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Introduction

The aim of these survey notes is to try to motivate and to introduce two beautiful geometric
concepts that have already proved, despite their relative youth, to be rich and useful, namely
(Dubrovin’s) Frobenius manifolds and (Kontsevich’s) moduli spaces of stable maps.

According to a philosophy which I have learned in Givental’s papers [21, 23], there are two
big families of Frobenius manifolds

e those defined by unfoldings (Landau-Ginzburg, or B-models, according to the “physical”
terminology),

e those defined by quantum cohomology (field theory or A-models)

and the famous mirror conjecture! postulates the existence of a correspondence between these
two families.

The two parts of these notes can be considered as a description of these two families (re-
spectively), through concrete examples.

Although the definition of a Frobenius manifold somehow looks like some French cooking
recipes (many ingredients and a rather intricate mixture of them, see e.g. [17, 12]), the concept
itself is quite natural, and, in some sense classical. Singularists, for instance, are dealing with
Frobenius manifolds for ages (or, at least since K. Saito’s paper [41]). The Frobenius structure
is what you see when you look at the product on the Jacobian algebra and at the residue form
as being a ring structure on the tangent sheaf to the space of parameters of the deformation
and a 1-form on this space, the main point being Saito’s theorem, that is, that the residue form
and the product define a flat metric.

A Frobenius structure on a manifold M is, indeed, a ring structure on the tangent sheaf
together with a flat metric subject to a couple of compatibility conditions. In very down-
to-earth terms, the Landau-Ginzburg models are those in which the multiplication is rather
simple, but for which it is hard to find flat coordinates, while in quantum cohomology, the
flat coordinates are the natural coordinates, while the product is very hard to define. In the
language which is used in the Frobenius world, in Landau-Ginzburg models, you are given the
“canonical coordinates” while in quantum cohomology, you are given the “flat coordinates”.

Unfoldings belong to the world of Lagrangian singularities (caustics) but this is also the case
of all Frobenius manifolds: a product on vector fields defines a spectral cover of the manifold, a
subvariety of T*M , which is very often Lagrangian, and roughly speaking describes the way the
rings Te M split as sums of simple summands according to the values of {&. Thus, Lagrangian
subvarieties definitely belong to the Frobenius landscape.

The first chapter of the present survey is devoted to the description of the Lagrangian sub-
varieties defined by unfoldings, of spectral covers and to the definition of a Frobenius manifold.
I spend many pages on examples, e.g. on 2-dimensional examples and on the versal unfolding
of z"+1,

The second chapter is a description of the Frobenius structure on the cohomology of some
projective varieties given by the quantum product. It is well-known that the idea of quantum

cohomology comes from the work of physicists trying to deform the cup-product using rational

!For a more classical formulation, see e.g. [48, 7].



curves present in the variety (see [47]). The fact that this is related to the “associativity
equations” (i.e. to a Frobenius structure) is beautifully explained in [14]. In this text, I
describe Kontsevich’s moduli spaces of stable maps and how these moduli spaces can be used
to construct the Gromov-Witten potential, which is the main ingredient in cooking up the
Frobenius structure. I also give some examples of computations of Gromov-Witten invariants
and quantum rings using stable maps.

Some remarks and further examples are the subject of the Appendix.

I have been very impressed by the remarkable idea (of Kontsevich [31]) of considering
spaces of stable maps, so that I have tried to convince the readers that this was actually a very
natural idea and I have spent some place (maybe too much for professional algebro-geometers)
on motivating the definition by the investigation of plane cubics (see Appendix A). T also
explain some relations of the spaces of stable maps with configuration spaces and algebraic
loop spaces (Appendix B).

I also spend a few pages to discuss whether the relations defining the quantum rings should
or should not be an integrable system (Appendix C). Then I turn to the semi-simplicity
problem, in Appendix D, where I give some partial results in direction of the semi-simplicity
of some quantum cohomology rings.

In addition to the papers I have already mentioned, there are many good papers on the
topics discussed here, e.g. [17, 27, 40] on Frobenius structures, [20] on stable maps and quantum
cohomology, and [35] on both Frobenius manifolds and quantum cohomology. Therefore, there
can be nothing original in the present survey, except for the presentation of rather sophisticated
concepts through natural examples.

[ am pleased to aknowledge the influence of Sasha Givental’s ideas. 1 also thank the people
with whom I have discussed the matters presented here, especially Claude Sabbah and the
participants of the “isomonodromy conference” at CIRM in july 1996, of the seminars on
“mirror symmetry” and on “rational curves” in Strasbourg in 1995, 1996, 1997 and of the
winter school in Srni in january 1997.

Special thanks are due to Holger Spielberg for his careful reading of various preliminary
versions of this paper. His comments have been very useful to improve the presentation given
here and to correct some of the mistakes it contained.

Many thanks are due to Alain Sartout for his help with pictures in postscript.

Chapter 1
From Lagrange projections to Frobenius manifolds

Frobenius manifolds have been the object of investigations of Dubrovin and others in the
last few years. It seems clear that this is a really important notion, as it is related to a lot
of different aspects of geometry (including some aspects of field theory and isomonodromy
problems) as can be seen in e.g. [17, 27, 40, 35].

Roughly speaking, the structure of a Frobenius manifold is the structure of a ring sheaf on
the tangent sheaf together with a flat connection allowing to relate the structures of the various



fibers. The aim of this first part is to introduce its definition by a rich and already well-known
family, that of Lagrange projections — alias unfoldings.

Following an idea of Givental, I will then explain why Lagrange subvarieties definitely belong
to the Frobenius landscape.

I will then give the definition and a few examples of Frobenius manifolds.

1. Stable germs of Lagrange projections

1.1. Lagrangian submanifolds in a cotangent bundle

The total space of the cotangent bundle of a manifold M carries a canonical 1-form, the
Liouville form A: recall that, if

m:T"M —— M

denotes the projection and (£, ) denotes a point in T*M (consisting of a point £ of M and a
linear form ¢ : TeM — C),

Mew)(X) = p(Tem (X))

It is a “universal” 1-form in the sense that, if a is a 1-form on M that we consider as a
section of the projection 7:

a: M ——T"M,

then a*A = a.

The derivative w = dX is a symplectic form (i.e. a non degenerate closed 2-form on T*M).
A submanifold L of T*M is called Lagrangian if it is totally isotropic (that is to say that w
vanishes on L) of maximal dimension (half the dimension of T*M, that is, the dimension of

M).

Generating functions. — The Liouville form A defines a closed 1-form on Lagrangian subman-
ifolds. For instance, the graph of a 1-form « is a Lagrangian submanifold of 7*M if and only
if a is a closed from. The simplest examples of Lagrangian submanifolds are thus the graphs
of exact 1-forms, that is, the graphs of the differentials of functions

F:M— C.

Such a function F' is called a generating function for the Lagrangian submanifold it defines.
These examples (graphs of differentials of functions) are very special, since the graph L of
dF obviously has the property that the composition

LCTM—— M

is a diffeomorphism. To construct more general examples, one slightly modifies the construction,
adding parameters to the function F.



Generating families. — Consider a function

F:CtxM —s C
(217"'7Zk7§) —_ Ff(z)

The graph of its differential is a Lagrangian subvariety of T (Ck X M)

Assume now that this Lagrangian is transversal to the conormal bundle of the projection
CF x M —— M: in local coordinates (&, ...,&x) on M, this is to say that the k x (k + N)-

matrix
0*F 0*F
62202]- 62265]

has rank k. The intersection of the graph of dF" with the conormal bundle of the projection is

the image of the submanifold
A={(28€eC x M|dF=0}CCxM.
The mapping

AN — T*M
(2,§) —— (§deF)

is a Lagrange immersion. This is indeed more general than the case of generating functions as
any germ of Lagrange immersion in T*M can be described this way (see [49]).

1.2. Singularities and unfoldings

Let us change our point of view and consider now that the generating family F' is a de-
formation of Fy = f (a function of the k variables (z1,...,zx)). We will consider only germs,
so that we can assume that M = CV. Assume also that 0 € A. This is to say that f has a
singularity at 0.

Consider the projection

o: N —TCVN —— CV.

It is singular at 0 if and only if the Hessian matrix of f at 0 is degenerate. Moreover, the
dimension of the kernel Ker Ty is k if and only if the Hessian matrix is zero.
Before to look at the converse construction, we need some notation.

Notation. — The Jacobian ideal of a germ f is denoted by J(f) (i.e. J(f) is the ideal
generated by the first order partial derivatives of f at 0). The Jacobian algebra is the quotient of
the ring of convergent series by the Jacobian ideal and is denoted by Q. Soif f € C{z1,..., 2k},

0 0
Qf=C{21,...,2k}/<a—zfl,...,a—i>.



Suppose now that f: C* — C is a polynomial with an isolated singularity at 0 and assume
that the Hessian of f at 0 is 0. Then there exists a basis of the Jacobian algebra ) that
contains the classes of {1, z1,..., 2z} modulo J(f).

Choose polynomials gpy1,...,gy : C¥ — C such that the classes of

{1,215y 2k, Gt1s - - -GN }
generate the vector space’ Q;. Define
F(z,8) = Fe(2) = f(2) + Gzr+ - 4 &z + G grrr (2) + - + Evgn(2).
This is a function on C* x CV. The germ

F:CkxCN S C
(217"'7216751’"'7&\7) — FS(Z)

is a versal unfolding of f (this is the definition) and is also a generating family for a Lagrangian
A as above. It is said that the germ of the Lagrangian projection

o: N ——TCVN — CV

is described by the unfolding Fr.

Notice that in this case, with the choices taken, the transversality condition is automatically

fulfilled, since
0*F O*F 92F
((8%34) (8@8@-)) - ((W) (Idg) (*)) ,

obviously has rank k.

Degree. — Being defined by polynomials, the Lagrangian projection
o: A ——CV

is a finite map. Its degree is the multiplicity g of f at 0, the “number” of critical points
of z — Fe(z). For a generic £, F¢ actually has g distinct critical points, each one having
multiplicity 1: this is true already for f(z) + &21 + -+ + &kzi (see Appendix B in [37]).

Stable germs. — A germ of a Lagrange mapping
o:LcTCc’N — CV

is stable if all nearby germs are equivalent to it. It is well known (see e.g. [1] p. 278) that
the stable germs are the germs that can be described by generating families that are versal
unfoldings. In other words, the germ of ¢ at 0 is stable if and only if F¢(z) 4+ & is a versal
unfolding of Fy(z) (that we denoted f(z)), in the sense that the classes of the functions

OF:
0

generate the vector space underlying the Jacobian algebra ).

1 and

lezo (for 1 <7 < N)

ZNote that the multiplicity of f at 0 is then at most N + 1.
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Remark. — The number £ we have used so far is determined by the germ, being the dimension
of Ker Top. The number N can be as big as we want. This does not change anything to () but
changes the dimension of the Lagrangian: this amounts to add excedentary variables £. For
instance, unfolding z® gives Lagrangian folds in any dimensions (see §1.3 below).

Notation. — Denote F; + & = Fg.

1.3. Examples of Lagrange projections

Non singular projections. — The zero section of T*C" is a Lagrange submanifold. The
projection has no singularity (k = 0). Any constant function C¥ — C is a generating function.

Folds and the A,-family. — Here, k = 1, f(z) = z°, the Jacobian algebra @; is C[z]/z* and
(1,z) is a basis. The versal unfolding is
Foz) = 246246
and the generating function is
Fe(z) = 224 &2
considered as a function of (z,&,...,&y) € C x CV (even if it depends only on &;). The
Lagrangian L is described by
cCxCch-t —— T~CN
(27527---751\7) — (—322,52,...,5]\7;2,0,...,0)

It has a fold singularity (it is shown of Figure 2 below).
One can consider more generally f(z) = z"*! in place of f(z) = z°. Then

Fe(z) = D S T L SR V-7
We will come back to these examples in §§1.4 and 3.3.

The D4-singularity. — Here is an example with two variables. The function f is
f(z1,22) = 25 + 2123

The Jacobian algebra has dimension 4 (as the subscript in Dy indicates it) and is generated by
{1, 21, 29,2} }. As a versal unfolding, we thus chose

Fe(2) = f(2) + €121 + Ea20 + £322.

It defines a Lagrangian in 7*CY for N > 3, which is the product of the zero section in 7*CVN~2
with a Lagrangian in 7*C? that we describe now. This is the image of

A= {(275) | 322 + 22 4+ £ + 26321 = 0 and 2212y + & = ()}
under the mapping
A —— T*C?
(2’5) —_ (§1a§2a53721,22,zf)
that is,

I = {(—ZZf — z; — 28371, —2Z122af37Z1’Zf)}'



The caustic. — The caustic is the set of singular points of ¢ in the target, or the set of all
¢’s such that two critical points of F; coincide: the map

w: A — CV
(2,6) — £

is a submersion at (z,¢) € A if and only if

Teoe: Tegh — CF
(2,2) —— =

is injective, that is, if and only if the system

ko g2
0°F; .
— 7, = 1 <1<k
;aZiaZj] 0 ( . )
J_
has no non trivial solution (Zy,...,Z). In this way, we find the values of ¢ for which all the

critical points of F¢ are non degenerate. The caustic is a discriminant.
For instance, Figure 1 shows the discriminant in C? of the unfolding of D, described above.

Figure 1: a discriminant (an umbilic)

1.4. Structures on C#

Consider now a germ f : C* — C with an isolated singularity at 0 of multiplicity p. Put
m=pu— 1.

To write down the versal unfolding of f, we chose a basis 1, ¢, ..., g, of the vector space
(). Let us use as above the notations E: (&0,&) € Cx C™ and Fg: Fe + & for this unfolding.

The aim of this § is to recall that the unfolding Fg gives the parameter space C* a very rich
structure.

The product *p — To choose a basis of QFF amounts to chosing an isomorphism between

this vector space and T:C*. This gives T;C* the structure of a commutative algebra with unit.
Thus we get a multiplication on the vector fields on C*. Denote *z the product at the point

£ € CH.



Remark. — We need the £p-axis here, as this is what gives the identity: the vector field d/0¢,
is the unit in all the TgC”.

A flat metric. — Recall the definition of the linear form? Hg on C{zy,..., 21}

0::C{z1,..., e} — C

LN® [ adza A+ ANdzy
“ " \%ir /r oF; 0k
le 82k

where I' is the distinguished boundary of a small enough neighbourhood of the critical points

of F:
= 52} g; > 0.

The value of Og(oz) depends only of the class of « in QF?’ so that it is possible to consider the

oF,
F:{Z|‘a;

family of Hg, letting gvary, as a l-form # on C*. At a point gwhere the p critical points
ai,...,a, of F¢ are distinct (and thus non degenerate), it is possible to write (see §5 of [1]):

m+1 oz(ai)

O{a) = Tofar)

=1

where }Cg(ai) is the value at a; of the Hessian of Fg.
At these points, it is clear that the bilinear form

(c, B) — O(aB)

is non degenerate. It can be shown that this is true everywhere.
Moreover, a theorem of K. Saito [41] asserts that there is an isomorphism of vector bundles
over C*, which, at any &, is an isomorphism QFF — TgC“, and which transports the bilinear

form defined by é to a flat metric on C*. The proof is easy in the case of the A, family, let us
thus concentrate on this case.

The A,-example: the flat metric. — Consider, as in §1.3, the polynomial f(z) = z"*! and
its unfolding

Fe(z) = R S A S N

(forgetting ~’s and noting n = p to save on typing). The space of parameters is the affine
space of all the polynomials F¢ (¢ € C"). Its tangent space at any point is the vector space
of polynomials of degree < n — 1. It is endowed with the multiplication of Qr, = C[z]/(F}):
a ¢ (3 is the remainder of af in the Euclidean division by F{. The 1-form ; is

1 adz R adz
o — — = — Res,, ——.
20w Jr Fg’ Fg’

31t was used mainly by Arnold and Khovanski e.g. to solve problems in real algebraic geometry [29].



Notice that, in this case, the equality

Ieo) = X s

(when the critical points are distinct) is obvious. Let us now show that 6 defines a flat metric,
simply by the exhibition of coordinates in which the metric is constant (these are called flat
coordinates). The idea is to solve the equations

{w; _ fiz())(z—l)

near z = oo and to expand the solution

T t 1
w w

,wn—}—l
defining o, ...,t,—1 (a basis of the vector space of symmetric polynomials). The claim is that
to,...,tn—1 are the flat coordinates we are looking for. That they are (global) coordinates is a

simple consequence of the definition, which implies that

&= —tit Aitipt, .. ta) 0<i<n—1
or equivalently, that

ti= =&+ Bi(&y1,. . &) 0<i<n—1

That they are flat coordinates is a simple computation:

a [ nl) ) % _ ! . o—n+1
a_tZ(Ff) - F&(Z(wvt))ati - Ff(z(uat))w

so that

9 i — s o —2n+i+j
g (ati(Fg)’ o (Fg)) = — Res.—o F{(2z(w,1))uw dz.

But Fg’(z)dz = (n + 1)w"dw, so that

9 . 0 "
’ (8t-(F’5)’ %U’g)) = —(n+ 1) Resy—co w™ " dw = (0 + 1)di1j 1.
i J

This shows that g is non degenerate everywhere and that it is constant in the ¢;’s, the latter
being flat coordinates. O

2. Multiplication of vector fields and spectral covers

2.1. Spectral covers

We consider now an N dimensional manifold M and assume that all its tangent spaces are
endowed with the structure of a commutative ring with unit. The product on T¢ M is denoted

10



x¢ and the identity element 1;. We assume M to be complex analytic (usually, M = CV), the
identity element

§— 1e
to be a vector field, and

Q:TM —— End(TM)
(£,a) —— a*g-

to define an End(7T' M )-valued 1-form. Commutativity and associativity of %¢ imply:

2.1 LEMMA. QAQ=0.

Proof. — By definition, Q¢(a) - ((8) -7) = ax¢ (B4 7), so that

(@A) (@.8)7 = 5 [0(0). %(B)]

= Jloxe (Bxe7) — Fxe (s )]

O
Lemma 2.1 can be rephrased as “(T'M, Q) is a Higgs pair”. Higgs pairs and spectral covers
originate from Hitchin’s famous paper [26], where M was a curve.
As for any Higgs pair, using the eigenvalues of {2, the one at hand defines a spectral cover,
that is, a subvariety L C T*M such that the projection

LCTM —— M

is a degree-N map. (For Higgs pairs, see [44], for Higgs pairs and spectral covers, see [16].)

Definition of the spectral cover. — As QAQ = 0, the morphism Q : TM — End(7T' M) extends
to a morphism

Sym(TM) — End(TM)
by
(are o n) B = (U)o 0 Delan))(B) = ar ¢ - ¥ am ¢ .

Now, the sheaf of local sections of Sym(7T'M) is nothing other than the sheaf m,Op«pr of
regular functions on the cotangent bundle T*M: a local section oy e --- @ o, of Sym(7T'M)
defines a function on T*M by

ay e e an(lp) = (g ar(§)) - (1 am(f))

(¢ is a point of M, p a linear form on T¢e M and the «;(&)’s are vectors in Te M).
Thus the Op-module T'M gets an Op«pr-module structure. Our spectral cover L is just the
support of T"M as an Op«y-module.

11



Set-theoretically, this is to say that a point (&, ) of T*M is in L if and only if, for any
(local) function f: T*M — C that annihilates local sections of TM, f(&, p) = 0.
An almost tautological property is the following (see e.g. [3]).

2.2 PROPOSITION. —  The ring sheaf of vector fields on M is the sheaf of reqular functions
on the spectral cover L associated with (T'M, Q). O

Down-to-earth description. — Let a be a vector field defined on an open subset U of M.
Associated with « is a section

Pyt (& p) —— det(Qe(a) — pe(a) Idg)

of ™ ANTM over T*U C T*M. Assuming that there is some local vector field a for which the
minimal and characteristic polynomials coincide, the spectral cover can also be defined by the
annulation of all the P,’s.

Assume that at some point & € M, the algebra (T, M, *¢, ) is semi-simple, or, equivalently,
that all the Q¢ (a) for a € Teg; M are diagonalisable (recall that the Q¢(«) commute so that
they can be diagonalised simultaneously).

Let us call such a point & a semi-simple point. If moreover, there exists an « for which the
eigenvalues of ¢ («) are all distinct, we will call it a regular semi-simple point.

Then, over a neighbourhood U of &, the bundle T'"M — M then splits as a sum

(1) TW:éWi

=1

of line bundles that are the eigenline bundles of ). Equivalently, on U, there is a basis

& (wi(£),...,wn(§))

of common eigenvectors of the multiplication x;.

To each W; and each oo € T¢ M corresponds an eigenvalue u;(ca, €) of Q¢(a). Such a p; can
be considered as a local section of 7* M and altogether, the graphs of the u;’s form the N sheets
of the spectral cover L.

Remark. — The spectral cover (and the projection onto M) may have singularities over the
complement of the set of semi-simple points. However, according to Proposition 2.2, these
singularities are relatively simple, since the structural sheaf of L is the sheaf of local sections
of a vector bundle (namely, TM).

The Lagrange property. — Let us assume now that the tangent bundle of M is trivialisable
and endowed with a distinguished trivialisation (we will mainly use M = C¥) so that the
symbol d€? is meaningful. (One could use the exterior covariant derivative of a flat connection
V in place of d.) The following property comes from [24, 23].

2.3 PROPOSITION. —  Assume d) = 0. [f there exists a semi-simple point in M, the spectral
cover is a Lagrangian subvariety of T*M .

12



Proof. — To say that the spectral cover is Lagrangian is equivalent to say that it is Lagrangian
over a non empty open subset of M. As there is some semi-simple point, the set of such points
is open and dense. We will prove that the spectral cover is Lagrangian over neighbourhoods of
the semi-simple points of M.

On a neighbourhood of such a point, we have vector fields (wy,...,wy) satisfying

w; * w; = 0; ;w;.
Differentiate this relation (for i = j) to get
2(dw;) * w; = dw;.
Write now the vector dw; in the basis (wy,...,wy):

W — s
dw; = alw;
J

for some matrix (a}

) of 1-forms, so that, multiplying both sides by w; for j # i:

Za‘zwj = dw; = 2(dw;) x w; = Z(Z af'wj) *w; = 2a§:'wi

j
and thus af = 0 for all z and j, so that dw; = 0. Write now

To say that L is Lagrangian is then just to say that all the 1-forms p; are closed. Once again,
differentiate this relation and use the assumption df) = 0:

(dQ) - w; + Q- (dw;i) = (dpi)w; + pidw;
and thus

Remarks.

e A more general framework would be that of a morphism

Q:TM — End(F)

for some vector bundle £ — M, endowed with a flat connection V and such that QAQ =0
(to define the spectral cover) and dy{) = 0 (to have the Lagrange property). Definitions,
statements and proofs are completely analogous (see e.g. [3]).

e Proposition 2.3 is probably true without any semi-simplicity assumption. Notice that the
proof given in [24] shows that all the branches of the spectral cover that correspond to
simple eigenvalues are Lagrangian.
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Canonical coordinates. — As the forms u; are closed, they are locally exact. Any family
of local primitives (z1,...,2y) is then a system of local coordinates on M, that I will call
canonical® coordinates, as this is the standard teminology in the Frobenius world [17, 27].

In the associated coordinates on T*M, the N branches of L are

LZ'={(501,...,SL'N;O,...,O,L',O...,O)} 1§l§N

Remarks.
1. Up to a rescaling, the eigenvectors w; satisfy w; x w; = é; ;w; and w; = d/dz;: they are
the vector fields associated with the canonical coordinates. As a consequence, in these
coordinates, the unit vector field is

N
J
1= 5,

: : : : d
2. It is tempting to consider a vector field given by a formula such as Z Tig — asan Euler
;
vector field. More precisely, let M be a manifold whose sheaf of vector fields is endowed
with a generically semi-simple ring structure. Assume that the spectral cover is La-
grangian. A globally defined vector field € on M is called an Euler vector field if, in every
open subset of M where canonical coordinates exist, these can be chosen in such a way

that

0
Then, by definition, € rescales the product x¢ in the sense that
[EaxB]—[€a]xB—ax[,f]=axf.

3. Assuming that M = CV, the endomorphism valued 1-form ) is a matrix of 1-forms.
Assume as above that () is closed: all entries are closed 1-forms. On C¥, closed 1-forms
are exact, so that there exists a function

S:CN —— End(CY)
satisfying dS = Q. This is where the potential of Frobenius manifolds comes from (see
§3.1).
2.2. Back to unfoldings

Associated to the multiplications *z described in §1.4 is a spectral cover, Lg say, in T*CH*.
The aim of this § is to check, that, up to the & factor, this is the Lagrangian L defined by Fp.
Let us use previous notation (i.e. p is the multiplicity and g = m + 1).

2.4 PROPOSITION. — Let £ € C™t! be a point such that the p critical points a; € CF (1 <
i <) of Fg are distinct. The eigenvalues of the multiplication by the polynomial o in QFﬁ~ are

the values a(ay),...,a(ams1) of a at the critical points.

*although they are not canonical.
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Proof. — Chose for all 7 a polynomial 3; € Cl[zy, ...,z such that
Bila;) = di; (1 <7 <k)

The classes of 3y,...,3, in Q. are independent and thus form a basis of this vector space.

Fix a polynomial a € Clz, ..., zx]. By the very definition of the product,

b OF;
a(2)B(2) = (axg i) (2) + 30 Ral2) 5 5(2).
=1
Computing both sides at a;, we get
(axzB:) (a;) = & 0(a;)

so that oz*gﬁi is a scalar multiple of the class of 3; in QF? (this is the place where we use that

the p critical points a; are distinct). Thus 3; is an eigenvector of the multiplication by « and
the computation above even gives its eigenvalue, a(a;). O

2.5 COROLLARY. — The product *z is semi-simple for generic €. a

Over a point gwhere the a;’s are distinct, the spectral cover is described by the p linear
forms

Tng‘H — C
1o —  afa;)

Consider now the Lagrangian L described by the unfolding F, and its “fattening” L by the
&o factor:

L={((%.1),(&p) [ (&,p) €L} CCx Cx T*C™ =T*C™H,
Of course we have:

2.6 PROPOSITION. — The spectral cover of CH associated with the family of products *z

defined by the versal unfolding Fe of f is the Lagrange subvariety L described by the generating
family Fg.

Proof. — Let £ € C™ be a point such that the p critical points of F¢ are distinct. Let us
check that, over £ = (&o,&) (for any &), the spectral cover coincides with L — this is enough
as these points are generic.

The functions F; and Fg = F¢ + & have the same critical points ay,...,a,. The man-
ifold A that parametrises the Lagrangian L consists, over £ € C™, of the m 4+ 1 points
(a1,€), ..., (ams1,€). The “fattened” Lagrangian L is the image of

CxA —s T*Cm!
(0.2.6) —— (£.dF).

As the function € — Fg is affine,

hence the result. O
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Remark. — 1In this case, we did not need to prove that d{) = 0 and to use Proposition 2.3,
since the spectral cover is automatically Lagrangian.

As I have explained it above (§2.1), the fact that the spectral cover is Lagrangian describes
the existence of “canonical” coordinates (see [17] or [27]) on an open dense subset of the manifold
under consideration. Here, this open subset is the product of the £-axis and the complement
of the caustic in C™. The linear forms a — «a(a;) define locally p differential forms. To say
that L is Lagrangian amounts to say that these forms are closed. Their local primitives are a
system of local coordinates, the canonical coordinates.

In our case, where the Lagrangian L is described by a generating family Fg, there exists a
natural choice of primitives, namely x; = Fg(ai), the critical values of Fx.

The vector fields defined by the eigenvalues, that is, the 3;’s in the proof of 2.4, are then
the d/0x;. For any polynomial P € C[zy, ..., z],

in other words, the vector field
P:f+— P mod J(Fg)

on C™*! can be written, in canonical coordinates,

m+1 a

P= Z 81;2

In particular, the unit vector field (P = 1) is written

1_28732

and
m+1 a m+1
Fg— Z F~(a Z xz—

€Z;

so that Fg, the unfolding itself, is an Euler vector field in the sense of §2.1.

Remark. — Notice that, since L and L are smooth, the spectral cover considered here is
smooth. Below I will give examples of spectral covers which do not satisfy this property (see

e.g. §2.3).

2.3. Other examples of spectral covers

Unfoldings give examples of spectral covers, as we have just seen it. Here are some other
examples.
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The spectral cover of a Cartesian product. — Suppose now that M; and M, are two varieties
endowed with a ring structure on their sheaves of vector fields. The product M; x M5 is endowed
with the same structure by:

06 Q
QO TM;, x TMy ———— End(T'M,) x End(T'My) C End(TM,; x TM,).
It is immediately checked that:

2.7 PROPOSITION. —  The spectral cover assoctated with (My x M3, ) is the union
L:Ll XMQUMl XLQCT*Ml XT*MQ

where M; is embedded in T*M; as the zero section. O

Remarks.

1. The intersection of L; with the zero section M; consists of the points of M; where the
multiplication has zero as an eigenvalue. But notice that, in a ring with unit, equality
axv = 0 for all « is only possible when v = 0, thus L; N M; = & and

(Ll X Ml) N (Ml X LQ) C (Ll N Ml) X (L2 N Mg) = J.

The two pieces we have used to construct L do not intersect and, in particular, the possible
singularities of I may only come from singularities already present in Ly or L.

2. In the semi-simple case, the spectral cover is precisely of this form (obtained from the
spectral covers in the 1-dimensional case by cartesian product).

Products on C?. — Notice that the unfolding of 2® gives an example with a double eigenvalue.
Let us construct other examples, constructing a family of ring structures on C2.
In general, given a ring structure on C2, there exists two vectors u and v such that

{ u 1s the identity

’U2 = au.

The equation (z1u + x9v)* = A(@1u + 29v) has two distinct non trivial solutions when a # 0,
in which case the algebra is semi-simple.
Now we want the product to depend on a point in C2%, so that we will assume that

0 0
. = —
9o 96

and that a is a function C? — C. The product of two elements at the point ¢ is described by

U =

the formula:

St i) xe (oo 4 o) = (0w 4 a(€)eiz) o+ (212 + 202 o
$Oa§0 T i3 $Oa§0 xlafl = |ToZy a T1Tq 650 T1Tg Loy afl

S|

In other words, the form ) is the matrix of 1-forms:

( de a6)de,
”‘(da dé, )
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Note that, in order that £ be closed (and the spectral cover a Lagrangian), it is necessary
and sufficient that a only depends on &;. Thus we assume that a = a(&;).
The spectral cover is the Lagrangian

L={(¢;&,po,p) | po=1and p? = a(é1)} € T*C2.

At points (&, &) where a vanishes (a(&) = 0), there is a double eigenvalue and it is
impossible to find canonical coordinates. If, at a given point (&, &1), a(€1) is a square root of
a(&), the two vectors

0 0
9o 351

are eigenvectors, for the eigenvalues d¢y + a(&;)dé; (respectively), for

(g + e ) * (a3 + | = (m atem) (a6 g+ )

Let ' C C be an open subset on which there exists a function o with a(z)? = a(z). Choose
a square root and let 3 be a primitive of a. Then z; = &, + 5(&1) + a1 and z2 = & — B(&1) + a2
are canonical coordinates and

o _1(o 1oy o _1(0 10
Oz 2\0&  «db )’ Ozy 2\0& ad& )’

The unit vector field is

o)

9 _ 0,0
N 350 N a$1 8.172'

Under the same assumptions, there is even an Euler vector field, since

9] 3] ﬂ(fl) +b, 0
E=z1—+ 2 +by)— + —————
la 1 28”02 (50 0) a&) (fl) afl
Near a zero zg of a it is possible to choose 8 (with lim,,., #(z) = 0) and a3 = a3 (so that
by = 0). In this way, 3/« extends to a holomorphic function defined in a neighbourhood of z.

Remarks.

o If o has an analytic continuation around a zero zg of a, the same is true for the eigenvalues
and/or the canonical coordinates. These ones are then well defined, but not independent
at zg: the spectral cover has two branches at zo. This is the case if a(£;) = £}™ for instance
(see figure 3). Notice also that this gives examples of non smooth spectral covers.

e The case of the unfolding of 2% corresponds to a = —¢;/3 (figure 2). There is no global
choice of a in the complement of 0 in this case.

e Notice that, even when the canonical coordinates are defined only on some open subsets
of the complement of the zero set of a, the Euler vector field is globally defined, as 3/«
in the formula above extends to a holomorphic function on C.
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Figure 2: a fold Figure 3: two branches

3. Frobenius manifolds, examples
3.1. Definition of a Frobenius manifold
Definition. — A Frobenius manifold is a complex analytic manifold M endowed with

e a commutative ring structure on the sheaf of vector fields, the product at ¢ denoted by
*¢ and the unit by 1.,

e a flat metric g, the Levi-Civita connection of which we will denote V.
e a vector field £, the Euler vector field
satisfying a couple of compatibility conditions, namely:
L glaxB,7) = gla,Bx7).
2. V1 =0.
3. If e(er, B,7) = glax 3,7), the 4-tensor (Vsc)(a, 3,7) is (completely) symmetric.

4. The vector field € acts by conformal transformations of g and by rescalings of x; on T: M,
namely

€-g(a,3) = g([€ a],B) - g(a,[E,8]) = Dg(a. B)
and
(€, axfB]—[E a]xB—ax[E B] =diaxp
for some constants D, d;.

5. V(VE) = 0.
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Remarks.

1. Here, the term “metric” designs a (complex) non degenerate bilinear form.

2. g(a, 1) defines a I-form § on M, conversely, § and * give g by g(«, 3) = 0(a* 3) (as we
have shown in §1.4).

3. It is usually assumed that the scaling constant d; is non zero (and thus that the Euler
vector field is non trivial). It is then possible to assume that d; = 1 by rescaling &.

4. Using our previous notation, let
Q:TM —— End(TM)

be the 1-form defined by the multiplication %x¢. The compatibility condition between the
metric and the multiplication implies that 2 has values in the symmetric (with respect
to the metric g) endomorphisms of T'M.

Spectral covers and canonical coordinates. — Let dy be the exterior covariant derivative
associated with V. Then, compatibility conditions (1) and (3) imply:
3.1 PROPOSITION. dyfl=0.

Proof. — This is a simple rephrasing of the symmetry of Ve. The tensor ¢ can be considered
as a 1-form with values in S*(T*M):

c: TM —— S*T*M)
a . ((/377) = c(a7/377))'
It is a section of SQ(T*M) ® T*M and its covariant exterior derivative dyc is a 2-form with
values in S?*(T*M), that is, a section of S*(T*M) @ A*(T*M).
On the other hand, Ve is a section of S*(T*M) ® T*M and dyc is obtained by antisym-

metrisation, so that Ve is symmetric if and only if dye = 0.
Now, () is an avatar of ¢:

Q: TM —— End(TM)
a —— (B axp)

takes its values in Sym, (7'M), which is isomorphic to S*(T*M) by

®: Sym,(TM) — S*T*M)
@ — ((8,7) = g(#(8),7))

and 0 = &7 oc, so that dyQ) = &7 odyc = 0. O

We are thus in the situation of Proposition 2.3, except that we must make a semi-simplicity
assumption. A Frobenius manifold is called massive if it has an open subset of semi-simple
points.

3.2 COROLLARY. — Spectral covers of massive Frobenius manifolds are Lagrangian. a
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Remark. — General massive Frobenius manifolds have discriminants (the set of points ¢ such
that *¢ is not semi-simple). In the case of unfoldings, the discriminant coincides with the usual
discriminant (see §§1.3 and 2.2).

Canonical coordinates are, as above (see §2.1), primitives of the eigenvalue forms. The
vectors d/0x; are eigenvectors, chosen to satisfy

9, 9, 0

* —— = 0, ,—.
&m a.];'j " axz

0,0 9\_s5 (0 9
g 8"52 8@’8:@ — g 8;1:2’6:%

on the one hand, and that it is equal to

9 9 IV _s5 (2 9
g 8:1;/6.% a”ck = Oikd a$27a$k

on the other hand, so that

Notice that

a o0 .
g(a—xz,a—xk)—()forl#k

canonical coordinates are orthogonal.

A remark on the Fuler vector field. — According to the philosophy of §2.1, the Euler vec-
tor field is essentially determined by the canonical coordinates, that is, by the multiplication.
The fact that it is conformal is a serious rigidification of the whole structure (compare the
2-dimensional examples in §§2.3 and 3.2, respectively without and with the “conformal” prop-

erty).

The flat pencil of connections. — The connection V and the 1-form ) can be put together
in a family V! = V + ¢} of connections on M (the Dubrovin connection):

V.(8) = VafB +10(a) - 5.

The commutativity of the products x, is obviously equivalent to the fact that V* is torsionless.
The flatness of V* for all ¢’s is expressed by two equations, that correspond to the closedness of §2
(or the symmetry of V¢, see Proposition 3.1) and the associativity of the product (respectively).

The potential and the WDV'V equation. — Let us use now flat coordinates (tg,...,tn—_1), 5O
that we assume that we are in CV, with a constant metric and dyv = d. As we have noticed it
in §2.1, Q, being closed, has a primitive

S:CN —— End(CM).
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Since the 1-form 2 defines g-symmetric endomorphisms of C"V, we can assume that the primitive
S satisfies the same property:

S CNY —— Sym (CM).
Such a mapping can be considered as the second derivative of a function
v.cVN ——C
in the sense that
(W), (8,7) = g(5(6) - 8,7).
By definition
(), (@,8,7) = g ((dS) (@) - B,7) = glax B,7)

or, in (flat) coordinates:

o’ _ (o, 0 0
atotot, I \ot "ot oty
or, equivalently
P

Associativity of the products x can now be expressed as a system of (non linear) partial
differential equations on the function W, the celebrated WDVV?® equation:

P 0 02w 02w
2 Sionon gkmat FTRr TR D v gkmat-at ot
k,n UL ULE LUmUln kn (UL ULE 1Ol Ulpy

n

where the matrix ¢®" is the inverse of the matrix (g (%, %)) .
i 1774,

J

The “invariance” properties with respect to the Euler vector field can then be stated very
simply in terms of the potential ¥, namely

€ -V =dyV¥ + terms of degree <2

for some degree dy.

Remark. — As the unit is parallel (V1 = 0), it is possible to chose the flat coordinates in
such a way that
=2
dtg
If this is the case,
P

=S 2" gt.dt,
g Eatoatjatk 140k

Sfor Witten, Dijkgraaf, Verlinde, Verlinde.
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3.2. Frobenius manifolds of dimensions 2 and 3

Frobenius structures on C?. — Let us come back to the family of ring structures on C? we
have described in §2.3 and try to add what is missing in order to get a Frobenius structure.
Let us use the notation of §2.3.

We need a flat metric. Let us choose it so that the given coordinates (&, &) are flat (so that
the second compatibility condition will be satisfied). With the first compatibility condition,
this implies that

g = vyd&odé;

for some constant 7. Rescaling &, we assume that v = 1.
We know that Condition 3 amounts to the closedness of 2 and we have already imposed it,
having assumed that a = a(&). We have a candidate for the Euler vector field, namely

0 0
€= 508—50 + b(fl)a—&

where b = [/a in the notation of §2.3. This was chosen to rescale the product, let us now
impose that it acts by conformal transformations, that is, that L¢g is a multiple of ¢, or that

€ g(X7 Y) - g([gvX]v Y) - g(X7 [87 Y]) = Dg
for some constant D (using Dubrovin’s notation). With X = 0/09¢,, Y = 0/0¢;, this gives
D=1+b(&)

so that we can assume, if D # 1, that b(&) = C& for some constant C' (C' = D — 1).
Recall now that b = 8/8" with (#)? = «a, so that we have to solve the differential equation

B _ e,

3
which gives

This is a very serious restriction on the function a defining the product. Notice also that,
in order to have a structure that is well-defined at 0, we need that

1
—2(~—1)eN.
" (0 )E

We also know the third derivatives of the potential, so that we eventually get:

3.3 PROPOSITION. —  The metric déodé, together with the product ¢ for which 0/0¢, is the
unit and
13} 13} 0
s~ — BEm
o6 " o~ P o
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and with the vector field

Szfoai&)-l-(%—l-l)&%

defines a Frobenius structure on C?, whose potential has the form

W(Eo, &) = 5636+ O

modulo degree-< 2 terms. O

In the case where D = 1, b must be constant, so that a(&) = Aexp %51 for some r € C. In
this case, the Euler vector field is

0 0
8—€Oa—&+ra—&

and the potential has the form
1, 2
V(. &) = 566 + Cexp =&

WDVYV in dimension 3. — Notice that the associativity conditions (WDVV equations) are
empty in dimension 2. Let us try a 3-dimensional example. As usual, 3/0&; is the unit. Chose
the flat metric

g = d&} + déodé;

so that, assuming there is a potential W,

00 #V 0 #vo o
9& 96 0G0 0% 98 06 9

0,0 _ PV o #V 0
9¢ 96 0606806 DELOE, D€,

0,0 _ PV oV o
9 06 06 0t D608 96

The associativity equation
(i*i) O i*(i*i)
& 0 ) 0& 06 \0& 98

Pu ( FU )2 A A
06 \ 006, 067 96,065

This is related to Painlevé VI equation (see [17, 27, 35]). We shall meet examples of solutions
of this equation later (in § 5.4).

gives the PDE

24



Remark. — It can be shown (and the readers should check) that the PDE equation above is
the only associativity equation in this dimension, namely that

(i*i) 2 i*(i*i)
0 0&) 06 06 \0& 06
does not give anything new.

3.3. B- and A-models

Unfoldings. — Using unfoldings, we have constructed a product and a flat metric on C* (in
§1.4). We have exhibited the canonical coordinates and a candidate to be the Euler vector field
(in §2.2).

These structures fit together into the structure of a Frobenius manifold. The only things
which are left to check is that € acts by conformal transformations of the metric and that
V(VE) = 0. These two properties are consequences of the way the Euler vector field is given
in flat coordinates.

The A,-example: the Euler vector field. — Let us do this in the A,-case (using the notation
of §§1.4, 2.2). To begin with, make the Euclidean division of F¢ by F{, to express the Euler
vector field in the coordinates (&g, ..., &—1):

_z lp— n—j+1 1 ,
Fu(z) — i
in other words,
— nz_: n—jtl, 9
i ntl ](95]

Let us now express this vector field in terms of the flat coordinates (to,...,%,-1). Recall
that

ti= =&+ Bi(&41,--16nm1) 0<i<n—1L

Give &; the degree n — j + 1 — so that F¢(z) is homogeneous of degree n + 1. The function B;
is then homogeneous of degree n — ¢ + 1. let us now compute:

S
E-t; =
z:% n+1 5]85]

s,

n—1+1 nol j—l—l

7=1+1
n—1+1 n—14+1 nol —7+1
_onoidl, (noitly S noirl o
n+1 n+1 St ntl afj
_ n—z—l—lti
n+1
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according to the homogeneity of B;. Thus € has the expression

p—j4+1 'a

in flat coordinates.
Notice that, if this gives the desired properties, this also implies that the potential of this
Frobenius structure is a polynomial in the ¢;’s.

Orbit spaces of Coxeter groups. — The space of degree-(n + 1) polynomials
Fe(z) =2+ 612" 4+ &

is also isomorphic to the quotient

{(21, ey Zng1) € CMTH ZZZ = 0} /St

by the map

n+1
(21, .y Znp1) —— H(Z — z).
=1
In other words, our space of polynomials, as all spaces of parameters of versal unfoldings, is the
space of orbits of a Coxeter group. These spaces have natural Frobenius structures (see [17])
and a conjecture of Dubrovin asserts that all polynomial solutions of the WDVV equations
should be potentials of such structures.

Hurwitz spaces. — The polynomial z"*!, the unfolding of which we have investigated in
detail, generates another family of examples, that of Hurwitz spaces. Simply notice that a
degree-(n + 1) polynomial in one variable is also an (n + 1)-fold covering of P! with a single
pole (of multiplicity n + 1).

Recall that Hurwitz spaces are moduli spaces of coverings of P! (or of meromorphic functions
on curves) with prescribed degree. Dubrovin investigates, in Chapter V of [17], a variant of these
spaces: a constraint on the structure of the pole divisor is added. Precisely, given non negative
integers g, dy, ..., dy, My ,,..4, is the set of isomorphism classes of data (X, z1, ..., 2m, f) where
Y is a smooth genus-g curve, (z1,...,2,) an ordered set of m distinct points on ¥ and f a
meromorphic function on ¥ with pole divisor

(f)oo = Z d;z;.

For example, the parameter space of the unfolding of z"*' is Mg, 41. Dubrovin constructs a

n+1

Frobenius structure on M, 4, . 4 generalising the one we have shown in the z case. As in

§2.2, the critical values of the meromorphic functions are canonical coordinates.

Landau-Ginzburg vs field theory models. — In the two families of examples above, the struc-
ture of the Frobenius manifold M comes from a function F' defined on some bundle over M:

¢ M =C#and F: C* x C*¥ — C is the unfolding itself,
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o M is the Hurwitz space, € — M the “universal curve” over M and F : € — C is the
evaluation mapping (X, z1, ..., 2m, f,2) = f(2).

The function F' is a generating function for the spectral cover. These examples are called
“Landau-Ginzburg models”, the function F'is the “superpotential” of the model.

There are other examples of Frobenius manifolds where you start from the potential ¥ to
describe the structure — these are the “field theory models”. This is the case of quantum
cohomology.

Roughly speaking, in Landau-Ginzburg models, the easy part of the structure is the multi-
plication, while in field theory models, this is the metric.

Cohomology. — The next example is that of the (even part of the) cohomology of a compact
manifold X: M = H*(X;C). The product is the cup-product — and the metric is defined by
Poincaré duality. This is very simple, but unfortunately not very interesting, and this for two
reasons

1. the product is constant (does not depend on any point of M),
2. it is far from being semi-simple, being nilpotent.

However, the manifold itself is very simple, being a complex vector space, the metric is
obviously flat, being constant in the natural (linear) coordinates. Fortunately, there is another
product (under certain assumptions on the manifold X) on the sheaf of vector fields of M,
the quantum product *¢, which is very often semi-simple. The idea is to define it through the
Gromov-Witten potential:

s !

in which expression ¢ is a point in M = H*(X; C), the summation is over all dimension 2 ho-
mology classes A € Hy(X;Z) and W 4(£%™) designates a Gromov-Witten invariant, heuristically
described as the number of certain rational curves of class A in X and rigourously described in
the second chapter of these notes. We will see, for instance, that the potential found above in
dimension 2 for D = 1 describes the Frobenius structure on the cohomology of P!.

Chapter 11
Stable maps and quantum cohomology

Let us turn now to the description of A-models. In this chapter, I will describe in some
detail (and with examples) the moduli spaces of stable maps. I will then explain how to use
them to construct the Gromov-Witten invariants and potential and show that this defines,
indeed, a Frobenius structure. The last part is devoted to a special case of the products defined
by the Gromov-Witten invariants, the so-called “small quantum product”, which is easier to
handle and might contain enough information to solve some of the global problems of quantum
cohomology.
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4. Moduli spaces of stable maps, with examples

The moduli space invented by Kontsevich (see [31]) is the good moduli space to investigate
curves in a given variety®.

4.1. Spaces of stable maps

Let X be a complex projective manifold (we will use the fact that the projectivity gives us
a Kahler form on X when necessary).

The data. — A stable map is a package (X, Z, u), where ¥ is a genus-¢g complex curve with, at
worse, ordinary double points (nodes), 2= (z1,..., 2 ) is an (ordered) m-tuple of distinct points
of ¥ (marked points) and u : ¥ — X is a holomorphic map. The genus here is the arithmetic
genus. Here is a definition for topologists. Associate to ¥ a graph I'y: any component of ¥
gives a vertex, two vertices being connected by an edge when the two corresponding components
intersect. The genus of ¥ is, by definition, the sum of the genera of the components plus the
dimension of Hy(I'y).

We will impose a stability condition, in order to be able to quotient by isomorphisms. Let
us first precise what the isomorphisms are.

Isomorphisms. — Two stable maps (X, 2, u) and (X', 2’,u’) are isomorphic if there exists an
isomorphism ¢ : ¥ — ¥/ such that ¢(z;) = 2! for all ¢ and v’ 0 p = u.

Stability requirements. — It is required that the data above have no infinitesimal automor-
phism. This amounts to requiring that the components of ¥ on which u is constant be stable
curves in the sense of algebraic geometry.

More concretely, if u is constant on a genus-0 component, there must be at least three special
points (singular or marked) on this component, and if u is constant on a genus-1 component,
it must contain at least one special point.

The “moduli space” of stable maps. — The set of isomorphism classes of genus-¢g curves with
m marked points representing the class A in the manifold X will be denoted M, (X, A).

Remark. — We are not considering the image curve, but notice also that we are not really
considering the mappings: quotienting by isomorphisms destroys the parametrisation.

When the isomorphism class of the marked curve (¥, ) cannot vary (e.g. ¢ = 0 and m < 3),
it is possible to take care of the parametrisation by looking at graphs (see Appendix B).

Before looking at examples, let us state and prove an elementary but crucial property.

4.1 PROPOSITION. — Let w be a Kahler form on X and A be a homology class. If A can be
represented by a holomorphic map from a complex curve to X, (w, A) > 0, with equality if and
only if the holomorphic map is constant.

In particular, the class A = 0 can only be represented by constant holomorphic maps.

6A good way to be convinced could be to think of the difference between elliptic curves and plane cubics. I
explain this in Appendix A.
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Proof. — Let u: ¥ — X be a holomorphic map. Since its derivative is complex linear, for
any z € X, a € 1,3,
(). @ ia) > 0.
Thus
(w, A4) = (v'w, [2]) = 0.

Moreover, if u is not constant, there is an open subset /' C ¥ and a non zero vector field o on

U such that (v*w),(a,ia) > 0 for z € U. Thus (w, A) > 0. O

First examples.

1. When X is a point, the map u is constant and we get the space M, ,, of stable marked
curves’. Notice that M, ,, exists only if m + 2¢g > 3 (and that this corresponds to the
sability condition in this case).

2. If A =0, we have seen (Proposition 4.1) that the map w is constant and hence the moduli
space M, (X,0) is isomorphis to M,,, x X.

3. Another simple case is that of Mo o(P!, L): we are dealing with degree-1 mappings
u: P —— P

Up to isomorphism, there is only one such map, so that the set Mg o(P', L) is a point.
See a generalisation of this example in Appendix B.

4. More generally, Mo o(P!,dL) is a compactification of the Hurwitz space of degree-d poly-
nomials.

5. A nice exercise, solved in the introduction of [20], is to describe the version Mg o(P?,2L)
of the space of plane conics.

Topology on M,,,,(X,A). — We shall see below (Theorem 4.6) that, under certain assump-
tions, M,,.(X, A) is a projective variety. In general, it is, at least, a topological space: it can
be endowed, for example with a variant of the C*-topology (for any k). Here is a description
of a basis of neighbourhoods of the class of a stable map (X, Z, u). Fix a real number ¢ > 0, a
neighbourhood U of the singular points of ¥, a neighbourhood V' of the set of marked points
and a metric u on every component of Y. The neighbourhood defined by these data consists of
the stable maps (X', 2", u’) such that:

e there exists a continuous map o : ¥/ — ¥ which is a diffeomorphism outside singular
points and such that the inverse image of every double point is either a double point of
¥ or an annulus of modulus > 1/¢, containing no point of 2,

o |lu—u oo™k < e outside U,
o |[Jx — o eler <,

e o(zl)eV.

"Except for MM, I will only use ﬁoym, the Deligne-Mumford-Knudsen compactification of the space of
isomorphism classes of m ordered distinct points in P!. For the properties of these spaces, see [30, 28].
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Remarks.

1. Recall that a complex annulus is conformally equivalent to S*x]0, L[ for a unique L > 0,
its modulus: conformally, to be very long means to be very thin.

2. Jy is the complex structure of X, considered as an automorphism of 7%, multiplication
by ¢. The condition required on Jy and J§, expresses the fact that ¥ and ¥/ shall be close
to each other in the ad hoc moduli space. Norms are computed with the metric yp we
have fixed on ¥ and with the Kahler metric of the projective variety X.

The topology is such that:

4.2 PROPOSITION. —  FKvaluation at the marked points
eVt Mym(X,A) —— X7
(3,2 u) —— (u(z1),.. - ulzm)).
15 @ conlinuous mapping. O

4.2. Relation with the space of stable marked curves

Contraction. — 1t is possible to forget the map u and to contract the unstable components
of the curve ¥ to get a mapping

Mg7m(X7 A) B m‘an

(for m + 2g > 3).

Compactness. — In principle, the topology on the space of stable maps is also designed to
make the contraction mapping continuous.

4.3 PROPOSITION. —  The space M, (X, A) is compact. O
Proof. — The contraction being continuous, this is a consequence of the compactness of the

base space M, ., (see [30]) and of the compactness of the fibers. The latter is a consequence
of Theorem 4.4 below and can be viewed as a variant, either of the completness of the ad hoc

Hilbert scheme, or of Gromov’s compactness theorem. O
4.4 THEOREM. — Let (X,w) be a Kdihler manifold and ¥ be a complex curve. Let u, : ¥ —
X be a sequence of holomorphic maps. Assume there exists a constant M such that

(unw, [X]) < M

for all n. There exists a finite subset I' C ¥ such that

o a subsequence of the sequence of graphs u, : ¥ — X x X converges to the graph u of a
holomorphic map u : ¥ — X outside ' (for the C* topology).

o [fforz€el, tu,(z) does not converge to u(z), then there is a non trivial rational curve
0, :C, — {2z} x X

passing through u(z).
o Forn large enough, ui[X] = u ] + X,er(9:)[C:] € Ha(X;Z).
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Figure 4

Remarks.

1. In other words, the limit of graphs is again a graph except, maybe, for a few vertical

bubbles (see figure 4).

2. In the algebro-geometric context where we have stated Theorem 4.4, this is actually a
theorem on families and not only a theorem on sequences.

3. The Kahler manifold X can be replaced by a Riemannian almost complex manifold here.
Holomorphic maps must then be replaced by pseudo-holomorphic maps. Notice also that
the used almost complex structures may depend on n (see [25, 38]). Even with these
modifications, this is still a special case of Gromov’s compactness theorem for the curve

Y is fixed.

4. The rational curves C, may have nodes, as is shown by the following example, which was
given to me by Jean-Claude Sikorav.

3 — 22?2 and u, : 21 — P? be

the map [z,y, z] = [z, ay, a®z], whose image is the curve X, of equation ay® = afz®— 222

Let X; be the plane cubic of homogeneous equation y® = z

Let a tend to 0. The limit curve zz% = 0 consists of two lines, one of them being double.
The map u, converges to the constant map u([z,y, z]) = [1, 0, 0] outside the inflexion point
[0,0,1]. Thus the finite set I' consists of a single point z = [0, 0, 1] and the corresponding
rational curve C, is reducible and consists of two components, one of them being a double
cover.

Viewed from the point of view of Gromov’s theorem, one of the bubbles comes from a
disc and the other one from an annulus (figure 5).

Plane cubics. — Consider plane cubics parametrised by elliptic curves (see Appendix A), that
is, consider the contraction

ﬁLl(PQ, 3[/) —_— ml,l-
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Figure 5

The figures below show some singular plane cubics. First a cusp curve and two lines, one being
double, parametrised by reducible curves over an arbitrary elliptic curve in My (figure 6),
then various other singular cubics, parametrised by reducible curves over the point at infinity

in M, 1 (figure 7).

&%
é%§>

Figure 6: Some unstable singular cubics

Remarks.

e In the space of stable maps M, ;(P?,3L), there are cusp curves over every points of the
space M ; (I explain in Appendix A that this is something one should expect). The same
property is true for all “unstable cubics” (that is, for those who have other singularities
than ordinary double points, as the cubic consisting of a conic and a tangent line, or of
two lines, one of which is a double line, or of three lines through the same point).

e In contrast, for “semi-stable” singular cubics (with ordinary double points only), the j-
invariant is infinite and all these curves are images of stable maps over the point at infinity

n Ml,l-
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Figure 7: Some semi-stable singular cubics

There are explicit examples of sequences of smooth cubics converging to singular cubics
in Véronique Lizan’s thesis [34].

I will describe further examples of moduli spaces of stable maps, related to algebraic loop
spaces and configuration spaces in Appendix B.

Density of irreducible curves. — Notice also that Kontsevich’s space can often be considered
as being too big in the sense that M, (X, A) is not, in general, the closure of the set of maps
Y — X where the curve ¥ is irreducible.

This can be understood quite easily already in the case of plane genus-1 cubics. The space
M, 1(P2,3L) has dimension 11 (in general, dim M, ,,(P?,dL) = m+3d+1). It contains all the
maps u : C UP! — P2, where C has genus 1, C and P! meet at some point, u is constant on
C and has degree 3 on P'. In other words, using the excedentary marked points to glue curves
together, it contains a copy of My x Mo2(P?,3L). But this space, too, has dimension 11.

It is easy to understand that a map v : C UP' — P? can only be in the closure of the set of
maps & — P? (with X irreducible) if u has a singularity at the point where the two components
meet: decreasing the genus adds singularities (as we have already mentioned it in the case of
the cuspidal cubic).

This cannot happen for rational (genus 0) curves in convex manifolds (see below): here
maps from irreducible curves are dense in M, (X, A).

4.3. Convex manifolds and smoothness properties

Fundamental class. — The spaces M, (X, A) are often projective varieties (see [20], [11])
and, as such, according to Borel and Haefliger [9], carry fundamental classes. However, we
need much more, since we want to interpret cohomology computations in terms of intersection
numbers (e.g. to get enumerative conclusions). That is, we need Poincaré duality (in other
words a smoothness property) at least over Q (an orbifold structure would be enough). Also,
excedentary components could cause some difficulties dealing with enumerative questions.

For these reasons, we will now concentrate on rational curves (spaces Mg,,(X, A)). T will
not try to obtain the best possible results and I will impose some restrictions on the projective
manifold X (see below §5.5 for generalisations and references).
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A-convexity. — The manifold X is convex for the class A, or A-convex, if, for any decompo-
sition
A=Ayt Ay

where each A; may be represented by a rational curve, and for each v : P* — X such that
u[P'] = A; for some j,

wTX = EB O(m;)
i=1
with m; > 0 for all 7.

The convexity condition ensures that the various strata of Mj,,(X, A) are smooth: the
positivity condition on the m,’s implies that H*(P',v*TX) = 0 for all maps u representing
one of the classes A;, or — in terms familiar to symplectic topologists — that the linearisation
of the @ operator associated with the complex structure on X is surjective (see e.g. §2.1 of
[2]). But it also contains a positivity condition on the first Chern class, that is related to
compactness properties (again, see e.g. §2.2 of [2]):

4.5 LEMMA. — If X is A-convez, then for any decomposition A = A; + - - - + Ap where each
A; is non-zero and representable by a rational curve, (c1, Aj) > 2.

Proof. — By definition of A-convexity, for any map u : P — X representing a class A;, we
have

wTX = @ O(m;) with m; > 0 for all ¢.

Now, if A; is non zero, u is non constant, hence its differential is injective (as a sheaf map) and
carries a vector field with two zeroes on P! to a non-zero section of v*T'X with at least two
zeroes. Hence one of the m;’s must be at least 2. O

Now the A-convexity property gives everything we want:

4.6 THEOREM. — If X is A-convex, My,.(X, A) is a locally normal projective variety and
locally a quotient of a nonsingular variety by a finite group. It has complex dimension dim X +

m—3+ (c1, A).

There is a beautiful proof in [20]. Let us sketch it very briefly. The authors consider the
case X = P". Then they systematically add marked points to the curves in the space of stable
maps, the points where the curve meet the coordinate hyperplanes, assuming these are distinct
from the special (marked or singular) points already present on your curve. The choice of
an ordering® for the new marked points gives an abstract stable marked curve. Notice that
the data of the intersection points of the curve with the coordinate hyperplanes allows us to
reconstruct the stable map, up to the action of the big torus (C*)* on P”. In other words,
we have established a close relation between some big open subset of Mj,,(P", A) and some
subset of some ﬁo,N — which is open in this case (genus 0).

Different coordinates in P™ give a covering of M, (P", A) with such open subsets. Then
we can use the properties of Mgy to conclude the proof in the case of P*. The authors of [20]
are then able to pass from P” to the projective variety X. a

8This is a place where “quotients by a finite group” come from.
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Remark. — It is also shown in [20] that Mj,.(X, A) is a moduli space in the sense of algebraic
geometry (namely, it represents the ad hoc functor). There is also a universal stable map?, that
is, a space

uO’m — ﬁ()’m(X, A)

which looks very much like Mo ,,11(X, A) (the fiber at a point (¥, Z, u) is the curve X itself)
and which is endowed with a “universal map” to X (the evaluation at the (m + 1)** point)

(3,2, u, z) — u(z).

Convex manifolds. — A projective manifold X is convexif it is convex for all classes containing
rational curves. Notice that this is equivalent to the following:

Vu:P'— X, H'(PHu'TX)=0.

This being true for all maps v : P! — X implies that the degrees of the summands of u*T'X
are > 0 (if one of them was < —1, compose with a degree-2 map P! — P! to get a degree-< —1
bundle and a contradiction).

Convex manifolds include homogeneous spaces, and in particular projective spaces, grass-
mannians and flag manifolds.

Non-convex manifolds. — There are very simple examples of non-convex manifolds. Consider
for instance a Hirzebruch surface, which can be described as the total space of the bundle
P(O(k) & 1) — P! In this description, it is obvious that this surface contains an embedded
rational curve C of self-intersection —k (the section at infinity). Then, for the embedding

u: P — P(O(k) ® 1) whose image is C,
(e TX), [P]) = —k 42

so that, if w*T'X = O(my) & O(ms), my + my = —k 4+ 2. If K > 2, at least one of the m,’s is
< —2. If k = 1, consider the composition of u with a self-map of degree-2 of P! to get the same
conclusion. We have thus proved:

4.7 PROPOSITION. —  The Hirzebruch surface P(O(k) & 1) is convex if and only if k = 0. O

For instance, for & = 1, the Hirzebruch surface is f’é, the plane blown-up at a point.
The homology class of the exceptional divisor is denoted K. It is represented by an isolated
embedded rational curve. The composition with any self-map of degree 2 in P! gives a rational
curve in the class 2E. Now, these degree-2 self-maps of P' form a 5-dimensional space, so that

dimmog(fﬁ, 2E> Z 5.

The dimension we could expect from Theorem 4.6 is 4: this confirms that P2 is not convex.

9at least over the subspace consisting of stable maps that have no automorphism at all. ..
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5. Gromov-Witten potential and quantum cohomology

We now have enough technical tools to define the Gromov-Witten invariants and the
Gromov-Witten potential. We will then deduce the definition of the quantum cup-product
and show that all this indeed defines a Frobenius manifold structure on the even part of the
cohomology of certain projective manifolds.

5.1. Gromov-Witten invariants

Invariants. — Assume X to be A-convex. Given cohomology'® classes ;. .., &, in H*(X),
consider

<(evm)*(£1 @& Sm)a [ﬁO,m(X’ A)}> = LIJA(SI Q- Sm) € Q

Notice that U4(& ® -+ @ €,,) is non zero only if

DO | =

> degé; = dim Mo (X, A) = dim X +m — 3 + (c1, A).
=1

It is also obvious that the number W4(& ® -+ - ® &,,) does not depend on the ordering of
the cohomology classes inside. The next proposition states an important first property of the
invariants: they contain (and thus generalise) the cup-product on X.

5.1 PROPOSITION.
Vs @ @ @1)=03ifm >4 or A#0,

0 form >3

Q0(§1®---®§m):{ (& — & — &5, [X]) for m = 3.

Proof. — Assume m > 3 and consider the A = 0 case. Recall from §4.1 that ﬁom(}(, 0) =
Mo.» x X and that in this case the evaluation mapping is

Mo X X —— X7
(3,2,2) —— (z,2,...,2)

therefore, if p : Mg,, x X — X is the projection,
<(evm)*(£1 Q- Q fm)v [moﬁn X X]> = <p*§1 e p*fmv [mo,m X X]>

B {Oifm>3
h (61— & — &, [X]) if m=3

as ﬁom has positive dimension for m > 3.
Consider now the unit 1 € H°(X) of the cup-product. By definition,

Va6 @ ot @ 1) = (V) (61 @+ @ by @ 1), Mo (X, A)]) -

107 use rational cohomology. In particular, H*(X™) = (H*(X))®m.
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Assume m > 4 or A # 0, so that there is a well-defined map 6 : Mo, ,.(X, A) = Mo ._1(X, A),
forgetting the last marked point (and contracting the components that became unstable). Con-
sider the commutative diagram

(A"

Mon(X,A) ——s X™

K |
CVim—1

Mom_1(X,A) ——— X771

where the projection p forgets the last factor. As & ® -+ £, @1 =p"(&1 @ -+ - Enr),
() (61® - €t @ 1), Mom(X, A)]) = (0 vt ) (61 @+ ), Mo mr (X, A)]).

This vanishes as dim Mo ,,_1(X, A) < dim Mg,(X, A). a

Examples. — Let X be, once again, the complex projective space P". Consider the space
Mo 3(P", L). Tt has dimension 2n + 1 and its generic points are parametrised lines in P™ with
three distinct marked points. It has an evaluation mapping to the 3n dimensional space (P™)?.
Let p be the generator of H*(P";Z), so that W (p" @ p" @ p) is a well-defined Gromov-Witten
invariant. From the enumerative point of view, this is the number of lines through two distinct

points (p

" is the cohomology class dual to a point) meeting a hyperplane somewhere:

Ur(p" @p"@p) =1

The next example is that of degree-d rational plane curves, namely that of the space
Mo, (P? dL), a space of dimension m — 1 + 3d. The evaluation map sends it to (P*)™, a
2m dimensional space. When m = 3d — 1, the two dimensions coincide and the evaluation map

Mo sq-1(P?,dL) —— (P?)**1

has a degree, traditionally denoted by Ny, which is nothing other than the Gromov-Witten
invariant Wy, ((p2)®(3d_1)) (recall that p is the generator of H*(P?;Z)). From the enumerative
point of view, Ny is the number of rational plane curves of degree d through 3d — 1 general
points.

Degree-2 classes. — 1t is in the nature of the Gromov-Witten invariants that degree-2 coho-
mology classes play a special role. Here is a property that we will need later and that illustrates
this assertion.

5.2 PROPOSITION. — Assume X is A-convex. Let € be a degree-2 cohomology class. Then,
foranyoa =01 @ @ ay, in H*(X®™),

Vala®§) = (5 A)Va(a).
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Proof. — Consider the map

_ 0 _
M07m+1(X, A) E— M07m(X, A) x X

(3,2, u) — (0(2, 2, u), u(zmy1))

(as above, 0 forgets the last point and contracts the unstable components). As the dimension

Of m07m+1(X, A) iS dimﬁ07m(X, A) —|— 1,
0. [ Moms1(X, A)] = Mo (X, A)] @ A + b

where A’ € Hy(X) and the components of b on H,(My,.(X, A)) have dimension strictly less
than the fundamental class. Obviously then,

Vala®§) = (¢, A)Wa(a),

so that we only need to check that A” = A. But this is obvious from the definition of g, for
if (P, 2 u) represents an element of Mo 11(X, A), u,[P!] = A and this is the class we see on
the X factor of Mo,.(X, A) x X. O

The Gromov-Witten potential. — As we have announced it in §3.3, we want to define a
function on H*(X; C), or at least some kind of formal series, by a formula like

THEDS i,;m(g@m»

sy !

The discussion will be simpler if we rather try with

TGED3) S N0)

A m>3 '

Indeed, fix a (homogeneous) class £ € H*(X; C). The class A € Hy(X;Z) being given, W 4(£%™)

can only be non zero if
mdeg¢ =2(dim X +m —3) + (¢1, A)
so that
o if deg& # 2, U4(69™) £ 0 for only one value of m,
o if deg ¢ = 2, using Proposition 5.2,
3 TAET) = explt )

(modulo quadratic terms).

In any case, the sum

defines a complex number for any A. Taking sums of homogeneous elements, we get
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5.3 LEMMA. — For any class A € Hy(X;Z), the formula

Du(8) =D L,‘I’A(f@”)

s m!
defines a function ®4 : H*(X;C) — C. O

There is still the problem raised by the summation over all homology classes A. There are
two possibilities, either to impose a geometric condition on the manifold X in order to be sure
that the sum is finite, or to make it a formal series in additional variables q.

Notation. — Assume that Hy(X;Z) is torsion free — or denote by Hz(X;Z) the torsion free
part of the second homology group. Let A be its group ring, A = Z[H3(X;Z)], and denote
by ¢ the (multiplicative) counterpart in A of A € Hy(X;Z). Thus ¢ is a multi-variable of
dimension k = rk Hy(X; Z).

Put now

1 m
W,(6) = S 0a()? = 3 [ 5 —wae"™) | o,
A A m>3 '
This is a formal series in ¢ with coefficients functions of ¢ (involving only monomials and
exponentials). To be more specific, let us choose a basis of H**(X;Z) (considered modulo
torsion) consisting of homogeneous elements. It will be convenient to use different names for

the coordinates according to the degrees, & in degree 0, &;,. .., &, in degrees > 4 and ny, ..., 7
in degree 2. The basis, in the same order, is of course, /9¢; (0 < i < m), d/dn; (1 <j <k).

Let us write
a ®k1 a ®km,
(a6) e (sec)

Ky km
\I}q(fan) = Z ( Z NA(kla- . 7km)]€1'7]im‘) eXP("?aA>qA-
& 100 Kppye

NA(k‘l,...,k‘m) :\I}A

so that

A

The other possibility is to consider only manifolds for which the sums above are finite.
Notice that, according to the dimension count above, given £ and m, if W4(£%™) # 0, then

(c1,A) < (m —1)dim X —m + 3.
Recall that, according to Lemma 4.5, (¢1, A) is bounded from below. Hence, if we assume

5.4 ASSUMPTIONS. — The complex projective smooth variety X is convex and, for all K, the
set

{A € Hy(X;Z) | A is represented by a rational curve and (¢;, A) < K}
is finite.

the sum "4 U 4(£%™) is finite for all ¢ and m. It is not quite obvious why 3> 25 3", W 4(£5™)
would then be a convergent series.
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Examples.

e Convex Fano manifolds satisfy the assumptions. This is a consequence of the compactness
theorem 4.4 above: in the Fano case, the first Chern class is the class of a Kahler form
(this is a definition of a Fano manifold).

e Manifolds without rational curves obviously satisfy all assumptions — all the Gromov-
Witten invariants W4 (for A # 0) vanish.

o If the set of homology classes containing rational curves is a cone generated by a finite
number of classes, the finiteness assumption is also satisfied. There are classes, say,
Ay, ..., A., who generate the cone of all classes that are representable by rational curves.
According to Lemma 4.5, {c1, A;) > 2. If u : P! — X represents a class A, A = 3 d; A,
for some d; € N, and, for any given integer N, there are finitely many classes A such that

<C1,A> S N.

5.2. Quantum cohomology

We hope now that the Gromov-Witten potential is the potential of a Frobenius structure

on H*(X). We have a metric

g(a, 8) = {a — 5,[X])

which is constant in linear coordinates and thus flat. We still need products ¢ depending on
¢ € H*(X), and we hope that they can be defined by the third derivative of ¥. We begin by
noticing that

glaxe §,7) = (V) (a,8,7)

would define a commutative'! (by symmetry) and unital (using Proposition 5.1) product. .. if
there was no convergence problem. So, let us use the formal potential ¥, as above. Call A the
ad hoc completion of A.

5.5 PROPOSITION. —  The formula
glaxeq B,7) = (dB\I’q))5 (a,8,7)

defines a commutative product *¢ , on H*(X;C) ® A, graded by the natural graduation of the
cohomology and deg ¢* = 2(c;, A), and having the same unit as the cup product.

Proof. — The right hand side is indeed an element of A. We will then extend the product by
A-linearity. Notice that

(d?’\IJq)g (a7ﬁ77) = E (Z qu;A(é@m Ra®p ®7)) qA-

A m>0 '

1 Commutativity here is commutativity in the graded sense: it comes from the commutativity of the cup-
product.
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As above, the sum

> %\I’A(f‘m Ra®B®7)

m>0

defines a complex number for all A, a, 3, v. The product ¢, is obviously commutative, the
assertion on the unit follows from Proposition 5.1. O

Remark. — There are various definitions of “the quantum cup-product”. This is the most
general version, as it depends on the point £, and, because of the variables ¢ (and the use of
the ring A), there is no convergence problem in the definition.

There are basically two ways to get a less general structure: to specialise, either at a value
of £, or at a value of ¢, the latter leading to the mentioned convergence problems.

e To specialise at ¢ = 0 would give the “usual” quantum product, a formal series in ¢,

denoted a* 3, a product on QH*(X) := H*(X) ® A.

e To specialise at ¢ = 1, allowing ¢ to be any cohomology class, but assuming the series
defining o %¢; 3, that we will denote o *¢ 3 to converge.

The former is the small quantum product, and the latter the global quantum product. As we
shall see in §6, these two apparently different specialisations are deeply related.

5.3. Composition rule and associativity

Let us prove now the non trivial result, related to what physicists call the “composition

rule”:
5.6 THEOREM. — The product x¢ 4 ts associative.
Proof. — The proof given here simply repeats that of [20]. Associativity amounts to the fact

that W, satisfies the WDVV equation (§3.1). Writing (9;) for a basis of the cohomology of X
and often forgetting ®@’s in the notation, this is:

1
Zml'm !

=2

Equating coefficients of powers of ¢, we see that we are discussing the decomposition of a

\IlAl(.fm 0;0;0,) g "W 4, (£™20,0,0,, ) g1 42

TUA, (€710,0;01) 9™V 4, (6720050, ) g1 2.

m1'm2

homology class A as a sum A; + Ay and the ways to represent this decomposition by stable

maps. We thus need to understand what happens — homologically in Mg,.(X, A) — when

the curves we are looking at split into two components, each of them containing some of the

marked points. (See Figure 8.) Let us write {1,...,m} = E; U Ey (and require #E; > 2).
Fixing the decompositions of A and {1,...,m}, we get an embedding

j . m&Elu{zo}(X) Al) XX mO,EQU{Zo}(X7 AQ) — moym(X’ A)

(using obvious notation). For simplicity, let us write M; = M g, (o} (X, Ai), M = Mo (X, A)
and Dg, g,(A1, A2) = My xx My. As dimM; = n 4+ #F;, — 2 4+ (c1, A;), the dimension of

41



Figure 8

Dg, 5,(A1, Az) is dim M — 1, so that we are considering a divisor in our moduli space. Call 1
the inclusion Dg, g,(A1, A2) C My x M, and, if a marked point is labelled by some element p,

call e, the evaluation mapping at this point.

5.7 LEMMA. — For any cohomology class n =n1 @ -+ @ 0y, in H*(X),
i*] eVm ngn [(H 6 77]7) ] (He UQ) zo an)]
pEE; gEE>

Postponing the proof of the lemma, which is a direct computation, we get

(*) aélg A ((pg%lnp) ® k) A ((qg%znq) ® )

c,d€Eqy

= 2 (evn(n), [Dg, 5, (A1, A)]).

a,bEE
c,d€Eqg

Put
M= =Npoa=¢
Nm-3 = aiynm—Q = aj;nm—l = aranm = as
a=m—-—3,b=m—-2,c=m—-1,d=m
in the LHS of (*) to get
LHS = Y C(m1, ma)g"" W4, (€71720,0,0,) Wa, (£72720,0,0,)

where C'(my, mz) is the number of decompositions of {1,...,m} as £y U E, with #F; = m; and

the sum is over all decompositions with m; > 2 and my > 2, so that

LHS = m! B g, (E710;0;00) W a, (£720,050,) .
m mlzm;>0 mllmglg Ay (5 J k) Az (5 )
m1+m2=7n—4
5.8 LEMMA. — In H, (mo,m(X, A)), ifa, b, ¢, d are four distinct elements of {1,...
Z [DE17E2(A1’A2)] = Z [DE17E2(A17A2)] .
a,bE B c,b€EE]
c,d€EEg a,d€Eg

This is precisely the symmetry argument needed to conclude.
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Proof of Lemma 5.8. — This is the geometric heart and most beautiful part of the proof.
The idea is that Mo 4 is isomorphic to P! and that any two points of P! represent the same
homology class (actually they are linearly equivalent — and this gives a linear equivalence of
divisors rather than an equality of homology classes).

Consider the moduli space Mg 4: four ordered distinct points in P! up to isomorphism, this
is a point in P' — {0, 1, 00}, their cross ratio. The compactification is, of course, P'. The three
added points {0, 1,00} correspond to the reducible curves with two components, each carrying
half of the marked points, that is, to the partitions of the marking set in two subsets of two
elements.

Look now at the composed contraction:

mO,m(Xa A) — mo,m — mO,{a,b,c,d}-

The divisor Y apes, Dg, g,(A1, A2) is the inverse image of the point (a,b | ¢, d), while the divisor

c,d€ By

S evem Dg, g, (A1, Ag) is that of (¢,b | a,d). As the two points of P! are linearly equivalent, so
a,d€ Eg .
are the divisors in Mg (X, A). O

1 3
Figure 9
Remark. — This can be easily expressed by pictures that are familiar to physicists (see
Figure 9).
Proof of Lemma5.7. —  This is a straightforward computation, starting from the commutative
diagram

j ’.
M — DEl,EQ(AhAQ) ;> M1 X M2

eV l ) 5[ l €V 41 X E€Vims+1
Tro
Xm b1o) Xm—l—l A Xm—|—2
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in which it is seen that

g (evm) () = i.e"proj*(n)

1e* (n @ D[X])

(evm1+1 X eVm2-|—1)* A* (77 ® D[X])
= (evm1+1 X eVm2-|—1)* (77 ® D[A]) :

This is the place where one has to realise that the Poincaré dual of the diagonal in X x X is

= ngmak ® an

k.
Then,

L evn ) (1) = Tin 95" (eVimigr X Vi, 41)" (1 © Op @ On)
= S0 0" [(Toem, €50m)) €2 (06)] % [(Tyer, €2(na)) €4,(00)] »

which is the relation we wanted to prove. a

5.4. The Frobenius structure

In this §, we collect all the information above to show that the quantum products x¢ together
with the flat metric defined by Poincaré duality, are pieces of a Frobenius structure on the
cohomology of X. We still have three problems:

1. We must restric ourselves to the even part of H*(X) in order to have (strictly) commuta-
tive products (one could also consider, as in [32, 35], the whole cohomology, and get the
structure of a Frobenius super-manifold).

2. The product *¢ and the Gromov-Witten potential are defined by formal series. We assume
that they are convergent somewhere. Another possibility is to use, as in [35], formal
Frobenius structures and the potential W,.

3. We still need an Euler vector field.

The Euler vector field. — Let us first use a basis of H**(X;Z) (considered modulo torsion)
as above (§5.1) and express the first Chern class of X in this basis:
k
o=y r]a for some integers ry,...,7}.
7=1

Now we are able to define the vector field

€= 11—
2= a& * Z "o a
5.9 THEOREM. — Let X be a projective manifold satisfying the assumptions 5.4. Poincaré

duality, the quantum product and the Fuler vector field € define the structure of a (formal)
Frobenius manifold on the even part of the cohomology of X.
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Proof. — Using the same notation as in §5.1,

k k
1 Smm
W n) = exp(n,A) > Na(ky,.. km)ﬁ
A kl ..... km 1+« gy

Notice that Na(ki,..., k) can be nonzero only if

Now, the computation is straightforward:

) fl con Rm
(Z Tja_nj\p) (&m) = ZA:<01,A> exp(n, A) 3, Na(kr, .. k”)ﬁ

and

kv gkm
(zu - ‘52')@'@%‘1’) (€)= D expln A) (1 = 8k 30 Nalhss o) S50

Thus,

(&-W)(&n) = ZA:eXp<77,A>Z (D2(1 = 6:)ki + (e, A)) Nalky, . km)ﬁ

According to the remark on dimensions,

so that W is indeed €-homogeneous of degree (3 — dim X). O
Remarks.
1. This is a place where 3-dimensional manifolds obviously play a special role.

2. That there are exponentials in the potential ¥ is related to the terms r;0/dn; in the
expression of the Euler vector field. The potentials of the Frobenius manifolds obtained
this way seem to be rather different from the ones coming from unfoldings (see §3.3).

3. The existence of the Gromov-Witten potential contains the symmetry of the tensor Ve,
or the closedness of the form  as in §3.1. Hence the quantum products define a spectral
cover. We will come back to this in §6.1.

4. By integration along the fibers of the contraction map
Ty ! mo,m-u(X, A) —_— mo,m-u
we get morphisms

H*(X)®m . ——  H*(Momt1)
¢ —— (ma)eevy, 1 (§)

45



the tree-level system of Gromov-Witten invariants of Kontsevich & Manin [32].

Note that, dualising these morphisms, we get a family of morphisms
I+ H(Momq1) — Hom (H*(X)®™, H*(X))

and the associativity property (§5.3) says that this is a morphism of operads. According
to Manin [35], this is the essence of a Frobenius structure.

5. A very interesting question is to know which projective varieties have a massive quantum
cohomology. The question is whether there is a point ¢ in H*(X; C) for which *¢ is the
structure of a semi-simple ring. I will come back to this question in Appendix D.

The case of P'. — Using the same notation as above, H*(P';Z) = Z[p]/p*. Writing £ =
£o + £1p, one gets easily
p*qu p = eélQ‘

Specialising at ¢ = 1 gives a Frobenius structure on C?, which is everywhere semi-simple as et
never vanishes, and that we have already met in §3.2. The potential is

W(E) = 5636 +

and the FEuler vector field is indeed

0 0
T T

The potential for P* and numbers of rational plane curves. — Write £ = & + &1p + &p? for
the elements of H*(P?), so that the Gromov-Witten potential

E Z Wyr,(E5)

m>3 d>0

can be written

V() =5 (B6+68)+ X Y —de (€5m).

d>0m>3

[\Jl»—\

The first term is usually called “classical” and the second is the “quantum” contribution. This
can be rewritten, using the fact that p has degree 2 and Proposition 5.2,

S Wy ( ®m) & GXP<§1P7 dL).

m>3d>0

We have already noticed that the invariant Wy, ((p*)®™) can be non zero only if m = 3d — 1, in
which case it is the number N, of rational degree-d plane curves through 3d — 1 general points.
Thus the Gromov-Witten potential for P? is

1 ;d 1
U(E) = 5 (G + &) + 2 N
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We have also noticed in § 3.2 that, in dimension 3, there is only one associativity equation,
namely

Pu ( P )2_ U P
06 \ 00, 0& 96,06

Equating the coefficients of €%1£397% on the two sides of this equation gives
3d —4 3d —4
Nqg+ dBd(_ )Nde: deQ(_ _)Nde.
dl%;:d PP\ 3dy -1 ) T dlgid 2\ 3dy —2 ) e
dy,do>1 dy,dg>1

This is of course the well-known recursion relation, due to Kontsevich [31], which theoreti-
cally allows you (or your computer) to compute N, starting from Ny = Ny = 1.

5.5. Generalisations

There are Gromov-Witten invariants for all symplectic manifolds. They can be defined
using “virtual fundamental classes”: the space M, (X, A) might be very bad, various authors
(see e.g. [42, 18, 6]) are nevertheless able to show that it carries a homology class of the right
(expected) dimension, which can be used as a fundamental class.

In this §, I explain briefly a very simple case of such a construction, that can be used to
define Gromov-Witten invariants for certain (non convex) submanifolds of convex manifolds,

12 This generalisation comes from

including e.g. complete intersections in projective spaces
[31] and was used e.g. in [23]. I also mention, even more briefly, the relations between the

Gromov-Witten invariants defined so far and other avatars available in the literature.

Convex vector bundles on convex manifolds. — Let X be, as above, a convex projective
manifold and let V' — X be a vector bundle. It is said to be convex if it is generated by its
(global) sections, that is, if H*(X;V) = 0. For instance, TX is a convex vector bundle.

Let us look now at the zero set Y of a holomorphic section of V' transverse to the zero
section: this is a submanifold of X, whose normal bundle is the pull-back of V' on Y. There is
no reason why Y should be convex. However, we aim to define some Gromov-Witten invariants
for Y. The moduli space My, (Y, A) itself could be very bad, it might be non smooth, or might
not have the expected dimension. Fortunately, there is a classical way in which topologists use
to solve such problems: you find a vector bundle on some bigger space such that Mg,,(Y, A)
is the zero set of some section, and use the Euler class of this bundle (the zero set of a section
transverse to the zero section) in place of your moduli space.

In the case at hand, this works as follows:

e Show that there exists a vector bundle V on My,.(X, j,A) (j is of course the inclusion
Y — X)) whose fiber at a point represented by a map u : C' — X is H°(C,u*V) (this can
be achieved using the fact that Mo, (X, j+A) is a moduli space in the sense of algebraic
geometry, endowed with a universal stable map — see §4.3).

12This allows for instance to get the results of Beauville [5] on the quantum cohomology of Fano complete
intersections using invariants defined by stable maps.
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e For a € H*(X)®™, define

Wy ((5™) a) = ((evm) o = e(V), [Mom(X,j.A)]) .
I insist that these invariants are only defined on cohomology classes coming from the

ambient space X.

Remarks.

1. One easily checks that, if Y is A-convex, the definition coincides with the previous defi-
nition of W4 ((jn) ).

2. One can also check that the result does not depend on the choice of the embedding in the
convex manifold used.

3. Because the Euler class is multiplicative, it can be shown that these invariants satisfy the
composition rule as in §5.3.

The example of the plane blown-up at a point. — Let Y be the manifold obtained by blowing
up P? at a point. This is the Hirzebruch surface P(O(1) & 1) and, as we have mentioned it
after Proposition 4.7, if E is the class of the exceptional divisor, Y is not 2FE-convex.

Embed Y as the bidegree-(1, 1)-hypersurface in P* x P2, so that it is the zero set of a section
of the convex line bundle V' = 0(1) @ O(1):

Y ={(t.d) e P' xP*|dC (& C}={([a,b],[x,y,2]) | ay — bz = 0}.

As the cohomology of Y is generated by ambient classes, the recipe above allows to compute

all the Gromov-Witten invariants of Y. Let us concentrate on ¥yg.
Notice first that j,E = F, the class of a fiber P! x {pt} C P! x P2 We must thus look at
the moduli space Mo, (P! x P2 2F), but

Mo (P! x P2 2F) = My, (P, 2L) x P?,

maps in the class 2F having a constant projection on P2. For the same reason, the bundle V
we are looking at has the form

V' X OP2(1) — m07m(P1, 2[/) X ].:)2

where V' — Mo,.(P',2L) is a bundle whose fiber at v’ : C — P! is H(C,u”O(1)). It has
rank 3 and

(V) =cs(V) @1+ (V)@ t+a(V)@t* € H® (Mo (P! x P2 2F))

(t = ¢1(Op2(1)) is the generator of H?*(P?) in this relation).
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The next remark is that V' has two everywhere independent sections, so that ¢;(V') = 0,
c2(V') = 0 and ¢(V) = ¢, (V') @ t%. To show this, choose two independent elements s; and sy in
the dimension-2 vector space H°(P',Opi(1)). Define sections 3y, 5, of V' by

5(C, 2 u) = s; ou.
Now, if A3} + 3, vanishes at some point of My, (P!, 2L) represented by (C, Z, u),
(As1 4+ pusz)ou=0

so that the image of v must be contained in the zero set of A\s; + us,, a point of P!. Thus, u
must be constant, a contradiction since it has degree 2. Thus the two sections 5; and s, are
indeed independent everywhere.

From this remark, it is easy to deduce the following result, which will be useful in the
computation of §6.2.

5.10 PROPOSITION. — [fa € H* ((P1 X P:’)m) is divisible by ¢, then Wqp ((77) a) = 0.

Proof. — The assumption on the cohomology class @ means that, if one writes

then, for every 7, one of the oz;’s has the form a ® bt for some a € H*(P'), b € H*(P?). What
we want to prove is that

Wop (™) (1 @ @y @ (a® b)) =0
for all a; € H*(P! x P?), a € H*(P'), b € H*(P?). But the latter is obtained as
(evi (a1 @+ @ ey @ (@@ b)) — (er(V) @ 12), [Mom(P',2L) x P2).
Now, the map
eVt Mo (P! x P2 2F) —— (P' x P*)™ = (P')" x (P*)"
coincides with
ev'y, X At Mo (P, 20) x P2 —— (PY)™ x (P*)™
so that, decomposing the «;’s, the invariant is a sum of terms of the form
(levii(@ @a)® (0 = bt)| — (a(V') @12), [Mom(P',2L)] @ [P?])

which are zero since t* = 0 in H*(P?). O

Relations with symplectic “Gromov-Witten invariants”. — Let us end this § by a few remarks
on the other “Gromov-Witten invariants” the readers may have met in different contexts.

Gromov-Witten invariants come from symplectic topology, various descriptions and alter-
native definitions for a (restricted) class of symplectic manifolds can be found in e.g. [39, 36]
(see also the survey [2]).

It seems now that there exist symplectic and algebraic definitions available in greater gen-
erality — some using spaces of stable pseudo-holomorphic maps. See e.g. [42, 18, 6]. Without
entering in that generality, let us make a few remarks on the symplectic approach.
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Remarks.

1. In the symplectic context, Gromov-Witten invariants are invariants of the deformation
class of the symplectic structure. This is where their qualification as “invariants” come
from.

2. The Ruan & Tian invariants were defined using moduli spaces of rational curves that
are almost holomorphic with respect to some almost complex structure on the symplectic
manifold X: the almost complex structure J defines a d-operator d;, holomorphic curves
satisfy dyju = 0 and you perturb the equation as dyu = v. This allows you to use
transversality arguments to prove e.g. smoothness properties (but of course, you may
lose the enumerative interpretation of your invariants).

This approach by pertubations should be compared with the use of the Euler class above.

3. It seems to me that one should be able to use both approaches at the same time: the
symplectic approach is more flexible — but, dealing with enumerative questions, one does
not like to vary the complex structure.

6. Degree-2 classes and the small quantum product

Notation. — In this section, I will prefer to use the pairing («,b) between homology and
cohomology and Poincaré duality as an isomorphism between homology and cohomology instead
of the metric g. To save on notation, I will use greek characters for cohomology classes and
latin for homology classes, Poincaré duality exchanging a and a etc. With this convention,

(a,b) = g(a, ).

6.1. Quantum multiplication at a given point vs formal series

As we have noticed it above (see §5.2), if £ is a degree-2 class,

(ake B,c) = Uula®B@7)exp(é, A),
A

an expression which depends only of the class [¢] of £ in H*(X; C/2inZ). Recall from §5.2 that

the small quantum product is given by

(a%B,¢) =S Wala®BR7)g"
A

which is exactly the same thing (write ¢* = exp(¢, A)). In other words, to compute a *; 3 in
H*(X; C) amounts to the same as to compute o x 3 in H*(X) ®@ A and to specialise it at the
corresponding value of g.

Remarks.
e One can define in the same mood a variant of the global quantum product: in the formula
for *¢ ,, replace ¢* by exp(w, A) for some fixed class w, usually the cohomology class of
the symplectic form.

e We do not really need that the manifold X be convex: we will use the generalised invari-
ants defined in §5.5. See for instance the example of the plane blown-up at a point in

§6.2.
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Products. — The Gromov-Witten potential of a product X; x X, is not easily expressable in
terms of the potentials of the factors (see [33]). However, the small quantum cohomology ring
behaves very simply with respect to products!3.

6.1 PROPOSITION.  QH*(X; x X3) = QH*(X,) @ QH*(X3).

Proof. — In general, although to give a map v : ' — X; x X3 is equivalent to giving its
components (ug,uz), because of the marked points and the stability requirement, there is no
obvious relation between spaces Mo (X1 x X3, A) and spaces of stable maps into the factors.
However, there is a map

mo,m()ﬁ X X2, A1 @14+1® Ay) — mo,m(leAﬁ X ﬁo,m(Xz,Aﬂ

taking (C,Z,u = (u1,uz)) to the pair of stable maps obtained by contraction of unstable
components in the factors. It is obviously not onto, but its image contains the set of pairs
((C1, Z1,u1), (Cq, 22, us)) such that (Cy,23) is isomorphic to (C1,Zz1). On this subspace, it is
even possible to define an inverse map.

Now, when the number of marked points is 3, our image contains the open set where C}
and (5 are irreducible curves, so that there is a birational map

mO,B(Xla Ay) x ﬁo,z&(Xm Ay) — ﬁo,z&(Xl X X, A1 @14+ 1® Ay).

It is defined on the subset of Mo s(X;, A1) x Mo s(Xa, Ay) consisting of pairs of stable maps
((C1,Z1,u1), (Cq, Z2,us)) such that (Cy, Z3) is isomorphic to (C1, Z1), which contains the open
set where ('} and 5 are irreducible curves. It allows to relate fundamental classes and to prove
that

U4 w4104, (01 @ a2) @ (81 @ (2) @ (11 @ ¥2)) = Va, (a1 @ B1 @ y1)Wa, (a2 @ B2 ® 72).
Thus

(01 @ a2) ® (B ® o), c1 @ ea) = (3 Wa, (00 ® B @ y1)ai) (30 Wap (02 ® B @ 72) a5

and the proposition follows. a

Symplectic reduction. — Consider the submanifold
J
B=H*X;C) —— M =aH*(X;C).

We want to show that, in some cases, the small quantum product defines a Lagrangian subva-
riety of T*B. This will be achieved by a very general symplectic reduction process.

Assume more generally that 7 : B — M is the inclusion of a submanifold, so that 7*T*M is
a co-isotropic subvariety of 7*M, and that the tangent sheaf to M is endowed with a product
*¢ such that the spectral cover is a Lagrangian subvariety of T*M. At least at semi-simple
points, the spectral cover is locally the graph of a (closed) 1-form and thus is transversal to
J*T*M.

It is a simple form of the symplectic reduction process that the intersection L N (j*T*M)
projects to a Lagrangian subvariety Ly C T*B. Of course, we have:

6.2 PROPOSITION. — The Lagrangian subvariety Lg is the spectral Lagrangian in T*B as-
sociated with the morphism j7*Q : TB — End(j*T M) over B.

13This is a good place to mention that there is no obvious functoriality property in this theory.
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Proof. — The spectral cover for
JQ:TB —— End(j*F)

is defined by the eigenvalues p;(a, &) of Q¢(a) for £ € B, o € Te B C T¢ M. In other words, one
considers the section u; of T*M as a section of T*B by restriction and this is the definition of
the symplectic reduction explained above. a

In the specific situation considerd here: to look at j*T*M is the same thing as to look at
the product x¢ for £ € H?, that is, the small quantum product. The intersection L N j*T*M
thus describes the relations in the quantum cohomology ring Q H*(X).

Let us make now a crucial assumption on the manifold X. We assume that the (classical)
cohomology algebra H*(X) is generated by H?*(X), its degree-2 part. Denoting by S*(X) =
S [H*(X;C)] the symmetric algebra on H*(X; C), this means that the natural ring morphism

S*(X) —— H*(X)

is onto. This is the case, e.g. for projective spaces and more generally toric manifolds, complete
flag manifolds. ..

Using the notation of [24], call (py,. .., px) a basis of H*(X). The small quantum cohomology
ring QH*(X) = (H*(X; C)® A, ) then consists of polynomials in p and ¢, with some relations.
In other words, we have a surjective homomorphism:

§* (H*(X; C)) @ C[Ha(X;Z)] — QH"(X),

the kernel of which will be denoted by J. The ring in the LHS is nothing other than the ring of

regular functions on the cotangent bundle 7*B of the torus B = H?*(X; C/2inZ). Notice that,
dg;

with this remarkable notation, the symplectic form on T*B is }_ dp; A e

T

As the reduction mod 2:7Z is a covering map B — B we get:

6.3 COROLLARY (Givental & Kim [24]). — Assume X is a projective Fano manifold whose
cohomology ring is generated by degree-2 classes. Assume that, for some value of q, the quantum
product gives H*(X) the structure of a semi-simple ring. Then QH*(X) is the ring of functions
on a Lagrangian subvariety of the cotangent bundle T*B of the torus B = H*(X;C/2irZ). O

Remark. — In the context of degree-2 classes, Givental & Kim [24] have noticed that the
homogeneity property with respect to the Euler vector field implies that the Lagrangian is
quasi-homogeneous — and that the first Chern class can be considered as a primitive of the
Liouville form (see also [3]).

6.2. Examples of quantum cohomology rings

Here are a few examples. The varieties considered are Fano. Moreover, their cohomology
ring is generated by degree-2 classes. The first example here is very well known, but difficult
to avoid.
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The complex projective space. — This is of course a convex manifold. Let p be the generator
of the cohomology of P", so that

H*(P™";Z) = Z[p]/p"*" and ¢; = (n + 1)p.
We must add an invertible variable ¢ of degree 2(n + 1). Then
QH*(P") = C[p]/p"*" @ Clq,q""]

as a C[q, ¢"']-module and the quantum multiplication is C[g, ¢~ *]-linear. As the degree of ¢ is
2(n + 1), p** = p* for k < n and we need only to compute p*"+1) = (p") x p. But

(p" *p,c Z%L " @p®y)gtt

Recall that
W, (p" @ p @) = (ev5(p" @ p @), [Mos(P", dL)])

so that it can only be non zero when degy = (n+ 1)d — 1. As 0 < deg~y < n, this allows only
d =1 and degy = n. Now we are looking at My 3(P", L) and at W7 (p" @ p® p"). But we have
already noticed in §5.2 that this is the number of lines in P” through two general points that
meet a general hyperplane somewhere, that is, 1. In conclusion:

6.4 PROPOSITION. —  The small quantum cohomology ring QQ H*(P™(C)) is isomorphic to the
ring Z[p, q,q~'1/ ("' — q).

Remark. — In this example the multiplication is obviously generically semi-simple and the
Lagrangian is the curve p"*! = ¢ in C x C*.

The plane blown up at a point. —  Let us come back to the manifold Y obtained by blowing up
a point in the complex projective plane. This is one of the examples investigated in [13, 39, 2]
for instance. Figure 10 shows Y as the P'-bundle P(O(1) ¢ 1) over P'. All properties of
homology and cohomology classes I will write are easily derived from this description. Recall
from Proposition 4.7 that Y is not a convex manifold.

Let Ay be the class of the exceptional divisor (it was called £ in §5.5) and Az be the class
of a line through the blown-up point, or of a fiber (see Figure 10). The two classes A; and A,
form a basis of Hy(Y';Z) with

Al'Alz—l, Al'Agzl, AQ'AQZO.

Let (p1, p2) be the basis of H*(Y;Z) dual to (A, Az) (that is, such that (p;, A;) = d;;), so that,
denoting again Poincaré duality by D,

Dp, = As, Dpy, = A1 + A
(as (Dp;) - A; = 6;5). Also,
(pi — p;,[Y]) = (Dp:) - (Dp;)
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Ay
Figure 10: the plane blown up at a point

so that pf = 0, (p1 — p2,[Y]) = (p2 — p2,[Y]) = 1. The (classical) cohomology ring is
H*(Y;Z) = Z[p1, pa] [ (P}, p; — prp2).

The first Chern class is p; + 2p,. Let us add two new variables ¢; and ¢, of respective degrees
2 and 4.

To determine the structure of the quantum cohomology ring, we need only to calculate the
products p; xp;. For this, we need all the invariants W 4(p; ® p; @ v), for all homology classes A
containing holomorphic curves and all cohomology classes v such that 2(¢;, A) = deg~. This
implies in particular that 0 < (¢;, A) < 2. Moreover, if a non zero class A can be represented
by a rational map P! — Y, it is a multiple of a class A’ that can be represented by a somewhere
injective rational map. But these must satisfy the adjunction formula, namely

A" AN — (e, AY +2 > 0.
Writing A" = m{ Ay + mj Ay, this writes
(1 —m})(m] —2mj, +2) > 0.

From these restrictions, it is seen that the only invariants that we need to compute are Wy,
U4, Wy, and Wyy, (this is the reason why I have chosen this basis of Hy(Y';Z)).

Recall that the class 24, is the one which prevents Y to be convex (see the proof of Propo-
sition 4.7). However, a consequence of Proposition 5.10 is:

6.5 LEMMA. Wyu (p; @p; @7) =0 foralli, 3, ~.

Proof. — As p; and p; have degree 2 and (¢1,2A4;) = 2, the invariant Wqy, (p; @ p; ® v) can

only be non zero when v has degree 4. Now the only non zero classes in H*(Y') have the from

7 (a @ t) for some a € H*(P') and we can apply Proposition 5.10. O
We are left with the computation of W4, and Wy,.

e Consider first U4, (p; @ p; ® 7). We know that this is zero unless degy = 2 (so that all
the classes involved have degree 2) and that there is only one curve in the class A;. Thus

Wa, (pi @p; @) = 6i1051(y, Ar).
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o Look now at Wy, (p; @ p; @7). It vanishes unless degy = 4, so that we must only consider
the case where v is Poincaré dual to a point. Now, there is exactly one curve of the class
Aj through any given point of Y and thus

V4, (pi @ pj @ DIpt]) = di20;2.
We can now calculate our monomials p; x p;. By definition
(pixpjyc) = (pi = pjse) + Va, (i @ p; @ V)1 + Vay (i @ pj @ 7)o

o (p1xp1,c)=(c-A1)g1 = (DA1, c)gn and thus

p1xpr=(p2 — 1),
o (p1*pa,c) = (p1 — p2,¢), so that

P1*x P2 = p1 " P2,

o (p2xp2,¢) = (p2— p2,¢) + Va,(p2 @ p2 ® ¥)g2 and

P2 % P2 = p2 — P2 + Qo

This gives the desired result:

6.6 PROPOSITION. —  The small quantum cohomology ring of the plane blown up at a point
is isomorphic to the ring

Z(p1,p2: qu. 65 42,45 1/ (PF — (p2 — p1)a@r, P — pip2 — @2).

Remarks.

e That the ideal generated by our two relations f = p? — (p2 — p1)q1 and g = p2 — pip2 — @2
defines a Lagrangian subvariety of T*(C*)? is easily checked, as {f,g} = qug is in the
ideal.

e Proposition 6.6 appears in [13] (where the basis used is not symplectic) and in [39] (in a
different basis'?).

e There is also a proof of Proposition 6.6 using (a less convenient basis and) symplectic
invariants in [2]. There the class 2A; was avoided using spaces of “somewhere injective”
holomorphic curves as in [36], which gives in this case the same invariants as the “almost”
holomorphic curves of [39].

Appendix

A. Elliptic curves and plane cubics

In this appendix, I try to motivate the introduction of the spaces of stable maps by a
description of the difference between (abstract) elliptic curves and plane cubics.

4and with a wrong sign.
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Elliptic curves. — An (abstract) elliptic curve is, by definition, a smooth genus-1 complex
curve C with a prefered point P on it. To say that the genus is one is to say that the dimension of
the complex vector space H°({,) of holomorphic 1-forms is one. According to the Abel-Jacobi
theorem, there is an isomorphism

C —— HOQL)*/A

Q
Q — (w — / w)
P
where A is the period lattice, i.e. the isomorphic image of H,(C;Z) = Z? in H°(Q})* = C.
The marked point P is sent to 0.

The space of isomorphism classes of elliptic curves can then be described as an appropriate
quotient of the space of lattices in C.

Plane cubics. — To any such lattice is associated a Weierstrass p-function. Together with its
derivative, it defines an embedding

C/A —— P*C)
Due to the differential equation satisfied by p, our elliptic curve is a plane cubic, with (affine)
equation

C': oyt =42 — gor — g3

where gy and g; are complex constants defined by A, satisfying g5 — 27¢g2 # 0.
Recall that p has a double pole at 0, so that the marked point P, alias 0, is sent to [0, 1, 0],
the point at oo on the curve C".

The moduli space of elliptic curves. — It turns out that, up to isomorphism, the elliptic curve
(C, P) is determined by a single numerical invariant, which can be easily expressed in terms of
the constants ¢, and g3 above:

172843
j= 53
g3 — 2143
For instance, t being fixed and ¢ varying, all the curves of equations
. y? = 4a® — fx — %

should be isomorphic, as they have the same j-invariant (namely 1728/(1 — 27¢?)), and they

2

actually are, since (z,y) — (o®z, a’y) extends to an isomorphism I'} — I'?,.

Singular cubics. — There are of course a lot of different singular plane cubic curves: a conic
plus a line, three lines, and so on. Among the cubics having an affine equation of the form
y? =42° — gax — gs

there are curves with an ordinary double point (g5 — 27¢g3 # 0, g2 and g3 # 0), or with a cusp
(92 = g3 = 0). Notice that these are rational curves, being parametrised by the set of lines
through the singular point.
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Compactification of the moduli space. — Once we have accepted that the moduli space of
elliptic curves is isomorphic'® to C (via j), it seems to be easy to compactify: just add a point
at infinity, allowing 7 = oco.

This way, you certainly add the curve with a double point. .. but you cannot “add the curve

with a cusp point”: because of the families I't, all converging to y* = 4z when ¢ goes to 0,

g
this curve would be arbitrarly close to all elliptic curves.
Notice that 7 = oo for curves with a double point, but also that the rational function of g,

and g3 has an “indeterminate form” 0/0 for the cusp curve, and that this is why we were able

to get any j:
1728
. ¢ .
](FE) = m fOf 5# 0
thus
1728
. . t _ . t _
limj(l) =3 = -

Notice that Theorem 4.4 describes exactly what happens in the family I'. when ¢ — 0: the
genus tends to be concentrated at the singular point. In other words, the map u mentioned
in Theorem 4.4 is constant, its graph is horizontal, and there is a bubble whose image is the
whole rational cuspidal cubic.

The idea of stable maps is to construct, starting from the space of maps of genus-1 curves
to the complex projective plane, a space that contains parametrisations of cusp curves taking
into account the phenomenon just described.

B. Algebraic loop spaces and configuration spaces

In this appendix, I will give examples of spaces of stable maps from a fixed curve to X. For
simplicity, I will consider only the case of rational curves.

The examples discussed here are not only beautiful examples, they are very useful in Given-
tal’s approach to the mirror conjecture [21, 22, 23]. For they provide a compactification of the
algebraic loop space of a projective manifold.

We start with algebraic loops in X, represented as maps P* — X... in other words as
parametrised rational curves.

We then fix the homology class and consider the space L, X of maps P! — X in the
class A. This space looks very much like Mg o(X, A) — except that, in Moo(X, A), we have
quotiented by isomorphisms, thus loosing part of the parametrisation. To keep track of the
parametrisation, it if of course sufficient to consider the graph of the maps, that is, to look at

the embedding
LaX CMoo(P' x X, L& A).

We see that the moduli spaces of stable maps include compactifications of the spaces of algebraic
loops.

5There should be some structure to give a sense to this word. The whole space M; ;1 = CU{co} can be given
an algebraic structure. It looks like P! but has orbifold-type singularities at points corresponding to elliptic
curves which have a non trivial group of automorphisms, namely for 7 = 0, 1728 and co.
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Example. — Take X = P*(C) and A = dL, so that we are looking at degree-d algebraic loops
in the projective space. An element in L;P" can be represented by n + 1 degree-d polynomials
without common root (modulo multiplication by a scalar). Therefore our space L,P" has
an obvious, “naive”, compactification as a projective space P*+D(=1)=1 " We thus have two
distinct compactifications:

e The naive one, L, P" = P(*+Dd=1-1 (A = (), where we are simply allowed to consider
polynomials of degree < d.

e The clever one, L4P™ = My o(P* x X, L & A), where we allow graphs of degree-< d maps
P! — P" with vertical components, their total degree being d.

Notice that there exists a map
p: LaP" —— L',P",

used by Givental in [23], that is a morphism, whose set-theoretical definition is the following.
Let u : ¥ — P! x P" be a bidegree-(1,d) stable map (representing an element of L4P").
All components of ¥ are copies of P'. One of them, Cy, say, which is sent by u onto the
graph of a degree-d’ map (d' < d) from P! to P". It can be represented by an (n + 1)-tuple
(foy ..., fn) of degree-d’ polynomials. The other components, Cy,...,C, are bubbles, that is,
C; is a rational curve, u has bidegree (0,d;) on C; and sends C; to z; x P™ for some point z; in
P (di+ - +d. =d—d).

Consider a degree-(d — d’) polynomial ¢, that vanishes at each z; with multiplicity d; and
associate to the stable map w the (n+ 1)-tuple of polynomials (fog, ..., fng), that is an element
of L',P™.

Configuration spaces. — In this situation, there is an analogue of the contraction morphism
considered in §4.2, the natural map

Mo (P! % X, L& A) — Mo, (P', L).

We have already met Mo o(P?, L) and noticed that this was a single point. In the same way,
for each degree-1 map

u:Y —— P

there exists a distinguished component Cy of ¥. This is the only component on which u is non
constant, and where the map u is an isomorphism Cy — P'. Using an isomorphism of ¥, we
can assume that u = Id on Cy, so that we are left with a compactification of the configuration
space of m distinct points on P! (without quotient).

Such a compactification is considered in greater generality in [19] for a general projective
variety Y instead of Pl. In the P!-case, it is easily seen that the compactification as moduli
space of stable maps and the Fulton-MacPherson compactification coincide (the description by
“screens” in [19] actually coincides with that of reducible curves we are using here).
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C. Poisson commuting relations

The Lagrangian subvariety defined by an unfolding has very specific properties:

C.1 PROPOSITION. — Let L be the Lagrangian subvariety of T*CV defined by the polynomial
generating family Fe. This is a smooth complete intersection. Moreover, there exists a system of
generators (Hy, ..., Hy) of the ideal I(L) of polynomials vanishing on L which is a completely
integrable system.

Proof. — Call (z1,..., 2k, Zk+1,- .., 2n) the coordinates dual to (&1,...,€&N), so that, chosing
the generators of () as in §1.2, the Lagrangian L is described by the N equations

OF

(z,6) = 0 1<i<k
aZi
zj—gi(z) = 0 k+1<3<N
(here z denotes the k-uple (z1,...,2x)). Thus L is a complete intersection.

Call these functions H; (1 <17 < N), that is,

8F§ 8f N agg
Hi(z,§) = z,6) = z) + z
(50 = G0 = 50+ 3 Egl

for 1 <1 <k, and

Hyyi(2,6) = 245 — Gryi(2)

for k+1<k+j <N. A straightforward computation shows that the Poisson bracket of any
two of them vanishes. O

We have already met (e.g. in §2.3) examples of non smooth spectral covers. The “Liou-
ville integrability” property has the flavour of the Givental & Kim theorem on the quantum
cohomology of flag manifolds'®. Recall that they have found that, in this case, the Lagrangian
subvariety was a (singular) common level set of first integrals of the Toda lattice. Notice that
Corollary 6.3 says that the ideal J is stable under Poisson bracket:

fr9€I={fg} €l

In the case of flag manifolds, the property they get is much stronger: there exists a system
(f1,. .., fr) of generators of J which Poisson commute.

This is not the case in general: one can check for instance that the ideal defining the quantum
cohomology of the plane blown-up at a point cannot be generated by two Poisson commuting
elements (this is easily done using Proposition 6.6 and the computation of the Poisson bracket
{f, g} in the remark following it).

Moreover, this property of being defined by an integrable system would imply that Lg is a
complete intersection and it is quite easy to find examples in which Lg is not, e.g. P% blown-up
at two points. This is left as an exercise for the readers: one does not need to compute the
quantum cohomology ring completely, but only to check that the ideal defining Lg needs five
generators, although Lpg has codimension 3 in T*(C*)?.

16Corollary 6.3 was proved by Givental & Kim as a comment of this theorem.
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D. The semi-simplicity assumption

One of the reasons why massive Frobenius manifolds were interesting for Dubrovin is that
they parametrise isomonodromic deformations (see [17, 27, 40, 35]).

One cannot expect the quantum cohomology of a projective manifold to be massive in gen-
eral: if the manifold contains no rational curve (think of a K3 surface), all its quantum products
are nilpotent. Better candidates for semi-simplicity are the Fano manifolds, as they contain
many rational curves. The semi-simplicity of the quantum cohomology of Fano manifolds is
conjectured by Tian [45] and Manin [35].

Recall (see §3.1) that the semi-simplicity the ring (7 M, *¢) implies the existence of canon-
ical coordinates on a neighbourhood of the point ¢ in the Frobenius manifold M. In these
coordinates, the product is split and the Euler vector field can be written

0

Notice that, by definition, the z;’s are then the eigenvalues of the multiplication by £(¢) at £.
All the data being analytic, this implies:

D.1 PROPOSITION. —  For a Frobenius manifold, the following properties are equivalent
L. The ring (Te M, *¢) is semi-simple for generic €.
2. There exists a point £ in M such that the ring (Te M, *¢) is semi-simple.

3. There exists a point € in M and a vector a in Te M such that all the eigenvalues of the
multiplication by a are simple.

4. Multiplication by E(&) at € has only simple eigenvalues for generic €. a

Notice also that semi-simplicity of the small quantum cohomology ring (for generic ¢) would
imply semi-simplicity of global quantum cohomology. For instance:

D.2 PROPOSITION. — The quantum cohomologies of P", P2 qre massive Frobenius mani-
folds.
Proof. — 1t is easily checked that the small quantum cohomology rings computed in §6.2

are semi-simple for generic ¢. The minimal polynomial of multiplication by p in QH*(P") is
"t — ¢, that of multiplication by p; in QH*(P?) is 2* 4+ ¢12° + ¢?ga. Both coincide with the
characteristic polynomial and both are split for generic q. a

But there are examples for which the small quantum cohomology ring is not sufficient to
check the semi-simplicity.

D.3 PROPOSITION. — Let X™ C P™" be a smooth complete intersection of dimension n > 3
and of degree (dy,...,d,). Assume

- 1
> (di—1) < n;r :

=1

There is a value of q for which the small quantum cohomology ring of X is semi-simple if and
only if X is a linear subspace or a quadric (that is, > (d; — 1) =0 or 1).
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Proof. — This is based on Beauville’s computation. According to the Lefchetz theorem,
the complex!” cohomology of X is generated by the class dual to the hyperplane section,
n € H?*(X;C) and the primitive cohomology H}(X;C). The first Chern class is kn, (k =
n+1—3(d; —1)). According to [5], n satisfies a relation

nn—}—l . aqnn—}—l—k — 0

for some (non zero) integer a.

In the classical cohomology ring, the minimal polynomial of n — - is z"*!, so that this
shows that the minimal polynomial of i - is 2"*! — agz"*'7*. This polynomial has a multiple
root for all ¢ as soon as n + 1 — k > 2 — that is, Y>2(d; — 1) > 2. In this case, n x - is not
diagonalisable. .. and this prevents Q H*(X) to be semi-simple (for all values of ¢).

When Y (d; — 1) = 0, X = P*(C) and we have already mentioned above that QQ H*(X) was
(generically) semi-simple. We are left with the case of quadrics.

"+l _ gz is also the minimal poly-

If n is odd, the primitive cohomology is zero, so that z
nomial and all the eigenvalues of 5 x - are simple for ¢ # 0.
If n is even, H}(X) is l-dimensional, generated by the dual to the generator of H,(Xas)

(affine quadric). Still using [5], we know that, for o € HF(X),

nxa = 0 as forn — «
axa = b(n"—aq) for some non-zero b if a # 0.

Thus n*- is diagonalisable (its minimal polynomial is split) but is has 0 as a double eigenvalue.
The corresponding eigenspace (kernel) is generated by ™ — ag and a generator a of HJ(X).
However, quantum multiplication by «, restricted to this kernel, has two distinct eigenvalues
for ¢ # 0, since

a*x(n*—aq) = —aqo
axa = bn"—aq).

Remarks.

e The result for P* and quadrics also holds of course for n = 2 as well.

e The proposition gives e.g. the semi-simplicity of the small quantum cohomology ring of
(#3(C*) (using Pliicker, this is a quadric in P?). See [8, 43, 50, 20] for the computation of
the small quantum cohomology ring of Grassmannians, [24, 10] for that of flag manifolds.

Thus, there is no hope that the small quantum cohomology ring be semi-simple in general,
even for Fano complete intersections. However, for the global quantum cohomology of the same
complete intersections, one can prove:

D.4 PROPOSITION. — Let X be a smooth complete intersection of odd dimension n > 3. Let
n € H*(X;Z) be the generator and assume that the degree of X is such that the first Chern
class kn of X satisfies

1
"tk <n+l

¢ g

There is a point £ in H*(X) such that all the eigenvalues of nx¢ - are simple. a

7rational is enough
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As a consequence (recall we consider only the even part of the cohomology), the quantum
cohomology of such an odd dimensional complete intersection is massive. The proof is based
on a simple approximation argument that [ hope to make more explicit elsewhere. Notice that
the massivity of the quantum cohomology for these examples can also be deduced from the
computation of [46].
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