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Résumé

A maximum cross-entropy method for determining the reference prior dis-
tribution, which represents partial information or complete ignorance, is pro-
posed and studied in this paper, several properties and interpretations are
given. Some sufficient conditions for a prior to be the reference distribution or
e— reference distribution are given, these sufficient conditions turn out to be
also necessary within some convex class of prior distributions. Besides some
theoretical results, attention is also paid to the applications to Bernoulli mo-
del, Binomial model, Poisson process, Translation-scale model and Elliptic
model. In the case of group models, we find left Haar measure as the reference
prior distribution.

Key Words: Maximum cross-entropy, Ignorance prior, Reference prior, Jeffreys
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1 INTRODUCTION



In studying a statistical problem from Bayesian point of view, one meets at once
a serious problem: How to choose the prior distribution? If we possess a huge amount
of information, which is hardly ever true, we could probably do it according to our
individual degree of belief. But very often, we are asked to give an explicit form
of the prior distribution on the basis of some given, but usually very limited and
little reliable information at hand. The seeming arbitrariness and subjectivity of
the prior distribution is a controversial aspect of Bayesian inference as a scientific
methodology of statistical inference, despite its success. Thus, there is a real need to
establish certain rules for selecting a specific prior distribution representing partial
information or complete ignorance. A lot of procedures has been put forward to deal
with this problem.

In nineteenth-century Bayes’ applications, it was common to take the uniform
prior distribution as a suitable representation of ignorance. However, this naive pro-
cedure leads to inconsistencies if applied to different parametrizations of the same
problem. Later approaches to this problem are often based on different type of inva-
riance requirements, as those of Jeffreys [13, 1946], [14, 1967], Hartigan [9, 1964], [10, 1971],
Villegas [17,1971], [18,1977|, 20, 1981 and Jaynes [12, 1978]. These approaches can
hardly be applied to models lack of group structure and don’t always formulate a
unique, cogent prior distribution. Other approaches include the use of different forms
of information arguments, such as those of Lindley [15, 1956], Jaynes [11, 1968], Good
[8,1969], Zellner [23,1977], Bernardo [2,1979], Chang & Eaves [4,1990] and Eaves
& Chang [6,1992]. If an entropy functional I(IT) is considered as an appropriate
evaluation of a prior distributions I in a given preamble class, then the Maximum
entropy method is to say that greater I(IT) is , better IT is. But the very often
proposed and studied Shannon entropy, which is given by

11 = [ 10g (50)) GOA@0)

is not always agreed to be an appropriate evaluation of the prior distributions, espe-
cially when IT has a continuous density function. Although it is the only "reasonable”
appropriate measure of the information provided by the prior distributions in the
discrete case, that is, Card(©) < oo , it loses this property otherwise. Further-
more, it depends on the dominating measure, and is not invariant for one to one
transformations. Note that the comparison of the knowledge before and after the
experiments makes it possible to discuss the amount of information provided by
the experiment. Very interesting papers are Zellner’'s and Bernardo’s along this di-
rection. As will be pointed in the next section, Zellner’s approach is not really an
information-type one. Bernardo’s approach is a very important step in the direction,
there are several inadequate reasonings in the paper, although he declared that ”



much attention to mathematical detail would be premature”. For example, the ex-
pression [ p(0)log(f(6)/p(6))df (in his notations) is maximized by f(6) o p(6) only
if f(0) doesn’t depend on p(€). So the formula (5) of Bernardo [2, 1979] needs an cor-
rect justification. Another problem is that logp*(|0) ( always in his notations ) isn’t
bounded, we haven’t in general even the weak convergence of [ p*(|0)logp*(6]6)d6
although the asymptotical posterior density will concentrate around the maximum
likelihood estimate 6 as the sample size trends to infinity. The simple Gaussian mo-
del can serve as a counter-example. So the formula (8) ( 13) etc. of Bernardo [2, 1979
need all further justifications.

In this paper, a maximum cross-entropy method for determining the reference
prior distribution, which represents partial information or complete ignorance, is
proposed and studied. Bernardo’s approach, when all arguments are justified, can
be view as an asymptotical version of ours. Several properties and interpretations are
given in Section 2. Main results are collected together in section 3. Several sufficient
conditions for a prior to be the reference distribution or e— reference distributions
are given. These conditions turn out to be also necessary within some convex class
of prior distributions. Besides the theoretical results, attention is also paid to the
applications to Bernoulli model, Binomial model, Poisson process, Translation-scale
model and Elliptic model. In the case of Group models, we restablish the reference
prior position for the left Haar measure.

2 CRITERION and INTERPRETATIONS

Let (Q, 2(02), ) be a statistical model, that is, & is a family of possible pro-
babilities of a certain observand X over a space (€2, Z(€2)) where & can be either
non-parametric family, or a parametric family: & = {P) : § € ©}. We shall be
content to restraint in the parametric case, but the same method can also be used
for choosing one reference prior distribution on non-parameter family, c.f. Ferguson
[7,1974]. An prior distribution is a distribution defined over & endowed with some
o— algebra. In the parametric case, this is equivalent to an distribution defined over
the parametric space © endowded with some o— algebra.

Let (2, 8(Q),{Py : 8 € ©}) be a parametric statistical model, we look for
how to determine a prior distribution II* in a given preamble class of candidates
which represents complete ignorance or insufficient information about parameter
6 on (©,%(0)). In [23,1977], Zellner introduced G'(II) = I(II) — [ I(P(.|0)I1(d0)
where I(II) and I(P(.|#)) are Shannon entropy for prior distribution IT and the



Shannon entropy for the distribution P(.|0) respectively. Zellner considered the G’ as
a measure of the gain in information after having observed X, and for him, maximal
date prior II is that maximizes the gain in information. But, this expression is not a
information-type one. Suppose that Py, Il are dominated by some ¢ -finite measure
p, A respectively, Py = [ PyII(d6), then

G ()45 (0)
log | 22 Py(dz)I1(d6)
SV
Look at it more carefully, the numerator of the fraction in log expression is the joint
density w.r.t. g x A whereas the denominator is the square of the marginal density

w.r.t. A. This expression has no information-type sense at all. Inspired by him, we
consider the following modified functional:

G(IT) = I(I) — ExI(T1(.|X)) (1)

where [(II) and ExI(II(.|X)) are Shannon entropy for prior distribution II and the
expected conditional Shannon entropy for the posteriori distribution I1(.|x) respecti-
vely. This functional was first used by Lindley to measure the information provided
by models w.r.t. a given prior distribution.

Our goal is to search for the prior distribution I1*, which serves as a reference, within
a certain class of prior distributions such that the functional G(II) is maximal at
the point I1* € ¥

Example 1(Bernoulli model)
Let X be a Bernoulli variable and P, give its distribution, that is,

PoX=1)=0=1—Py(X =0),

and the class of prior distributions is given by

['(a+b)

¢ = {Be(a,b)|Be(a, b)(df) = I'(a)L(b)

0 (1 —0)""'df,a > 0,b > 0}

i.e. the class of all Beta priors (conjugate priors) Be(a,b) with @ > 0,6 > 0. It is
obvious that G(a,b) = Gop = L1 + Iy where [, = -5 U(a+1)+ 35 b S (0+1) = ¥(a+
b+ 1) with ¥(z) = “Llogl'(z) and I, = L;log (a+b) “log (“*b)



It is straightforward that I < log2, I = log2 iff a = b; [, < 0, I, = 0 iff
a = b = 0. Consequently the reference prior distribution in the class of all Beta
priors Be(a,b) is given by Be(0,0): it is I1(df) = 6~*(1 — 0) *df that maximizes G.

It is the locally invariant prior proposed by Hartigan [9, 1964]. It is also the igno-
rance prior proposed by Villegas [19, 1977], [20, 1981].

Before looking more examples, let us first establish some interpretations of this
criterion.

Interpretation 1 G is the difference between the Shannon entropy about 6 before
the observation X and the Shannon entropy about 6 after having observed X, hence
the diminution of the entropy due to the observation. If the Shannon entropy I is
chosen as the uncertainty function of De Groot [5], which measures indetermination
degree; then, G(II) = I(I1)—Ex ({(.|X))) is the expected information about 0 provided
by the model (2, B(Q2),{P : 0 € ©}), Lindley [15, 1956]. The mazimization of the
criterion means to search for a prior distribution such that the expected information
about 0 provided by the model is mazximal.

Interpretation 2 Suppose that Py, 11 are dominated by some o -finite measure pi, A

respectively. Denote Py = [ PoII(df), and m(0) = 9L(0), then

dp" (x)m(0)
// log ( @ W(Q)) Py(dx)I1(d6) (2)

is precisely the cross-entropy. The maximization of this criterion means to search
for the prior distribution 11 such that the Kullback-Leibler divergence between the

joint density e 2(x)m(0) and the product marginal densities dfn (x)7(0) is mazimal.

Interpretation 3 Given {Fy : 0 € ©}, with the prior distribution 1. If one knows
onlyn =T(0) and {P, : n € A} with P,(.) = EqgP(.|T(0) =n) and A = T(0©), then

G(IT) > G(TI(n)) (3)

The mazximization of this criterion means to search for most indeterminate prior
distribution.



Interpretation 4 From the dual point of view , we have always this inequality if
the posteriori distribution 11(.|x) is more informative than II(.|x) in the sense of
Blackwell for any marginal law p(z).

Here are some elementary properties:

First of all, we have here, in contrast to Shannon entropy, certain invariance
properties, among others, G is parameter invariant, data invariant and context in-
variant. Having the second interpretation in mind, much more can be said.

According to the basic divergence inequality, G(II) is non-negative, G is nul iff
I1(df) = 0g,(0) for some 6, provided that Py is identifiable.

In fact, assume for instance that Py is dominated by some o -finite measure u, p(x|0) =
2P (), then p{x € Q|p(z|0) # p(z|0)} > 0, for 6 # ¢'. Hence G(IT) = 0 implies

dp

[1(60y) = 1 with ©y = {0 € O] flog(z(nm—éf))p(ﬂ@)p(dx)) =0}. If 6,0" € Oy, we have
p(z|0) = p(z|0)pa.e., which in turn implies that Oy = {0y}, T1(d0) = dy, ().
Thirdly, this functional is concave,( Lindley [15]), consequently, the maxima, if it
exists, will be unique.

Moreover, the concavity implies that the map

I — G(II)

is continuous on int(%). It may fail to be upper semi-continuous on %. For assuming
the existence of maxima within the compact class €, one can relax G by G defined
as

G(Il) = limginf G(II) where infimum is taken over all upper semi-continuous
H>@.

3 MAIN RESULTS

Several sufficient conditions on the functional G to be maximal are given. These
conditions are also necessary within some convex class of prior distributions. More
precisely, suppose Py << u, define

dPy

p(x|0) = @(x)’ pu(z) = /p(fd@)ﬂ(d@) (4)



we have

Theorem 1 If there is a prior distribution 11* such that

/HH* *(d0) > Sup/HH* I1(df) — € (6)

e¥

then

G(II*) > sup G(II) — e. (7)

Ile¥

Any prior distribution satisfies (3.7) is coined an e— reference prior distribution,
it is called the reference prior distribution if € = 0.
It we define
o = {0 € O HH(9)>SllpH( Y—e} for €>0 (8)

we have a more applicable theorem as a consequence of the theorem 1:
Theorem 2 If there is a prior distribution 1I* such that
II"(6r) = 1 (9)
then II* is a e— reference prior distribution.
Here is a simple application:
Example 1 :Bernoulli model (continued) .

We know that Pp(X =1)=0=1— Py(X =0).
It

HeeB)=I(1-0€B) ¥V BecHAO),



then

Pu(X =0) = /P(X — 0]6)I1(d0)
1

- /P(X = 16)I1(d6) = Pu(X = 1) = 5

H(0) = (1 —0)log(1 —0) + logh + log2 < log2

Take 1[0, 0] = TI[1 — 6, 1] = 1, we have

mn(es) = 1

with € = —(6logd + (1 — 6)log(1l — §)), which give e— reference prior distributions.
Since limg_ge = 0, we find that the reference prior distribution IT* is given by

IO =0) =" =1) = - (10)

Theorem 3 If there is a prior distribution 1I* such that

/HH* “(do) = Sup/HH* (11)
Ile¥

then then II* is the reference prior distribution. This condition is also necessary if
the class of prior distributions is conver.

Remember that

Oy ={0ec0O| Hy(d) =sup Hy(0)} (12)
0/
If Pi(©%) > 0, we can define a hat operation on 4 that concentrates each I1 on ©%:
. II(ANBY)
(A) = —~1 13
)= =ien (13)

Note that passing II to 1T is not necessrily fayorable, that is, we don’t always
have G(IT) < G(IT). For example, if OY% = {6y}, 1l = dy,, then G(II) = 0 < G(II).

However,we have

Theorem 4 If there is a prior distribution 11* such that

Im*(e%.) =1 (14)

8



then 1I* is the reference prior distribution.
This condition is also necessary if the class of prior distributions is convex and
closed under the hat operation .

If IT* verifies the above condition (3.14), then

o Dreon( f1og (220 patoputan)) 11 e

~ con ([ 1o ("L ptatornan)

which is precisely the formula (6) of Bernardo [2, 1979].

Example 2:(Binomial model)
Let X be a binomial variable with the parameter 6, that is,

Py(X =k) = < " ) 0F(1 — )"

k
If we define
1
M@=0)=1"(@0=1)=p; and 110 = 5):q (15)
with
911 _g7n
p= - (16)
2 (22%171 . 2—n) 1
and
1
q= . (17)
2 (22%171 - 2%) 1
then
Hre(0) = n(0logd + (1 — 0)logh) — (1 — 0" — (1 — 9)")109(2%)
n o o n i _ n _ n i
— (1= 0" — (1= 0)")log(o5) — (0" + (1= 0)")log (p+ - )



— n(0logh + (1 — 0)logl)
= n(flogz + (1 — H)ZOQﬁ)

—n <%> log2(1 — 6™ — (1 —6)™)
> n (4zog2 x (1 —6) — (L) log2(1 — 0™ — (1 — 9)")

=T

since

(ezogéﬂl—@)log(lim) = Z@*Z#

(V4
R
)

+

[~
| =
7N
N =
S~
=
b
N~
>
—
|
=

= 4log2 x (1 —0).

When n=2, we have

2n71 . . 2271 ) )
= 4log2 x (1 —0).

When n=3, we have

3—-1

2n—1 9
(2n—1_1>l092x (1-0"-(1-0)") = 3(@) log2 x (1 —6°— (1 —0)*)
= 4log2 x 0(1 — 0).

Therefore,
Hp+(0) = Hp«(1) = Hp«(1/2) > Hp«(0) and I1°(6 € {0,1/2,1} = 1. (18)

10



So (3.14) holds for n=2, 3.
It is easy to check that

(Blog} + (1~ 0)log5-5)) = (22—_1) l0g2(1 — 0% — (1 — )%
So (3.14) holds also for n=4. Therefore, (3.15), (3.16) and (3.17) give the refe-

rence prior distribution when n=2, 3 or 4.

Example 3 (Mixed Gaussian model)
If we have three Gaussian distributions:

Py(dz) = \/%exp{—%(l —0)*}dz, 0 € {-5,0,0.5}

and the priors are given by

I1(0 = 0.5) = p,11(0 =0) = qand II"(0 = —5) =1 —p —q.

It can be checked that

p = 0.291044, ¢ = 0.216402

give the reference prior distribution IT*.

Example 2 :Binomial model (continued).

We have Py(X = k) = ( Z > 0%(1 — 0)"=*. Assume that

@ = {Be(a, b)|Be(a,b)(d) = sk-6""1 (1 - 0)""1df,a > 0,b > 0} i.e. the class
of all Beta priors (conjugate priors) Be(a,b) with a > 0,b > 0.

It turns out that the values of a and b of Be(a,b) that maximizes G' depend on
the sample seize n. The following table gives the approximate values of a and b as

a function of n:

11



n 1 2 3 4 5

a 0 0.0407691 | 0.0861015 | 0.117923 | 0.141884
b 0 0.0407691 | 0.0861015 | 0.117923 | 0.141884
n 6 7 8 9 10

a | 0.160907 | 0.176573 | 0.189821 | 0.201249 | 0.211264
b | 0.160907 | 0.176573 | 0.189821 | 0.201249 | 0.211264
n 20 30 60 100 150

a | 0.271985 | 0.303157 | 0.348875 | 0.376715 | 0.395446
b | 0.271985 | 0.303157 | 0.348875 | 0.376715 | 0.395446
n 300 500 1000 2000 10000
a | 0.421688 | 0.436927 | 0.453060 | 0.465222 | 0.482686
b | 0.421688 | 0.436927 | 0.453060 | 0.465222 | 0.482686

It seems that when n tends to infinity, a and b both tend to 0.5 which correspond
to Jeffreys prior. See also the conjecture below.

We see that for small sample size, the problem gets hardly a simple solution. that
is probablly why Bernardo (2, 1979] used somehow indirect, technical and asympto-
tical arguments. In fact, if we allow the sample size tend to infinity, things go more
soundly. Suppose Py << p, define

p(il9) = 6;1;( ). pul@r, 1) = / (|6 T1(d6) (19)
1) = [1og (2P 1wy i), (20
0s" — (g e o HY ()>SupH()( ') — €} for e >0 (21)

we have

Theorem 5 If there is a prior distribution 11* such that
lim 11*(©%") = 1

n—0oo

then lim,, . G(IT*) = suppey lim,_,o G(II).

12



As a consequence of this, we have a very simple solution to the discrete case:

Theorem 6 [f© = {04, ...,0,,} and the prior distribution 11* is defined by

1
H*(G:Hj):a, for1<j<m

then lim,,_ . G(II*) = suppeq lim, o G(II).

Sometimes the parameter may be considered as an unknown element of some
group of transformations of the sample space (€2, Z(£2)), in this case, we have

Theorem 7 Suppose the parameter space © is a measurable compact group and
Py(B) = P(0'B), B € #B(2), then the normalized Haar measure 11* is the reference
prior distribution, that is to say: G(11*) > G(I1) for any prior distribution 11.

Hp(0) is always non-negative for any (proper) prior distribution, but same can
not be said for improper prior, as can be showed by the following:

Example 4
Let Q@ = R, p(z|0) = \/%exp{—ﬁ(x — 0)?}, are the densities with respect
to the Lebesgue measure, A = Lebesgue measure. It is obvious that p(z) = 1 and

H,(0) = —1[log(2m0?) 4 1], and so G(\) = —o0.

This is not surprising, because G is not a suitable measure for evaluate the
improper prior. In fact, if we use %x Lebesgue measure , instead of Lebesgue measure
as the prior, then we can choose ¢ such that G = co. We shall overcome this difficulty
by "normalize” improper prior as the following theorem.

In discussing the Villegas’ paper [17, 1971], Hartigan [10, 1971] talked about the
difficulty of choosing one from a family of relatively invariant prior measures, each of
which is such that the corresponding posterior distributions are invariant under the
same transformations which leave the sampling distribution model invariant. From
our point of view, only the left Haar measure is to be chosen as reference by the
following;:

13



Theorem 8 Suppose the parameter space © is a locally compact group, Py(B) =

P(07'B),B € #(Q), and there are a series of sets {K,} such that K, T © and

0 < II*(K,,) < oo, with a left Haar measure II*. Define proper prior distribution T
n (0, 2(0)) by

(AN K,)

then we have lim, . G(II) > G(II) for any 11 provided

/ log (C‘Zlfi (m)) Pu(dz) > —oo (22)

where Py(B) = [ P(07'B)II(df) and Pu-(B) = [ P(0~'B)II*(d0).

Note that (3.22) can be arranged to be true by replacing IT* by 11*x Constant. Here
we form

Conjecture 1 If the proper prior distribution II* is defined by 11*(d0) o |1(0)|2d0,
then under some regular conditions, we have  lim,,_,., G(II*) = suppey lim,, o G(II).

In the same spirit of theorem 8, we can form
Conjecture 2 [f the improper prior distribution IT* is defined by I11*(d0) o |I(9)|%d9,

then under some regular conditions, we have  lim,,_,. G(IT})) = suppeq lim, oo G(II).

4 APPLICATIONS

Example 5 (Poisson process)
Let X (t) be a Poisson process with parameter A, that is, its distribution is given

by




One can show that the reference prior distribution is given by its Haar measure:
[I(d\) = A~ tdA
It is the prior of ignorance proposed by Villegas [20, 1981].

Example 6 (The translation-scale model])
Let X be a variable with its density given by:

p(z|(o,p)) = I, f(¥55), and © = {(o, p)|o > 0, u € R}.
Define
o) (T15 oy ) = (01 + by ooy 0T + 1),
then,

Ty — Tp — K
( R )

Goy)1 (21, oy ) =
and the reference prior distribution is given by its Haar measure:
[(do) = o 2dodpu.
c.f. Barndorff-Nielsen [1, 1988]. It is worth noting that it is precisely the prior called
"inner prior” of Villegas , [19, 1977], [20, 1981].

It is also the prior of Jeffreys I1(df) o |1(6)|2d6.

Example 7( The elliptic model)
Let X be a variable of elliptic form with its distribution given by:

P(dz|B,0) = 552 5|72 (0) " F(o™2(x — AB)'Sy (x — AB))dw

Hn/2

We know that its left Haar measure is given by:
II(dB, do) = o~ " VdBdo

it is also its reference prior distribution.

One can show that its Fisher information matrix is given by:

ac2AYYA 0
I(ﬂvo—) = < O 0 bO'_2 )

15



so detl(B,0) = ¢ x 021 see Burbea & Oller [3,1988] for the detail. Hence the
reference prior distribution is also the prior of Jeffreys: TI(df) o< |1(6)|2d6.

There seems to be some connexion between the reference prior and minimax
estimator under entropy loss, see Wieczorkowski, R. Zielinski, [21, 1992] and R.Yang
M. C. [22, 1992].

5 SKETCH of PROOFS

Proof of Theorem 1:

Suppose that II* verifies the condition in the theorem, II* € % is any prior
distribution, then

G(IT) — G(TT) = / Hiy. (0)TT*(d6) — / Hip- (0)T1(d0

/ Hire (0)TI(d0) — / Hi (0
> /HH* 1(d6) — /HH [1(d6) — ¢
_ / / log < Zri(é))) p(@]0)p(dz)T1(d0) — €
_ / log ( Zfli((fc))) pu(@)u(de) — ¢

> —€

the last inequality is due to the positivity of Kullback information.

Proof of Theorem 2:

It is easy to see that

/HH*(H)H*(dQ) > sup Hy«(0') — ¢



Proof of Theorem 3:

It remains only to prove the necessary part:
Assume that G is maximal at the point IT* € €, let II € % be another point,
then II* = (1 — a)II* 4+ all € € also because of the convexity of €. We have
lim,, o % < 0, that is, %G(HO‘)LFO < 0. Therefore,

/ Hrye (0)TT*(d6) — / Hry. (0)TT(dB) > 0.

Proof of Theorem 4:

Suppose II* € ¥ maximize G. € is closed under the hat operation implies that
II* € €. So

/HH* (O)IT*(dO) — sup Hy«(0') = /HH*(H)H*(dG) — /HH* (H)ﬂ*(de) > 0.
0/
But this is true iff I1* = [1* iff (3.14) holds.
Proof of Theorem 5:

The proof is similar to the sufficient part of the theorem 4.

Proof of Theorem 6:
See, Renyi [16, 1964]. See also Bernardo [2, 1979].

Proof of Theorem 7:
Suppose that P << p, define a map Tp on (2, Z(2)) by Ty : & —— Oz, then
APy dP
duTe_1< ) = @
It is not difficult to see that

o= [ i (e () )

dP

07't), pT, " p.s.



Denote the Haar measure on (6, #(0)) by II*,

dPg dPH* -1
I, = t)l t T, (dt
o [ oo (o)) e

i—i(e_lt)log (dc]lj;l (t)) wT, t(dt)

because

L - / j—i(flexm*(ds)

dP 1.1 *
- / PRI

P, . dPp,
- [ Gt @) = )

the before-last equality being true since II* is left invariant. As a consequence of
that,

HH* (9) = 11 - [2 = Constant, (24)
= sup Hp-(0). (25)
0cO

Note that when IT* is an infinite left Haar measure, the above relation (5.23) is always
true except the last equality (5.24), since this constant may fail to be positive. See
also example 4.

Proof of Theorem 8:
Keep the same natations as in the theorem 8, denote the corresponding densities

18



by small letters,

dI:

dA

G(II) — G(I)

n

We then have

(0) = 7 (0) etc. , then

] mitani (Q@)

logll*(K,) — +00
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T, (dt)

,UTe_l(dt)



by (5.23).

) T (8)(0)
o= | fman [ |G e
P, i (1)
_ /H:L(de)/d/zTe_l (t)log | —ps B w7 (dt)
e (1) (0
— /Hfl(dé)/%(tﬂog % uTy  (dt)
a8 (g=11)IT*(df
= /H;(d@)/log ( © C;E((G—lt))ﬂ*((de))) Py(dt)
Ky du

> 0.

due to

o %(9—175)11*@0)
log (fKn %(0%)11*(&9)) >0

I tender my thanks to Jean-Pierre Florens, Fabrice Gamboa, Elisabeth Gassiat and

Michel Mouchart for the helpful discussions.
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