1) There exists a weak M-polynomial F with A(F) = Q. ., Q,,, =
conv(A, B,C, D), A = (0,0), and such that: FPl = p; FI°Pl = h, ChF has
#(Int(Q1,,) N Z*) — 1 ovals and a connected component of Ch(F) joins [BC| and

BC, C =(—q,p+1), as shown in Figure 18a.
(2) If p > 1, then there exists a weak M-polynomial F with A(F) = Q! =

T Wpgsy Upgs
conv(A’, B,C, D), A" = (0,1), and such that: FBC = phy, FI°Pl = p, ChF has
#(Int(Q7,,) N Z* — 1 ovals and a connected component of Ch(F) joins [BC| and

BC, C =(—q,p+1), as shown in Figure 18b.

(3) The same statements (1) and (2) hold true if the root of hy is negative, the
root of hy is positive, and the above charts are replaced by their symmetric images
with respect to the horizontal axis.
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Figure 18: M-polynomials with Newton quadrangles I11

Proof. Divide Q) into a triangle 7 = conv{B’, B,C} and a quadrangle @pqs =
conv{AB'CD}, where B' = (0,p — 1). Choose the closest to [B'C] integral point
V € Int(Q,ys) and divide Q45 into four triangles by segments joining V' with the

vertices of Q) 45 (see Figure 18a).

Pick a polynomial hs with A(h) = [B’C] which has its both peripheral roots
imaginary and distinct and whose coefficient at z?y?™! is the same as in h;. By
Proposition 5 there exists an M-polynomial F; with A(F}) = 7 and FI[B,C] = hs
whose chart Ch(F}) has an arc joining [BC] and [B’'B] in 7. Then, Ch(F}) has
an arc connecting [B’B] and BC. The union of these arcs is the arc required in
Proposition 10. In addition, this implies that the (only) peripheral root of FI[BC] is
positive; hence the sign of the coefficient at y* in Fj is as in hy, and one can equalize

these coefficients by a transformation (4) applied to Fj.

Now, construct an M-polynomial Fy with A(F3y) = vaqs and truncations hs, hs
on the corresponding edges. This can be done in the same manner as in the proof
of Proposition 7 with the same role of the chosen point V. Patch-working F} and
F5 provides the required polynomial F.

The same construction applies to prove statements (2), (3). O

Proof of Theorem 5. Let (C,0) be a Newton nondegenerate singular point given
by f = 0. Without loss of generality, suppose that the Newton diagram I'(f) of
f has vertices on the both coordinate axes. Denote by v1,..., 7, the edges of I'(f)
numbered from up downwards, and by 2k,, k7. k7, 1 < u < n, the number of
imaginary, positive, and negative peripheral foots of f'. Divide the domain D,
bounded by I'(f) and the coordinate axes, by the segments [(z,7), (0,7 — 1)] taken

for any integral point (7,7), ¢,7 > 0, in I'(f). Then, as in the proof of Theorem
2(2), for any v,, 1 < u < n, define the polygons Qu ; i =0,....,kF + k7, and the

quasihomogeneous polynomials A with A( ) Qu N Yyt = 0 o kF 4+ k7, such
that each A has 2k? imaginary peripheral roots, the peripheral root of each hq(j),
i =1,....kF, is positive, and the peripheral root of each hi"), i=kF+1,. . k4 k],
is negative. We suppose also, that the coefficients of a common monomial in any

u

two such quasihomogeneous polynomials coincide.
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Examining the sequence of polygons Qu from up downwards, construct a se-
quence of polynomlals FY with A(F ) Qu such that: their truncations to the
edges Qu N v, are hﬁ), their truncations to adjacent edges of neighboring poly-
gons coincide, and each F{ satisfies the conditions of Propositions 4, 6, 7, 8, 10,
respectively.

For each u = 1,...,n apply Theorem 3 to patch-work Fy), i =0,..kF + &,
into a polynomial F, with A(F,) = @, = |, ng) (a suitable convex function v is

constructed by induction). The truncations of F,, and F,1; on o = [(¢,7),(0,7—1)] =
Qu N Qyuyy are

F° =t Ay’ + t, By’ Fi .= ts Ay~ + 1 Baty?, by, ta,ts, Ly > 0.

U

Equalize them successively applying the transformation (4) to Fs, ..., F,, and keeping
the signs of the peripheral roots of ), u=2,....n

Let fv be a polynomial such that 1 U ... U, is a part of the boundary of its
Newton polygon, and f7 = F) w = 1,...,n. By construction, f and f has the
same numbers of imaginary, positive and negative peripheral roots on each edge ..
Therefore, f defines a singular point (C’ 0) deformation equivalent over R to (C,0).
To obtain a smoothing C' of (C’ 0) it remains to apply Theorem 4 to F,, 1 <u <n
(a suitable convex function v is constructed as in the proof of Theorem 2(3)). As it

follows from Corollary 9, C' is a weak M-smoothing. O

Remark 6 To check that C’ in the above proof is a weak M-smoothing one may
count explicitly the corresponding v and [ and verify simultaneously that they turn
(7) into an equality. Note, first, that the number of those ovals in C which come

from the ovals of Fs(i) in (R*)? is

Z #(Int(QY) NZ*) — I = #(Int(D) N Z*) - ' = %(ﬂ —r+1) =0, (10)

where [’ counts how many polynomials as in Proposition 10 occur in the set {Fy)}“

Renumber the polynomials FY as FO . F® following the order of the polygons
Qq(f) from up downwards. Assume that F®) § = 1,..,I' are as in Proposition
10. If two real branches Py, P; of Cg correspond to peripheral roots of F() ()
such that j < k; < k for some ¢ = 1,...,I', then neither of the endpoints of P;
on B(C,z)r belongs to the same connected component of Cf as an endpoint of
Py. Indeed, if there were such a component, it would have passed in Qg) from the
edge [(0,p), (g,p + 1)] (or its symmetric image) to the edge [(¢,p + 1), (g + s,1)]

r [(0,0), (¢ + s,1)] (or their symmetric images), but it is not the case as shown in
Figure 18. Therefore, if one of F¥) with j < k; has a real peripheral root, then
[ > 1+ 1", which implies that (7) turns into an equality. If the polynomials F'),
j =1,...,k; — 1, has only imaginary peripheral roots, then { > I’ In this case the
arc in Ch(F 1)) shown in Figure 18 continued in the union of the charts of F),
7 =1,....,ky — 1, gives one more oval in éﬁ{ which together with previously counted
ovals (10) and [ > I’ provides the equality in (7).
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6 Some open problems

1. Consider a bouquet of three real ordinary cusps with common vertex at 0
(each one topologically equivalent over R to z* — y*® = 0). In the case of distinct
tangents, such singularities form two real topologically equisingular over R families:
bouquets which are contained in a half-plane with the boundary line through 0 and
those which are not. The singularities of the first class have M-smoothing, while, as
shown in [9], the singularities of the second class (called in [9] Sirler singularities)
have no M-smoothing. The proof given in [9] exploits various particular geometrical
properties of Sirler singularities. So, is there any general geometric phenomenon
behind the nonexistence of M-smoothing?

Look at intermediate positions of three cusps. The construction in the proof of
Theorem 5 applied to a bouquet of 3 cusps with 2 different tangents, where the cusps
with the same tangent are directed into opposite sides, shows that this singular point
is deformation equivalent over R to a singularity which has M-smoothing. What are
topological and geometrical properties of the stratum of singularities which have M-
smoothing? Say, in the versal deformation of a singular point?

As it follows from above examples, this stratum is not necessarily closed or open.
However, in a py-constant families, i.e., inside families of real topologically equisingu-
lar over R singularities, the set of singularities which have M-smoothing is closed. Is
it open? i.e., Is it true that the real singularities which are topologically equisingular
over R either all have or all have no M-smoothing?

2. In view of Theorem 2 and the above question, it is natural to ask: Does any
semi-quasi-homogeneous singular point admit an M-smoothing? Though the con-
struction set up in the proof of Theorem 2 provides M-smoothings only for special
values of the peripheral roots, the following example shows that the Viro theorem
with a different subdivision of the domain under the Newton diagram can give M-
smoothings for the whole range of the roots. The same example is the simplest sin-
gularity where the algorithm of [16] fails, i.e. the singularity which has M-smoothing
but not BM-smoothing.

Example. For a singular point (y*+ az®)(y* + bz?®) = 0 with arbitrary a < 0 < b
there is a smoothing with $(u —r+1) = 7 ovals.

Proof. First, construct a polynomial Fy with A(Fy) = conv{(0,0),(0,2),(4,0)}
and the chart shown in Figure 19a. We get it by patch-working two polynomials:
F|, which has A(F}]) = conv{(0,2),(4,0),(3,0)}, truncation (y + az?)(y + bz*) on
[(0,2),(4,0)], and vertical tangent at the intersection point with the horizontal axis;
and F[', which has A(F}") = conv{(0,0),(0,2),(3,0)} and the chart as in Figure 19a.
The shift (z,y) — (24, y) with a suitable « transforms Fy in F5, which has A(F;) =
conv{(0,2),(1,0),(4,0)}, the same truncation on the edge [(0,2),(4,0)] as £}, and
the chart as in Figure 19b. Consider the polynomial F3(z,y) = a7 ?y* Fy(a?y™, z).
It has A(F3) = conv{(0,3),(0,4),(6,0)} and its truncation on [(0,4), (6,0)] is (y* +
az®)(y*+bz?). Its chart is shown in Figure 19¢c. Patch-working F3 with a polynomial,
which has A(F3) = conv{(0,0),(0,3),(6,0)}, the chart shown in Figure 19d and

prescribed truncation with negative roots on [(0,3),(6,0)] (such a polynomial is
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Figure 19: M-smoothing of (y* 4+ az®)(y? + bz®) = 0

found in [22] or [23]), we obtain the desired M-smoothing (Figure 19e).

3. Every Sirler singularity (see 1 above) admits a weak M-smoothing. On the
other hand, Theorem 5 says that up to equisingular deformation over R, a wide class
of singular points have weak M-smoothing. So, does any real plane curve singular
point have a weak M-smoothing? Or, at least, is any real plane curve singular point
topologically equivalent over R to a singular point which has a weak M-smoothing?

4. The improved Harnack bounds (7) and (8) are contained in the following
general bounds for pairs (X, A) with Z/2-action ¢ : (X, A) — (X, A), which state
that

dim H,(Xgp;Z/2) < dim H'(Z/2; H(X;Z/2)) < dim H.(X;Z/2) — 2a,

where Xg is the fixed point set of ¢, 2¢ = dimH.(A;Z/2) — dimK —
(dim HY(Z/2; H.(A;Z/2)/K), K is the kernel of the map H.(A;Z/2) — H.(X;Z/2)
induced by inclusion A C X and H' stands for the Galois cohomology of a Z/2-
vector space with Z/2-action. The first bound is Swan’s inequality, see [18], the
second one is an easy consequence of the usual Ker — Coker sequence, cf. [5]. The
pairs which turn both the bounds in equalities can be characterized by the following
properties: each c-invariant element of H,(X;Z/2) is realized by a c-invariant cycle
and dim H,(Xg;Z/2) = dim H.(X;Z/2) — 2a, where a is the dimension of the image
of (1 +co)H(A;Z)2)in H(X;Z/2).

To get (7), (8), and Lemma 9 take X = C{ and A = C{ U 9C¢.

Since the above bound by dim H.(X;Z/2) — 2a is, in addition, has the same
extremal properties as (7) does in the case of plane curve singularities (cf., [8]), it is

29



natural to ask is this version (or its stronger form, with a = 0) of the Harnack-Smith-
Thom inequality sharp? Recent results on the sharpness of the Harnack-Smith-Thom

upper bound

dim H, (Xg, Z /2Z) < dim H.(X¢, Z /2Z)

for projective nonsingular hypersurfaces and complete intersections (Itenberg-Viro,

unpublished) seem to show the sharpness of the above local version for homogeneous

hypersurface and complete intersections singularities, up to equisingular deformation

over C.
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