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Optimal Energy Decay Rate in a Damped Rayleigh Beam

Bopeng Rao
Institut de Recherche Mathématique Avancée
Université de Louis Pasteur de Strasbourg
7 Rue René-Descartes, 67084 Strasbourg Cedex, France

E-mail : rao@math.u-strasbg.fr

ABsTrRACT. — We consider a clamped Rayleigh beam subject to a positive
viscous damping. Using an explicit approximation, we first give the asymptotic
expansion of eigenvalues and eigenfunctions of the underlying system. We next
identify the optimal energy decay rate of the system with the supremum of the real
part of the spectrum of the infinitesimal generator of the associated semigroup.

1. Introduction

We consider a clamped Rayleigh beam in the presence of viscous damping
Z(Gytx)x :

Ytt — ’Yzyxmtt + Yzrzzx — 2(aytx)x =0, O0<z<l, ¢>0,
(1'1) y(oat) = ym(oat) = y(lat) = ym(lat) =0, t>0,
y(xa 0) = y0($)7 yt(xao) = yl(w)

where v2 > 0 is the coefficient of moment of inertia, and where the ponential
a € L>=(0,1) is a positive function. For more details concerning the modelling of the
system, we refer to Russell [15].

Let H = HZ2(0,1) x H}(0,1) endowed with the inner product :

(1.2) (W.2), (f.9))at = / (oo Fon + 25 + 72 20g0)de

We define the linear unbounded operator A by
(1.3)
0 1
A= , D(A) = (H*(0,1) N H{(0,1)) x H§(0,1).
*G2azmzm 2G2az (aam)
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2 B. RAO
where
(1.4) Go = (I =7*00s) !

is an isomorphism from H (0, 1) onto H{(0,1).
Setting u = (y, yt), we transform the equation (1.1) into an evolutionary equation

(1.5) uy = Au, u(0) =ug € H.

Since A is a bounded monotone perturbation of a skew adjoint operator (undamped),
then it is easily seen that A generates a Cy semigroup S(t) of contractions on the
energy space H (e.g. Pazy [13], Lagnese [10], Rao [14]). Moreover, if we assume
that a is strictly positive on a subinterval, then we can easily prove that there exist
positive constants M, w such that the following exponential decay rate holds

(1.6) 1S®)]| < M exp (—wt) vt > 0.

But our goal is to find the optimal energy decay rate. More precisely, denoting by
w(a) the supremum of w satisfying (1.6), and by p(a) the supremum of the real
part of the eigenvalues of A, we have obviously w(a) < p(a). We will establish the
reverse inequality for the coefficient a € W31(0,1) by proving that the system of
eigenvectors of the operator A constitutes a Riesz basis in the energy space H. For
this end, we will apply Bari’s theorem which, by its constructive nature, requires
very precise knowledge of the spectrum of A.

The present work is inspired deeply on that of Cox-Zuazua [6, 7] on the wave
equation with a nonnegative potential term. The shooting method based on an
ansatz of Horn was applied to obtain the asymptotic expansion of eigenvalues of
the system. But their shooting arguments do not appear to be easily generalized
to the beam problems. In fact in order to adapt the shooting method to the beam
equation, we have to establish an adequat a priori estimate which is not evident even
for the wave equation (see Freitas-Zuazua [8]). In order to obtain the asymptotic
expansion of eigenvalues and eigenvectors of the operator A, we propose an explicit
approximation the characteristic determinant of the underlying system. Unlike the
usual asymptotic expansion method, our approach is successive and based on the
high frequencies of the system. This point seems to be new.

The second part of this work consists in construcing a Riesz basis which is
quadratically close to the system of eigenvectors of A. Consequently, we identify the
optimal energy decay rate with the supremum of the real part of A.

There are many results on the spectrum of the beam equations (see e.g. Chen
et al. [2, 3], Russell [15]). But most of them are obtained by using the explicit
characteristic equation of the underlying system. In the case of variable coefficient
the main difficulty is that the characteristic equation is not explicit. Here we will
adopt the classical shooting method which has been systematically studied by
Birkoff-Langer [1]. Interesting results for a damped string equation were obtained
in Chen et al. [4] and Cox-Zuazua [6, 7]. In particular, an average property on the
spectrum of Euler-Bernoulli beam equation was conjectured in Chen et al. [4].
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2. Lower frequencies

In this section, we assume that the coefficient function a satisfies

(2.1) 0<a<az) <P <40, 0<z<L
ProposITION 2.1. — The complez eigenvalues of A are contained in
4 2
T 1] anm
2.2 {)\2>7 ——<R)\<—7}.

A necessary condition for existence of real eigenvalues is

,YZﬂ.Z

V1+9272

(2.3) p>

In that case, we have

2 4 2 4
(2.4) _ﬁz_ %—%S/\nﬁ—ﬁz+ %_%
Y v 1+~4m 0 g 1+~4m

ProOF. Let A, be an eigenvalue and ¢, = (yn,zn) be an associated
eigenfunction. Then we have

{ Zn = Ap¥Yn,
—Ynzzzr + 2(a2nm)m = )\n (Zn - 'YQanm)-

This gives

(2.5)

yn(o) = ynx(o) = yn(l) = ym(l) =0.

Assume that

1
(2.6) / (Iynl? + 72 lyne|*)dz = 1.
0

Then using Poincaré’s inequality, we deduce that

72 ! 9 1
2.7 — < nz| dr < —.
1) o < e < 5

Now multiplying the equation (2.5) by y,, and integrating by parts we obtain that

1 1
(2.8) %2420 [ aluneldet [ lueeldr =0
0 0
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It follows that

1 1 N 1
(2.9) Ap = f/ a|y,m|2dm + \/(/ a|ynx|2daz) — / |Ynae|2de.
0 0 0

If A, is a complex eigenvalue, then we have

1 1 1 9
(2.10) ReM, = —/ a|Yna|*dz, Im)\, = \// |Ynae|>de — (/ a|ym\2dx) .
0 0 0

Using (2.7) into (2.10) gives the estimate (2.2).
If A, is a real eigenvalue, then using (2.7) and Poincaré’s inequality, we get

ﬂQ 1 9 2 1 2 71'4
(2.11) F > (/0 a|Yna) dl") 2/0 [Ynaz|“do > 1+ 272

This gives the condition (2.3).

Finally since the function (s,t) — —s 4 v/s2 — ¢ is increasing with respect to s
and decreasing with respect to t (respectively the function (s,t) — —s — v/s2 —t is
decreasing with respect to s and increasing with respect to t), then inserting (2.11)
into (2.9), we obtain the estimate (2.3). This achieves the proof.

Now following an idea of Cox and Zuazua [6], we consider the parametrized
self-adjoint eigenvalue problem :

)\21/% - 72>\2wnmc + Ynoocze — 2Vn(a'(/]mv)x =0,
(2.12)

Un(0) = Yna(0) = ¢n(1) = Pna(1) = 0

where the eigenvalues v, is ordered

(2.13) 0>v1(A) > e(A) > >v,(\) = —

We observe that A is an eigenvalue of the operator A if and only if ) is a fixed point
of the application A\ — v, () for some integer n.
Let py, > 0 be the nth eigenvalue of the problem

rxTT rx — 05
(2.14) { Graaz 1O

$(0) = ¢2(0) = ¢(1) = (1) =0.
Then a straightforward computation gives that
(2.15) (n—1)*7% < p, < 7

From the minmax characterization

1 1 1
(2.16) V() = — min max Jo Vizde + N2 g ade + N [ wzdx.
En vEEn 2f01 ay2dx
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we deduce the following estimate

2 . 1\y2 2,2
_('y +F)>‘ +n?r <, <_'\/2)\2+(n—1)27r2

(2.17) o

THEOREM 2.2. — Assume that
2 2 2.2, L
(2.18) o > nPr? (v + F)'
Then A has at least 2n real eigenvalues.

Proor. — Denoting by a,f the roots of the equation

(v + - )A2 + 20\ + k*1* =0
and by ﬂki the roots of the equation
VA2 426X\ + (k — 1)*7% = 0,

then under the condition (2.18), we see that the roots af, ﬁki are negative numbers.
On the other hand, from (2.17) we deduce that

A A2 4 20\ + k2
(Pt P) ;;a + <) A< -

VN2 + 28\ + (k — 1)%72
20

This implies in particular that v4(\) admits a fixed point A\, € [, , ;| and a fixed
point )\z € [a;, ﬁ;] More specifically, we have

2 —a—/a2 —k2m2(2 + &
(219) P V2 — (k= 1) <A < \/ SR ).
272 22
590 —a+\/a2—k27r2(“/2+%) <yt ,ﬂ_‘_\/[p T 1)27242
( . ) 2ﬁ/2 — Yk 2,)/2 ?

THEOREM 2.3. — A has a real eigenvalue if and only if there exists a nontrivial
function ¢ € HZ(0,1) such that

(2.21) F(y) = (/1 m/;gdr / w2, dm/ +~22)dz > 0.
0

ProOOF. — The necessary condition follows from (2.9). For the sufficient condition
using (2.16) we have

V2N + 28\ < A— < fol 22d7 + 2) fol ayyda + N2 f01(¢2 +7%¢7)de

2.22
(222) —55— = = 2 [ ay2da
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Since the left-hand side of (2.22) go to +00 as A — —oo, then v (\) admits a fixed
point when there exists a nontrivial function 1 € H2(0,1) such that the right-hand

side of (2.22) is negative for some negative . This gives the condition (2.21). The
proof is complete.

THEOREM 2.4. — If A has a real eigenvalue, then ag = fo x)dr > 7.

ProoF. — We first recall a result of Cox and Zuazua [6].

1 1
(2.23) (/0 ayde <a0/ y2dm/ yide, Yy € H}(0,1).

Since there exists nontrivial ¢ € HZ(0, 1) satisfying (2.21), then using (2.23) we

have
Y2 dr | (W +y*2)de < ¢2dx <a Y2.dr | ida.
[ e [ (L [ vt [

This achieves the proof.

THEOREM 2.5. — Ifag <7y, then the spectrum of A is contained in the sector
(2.24) p>0, g < 0 < arcsin (%) + g

Proor. — Let A = pe® € o(A), we write § = Z + 6y with 0 < 6y < 3. From
(2.10), it follows that

(2.25) sin? 0y . fl ay?,dx
cos® 00 fo ynmcdx - fo a'ynac

Using (2.23) and (2.7), it follows that

. 1
sin? 0o a% fo y?md;z; a%

cos® O — 1- ag fo ymv 72 B L‘La ‘

(2.26)

This implies that 0 < 6y < arcsin ( o ) The proof is complete.

3. High frequencies

In this section, we will adapt the shooting method to the beam equation. To this
end, we propose an explicit approximation of the eigenfunction of the problem (2.5).

Now we give the idea of the shooting method. Instead of the boundary value
problem (2.5), we first consider the following initial value problems :

>\2y1 - 72>\2y1x_/t + Yzzzr — 2>\(ay1:r)x - 0,
(3.1)

1 (0) = ylm(o) = ylxm(o) =0, yum(O) =1.
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)‘2y2 - 72)‘2y2mm + Yizzes — 2)‘(ay2w)m = 07
(3.2)

Since the coefficients, as well as the initial data, of the equation (3.1) and (3.2)
are analytic functions of the complex variable A, then by the classical theory of
linear ordinary differential equation (e.g. Coddington-Levinson [5, p. 36 and 40],
Naimak [12, p.13-14]) we know that the equations (3.1) and (3.2) have the unique
solutions y1 and y2 which are analytic functions of the complex variable .

We next define

(33) Y(xa /\) = yl(la)‘)y2(xa)‘) 7y2(17)‘)y1(xv>‘)'

Then we have

A2Y —20N2%Y,, + YViews — 2X(aYy) =0,
(3.4)

Y(0,A) = Y, (0,A) = Y(1,\) = 0.

Obviously if Y,,(1,\,,) = 0, then ), is an eigenvalue of the operator A. Inversely we
have the following result.

THEOREM 3.1. — Let \,, be an eigenvalue of A, then X, is a zero of the function
A — Y, (1, ). Moreover the algebraic multiplicity of A, is the order of \,, as the zero
of the function A — Y (1, \).

Proor. — Let A(Yn, 2n) = Mu(Yn, 2n). Then z, = Ay, where y,, satisfies the
equation (2.5). Since yn(0) = ynx(0) = 0, there exist constants C7, Cs such that

(3.5) yn(x) = Cry1(z, An) + Cayaz(x, Ay).

Since yp (1) = yna(1) = 0, it follows that

(3.6)

{ Cry1 (1, M) + Caya (1, M) =0,
Clylm(]-a )\n) + 02y2m(17 )\n) =0.

We observe that Y (1, A,) is the determinant of the linear system (3.6). Therefore
from the classical theory of linear differential operators (see Naimark [12, p.14]),
we deduce that )\, is an eigenvalue of A if and only if )\, is a zero of the analytic
function Y (1, \). Moreover the algebraic multiplicity of A, is the order of A, as a
zero of the function Y, (1, X). The proof is complete.

We will prove later that the rank of the linear system (3.6) is of one for ||
sufficiently large. In that case the geometric multiplicity of A, is also of one, and the
associated eigenfunction is a scalar multiple of Y'(x, A, ). Therefore it is nartural to
expect that a good approximation of Y (z, A) will yield a good asymptotic expansion
of eigenvalues and eigenvectors of the problem (2.5).
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In order to the solve the initial value problems (3.1)-(3.2), we propose an explicit
approximation. For clarity, we divide the construction into several steps.

Step 1. Estimates of the solution z;. Let z; be the solution of the undamped
equation :

)\221 - 72>\221mm + Zigzzx = Oa
(3.7)

21 (O) == le(O) = lez(O) = 0, lezx(O) =1.

Then the solution z; is given explicitly by

1 1 1
(3.8) 21 == 5 <— sinh 712 — — sinh 7'21;)
Tl — ’7'2 T1 T2

where the frequencies 71 > are given by

,\/2)\2 + /74>\4 _ 4)\2
(39) 7'1,2 = 2 .

Then a straightforward computation gives

1 1 1
(3.10) T1 :’y)\—{—O(—), Ty = —+O(—>.
Al gl A2
By virtue of Theorem 2.1, we know that the spectrum o(A) is contained in the
strip —23/7% < Re)X < 0, wherein the functions sinh 7z, sinh 72z are uniformly
bounded. Therefore we find easily

C
(311) |Zl| < |le| < ‘lez‘| < Wa |Zlmw:| <C.

C C

A2 A2
Although the classical theory guarantees that z; is an analytic function of the

complex variable A, it would be useful to give the following series expansion

+oo 2n+1

(2]
(3.12) (e N) =23 CR ()72 (40— a2)"
;(%H)! ; () < )

which shows clearly that z; is an analytic function of the complex variable A in the
whole complex plan.

Step 2. Estimates of the solution y;. We will serve the estimates (3.11) to
provide similar estimates on the solution y1. This will be done by using Gronwall’s
inequality.

PROPOSITION 3.2. — Let —23/+4% < ReX < 0. Then the solution y; of the
damped initial value problem (3.1) satisfies the estimates.

C

C C
(3'13) ‘y1| < -, ‘ylm| <, |ylmm| < .
A2 A2 Al
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ProoF. — Let y; be the unique solution of the equation (3.1). Then using the
variation of constants formula, we transform the equation (3.1) into another form

(3.14) y1(x) = z1(x) — 2A /Oz z1s(x — 8)(ay1s)(s)ds.

It follows that
(3.15) Y1 (2) = 210 (2) — 2\ / oran(z — 5)(agns)(s)ds,
0

(3.16) Y1gz(T) = 21g2(x) — 2A /090 21522 (2 — 8)(ay1s)(s)ds.

Using (3.11) into (3.15) gives

| 26C
|y11‘( )| = p\|2 |)\| / |y15 ‘dS

Applying Gronwall’s inequality, we obtain that

(3.17) 1 ()] < %

Inserting (3.11) and (3.17) into (3.14) gives

318) @) = @]+ 2 [l = 9l en) 6l < 1

Similarly inserting (3.11) and (3.17) into (3.16) gives

B19)  Ippaslo)] = eraal)] + 2] [ [oremale — ol < -

The proof is thus complete.

Step 3. Approximation of the solution y;. A natural idea is to use the
”characteristic” equation involving the variable coefficient a :

N — (Y 420N+ =0.

Formlly we obtain

(3.20)

\/(72 +2a)A2 £ /(72 + 2a)2At — 4N2
T1,2 = .
’ 2

A straightforward computation gives

(3.21) =gAt o +O(|)\|) T2=%+O<#).
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Neglecting the terms of high order, we see that the approximate elementary solutions
of (3.1) should be

sinh@(x), coshf(z), sinh ?, cosh =

where we have put

1 X
(3.22) 0(z) =y o + ://0 a(s)ds.

Then indeed, taking into account the initial conditions

'Ul(O) = Vig (0) = Vigz (0) =0, vlmcx(o) =1,

we find that
(3.23) wi(z) = % { (1 (v2A+ a(0))?) (sinh 0(x) — (v*\ + a(0)) sinh %)
+~a’(0) <cosh 0(z) — cosh :/) }
where we have put
(3.24) A = 3d'(0)*(v*X + a(0))
2 (1= (A +a(0))?) (*A + a(0)) = (v*A + a(0))* — v*a"(0)).

v

Once again using the explicit expressions (3.23)-(3.24), a straightforward
computation gives the following bounds

C C C
(3.25) |'U1| < 3 |'U1m| < he |v1$$| NN
A2 A2 A

The following result justifies that vy is indeed a good approximation of y;.

PropPOSITION 3.3. — Let —23/7* < Re) < 0. Assume that a € W31(0,1).
Then the following estimates hold.

C C C
(326) |y1 - U1| S Wa ‘ylx - 'le| S W; |y1.1:z - Ulzz| S W
ProoOF. — Putting
(3.27) L= ¢ — VN bus + Guzza — 2Mady) s
Then a straightforward computation gives
1 2
(3.28) L(sinh E) = —; sinh z_2A (ﬂ sinh = + a, cosh E),
Y Y v YN Y Y
2 xT 2 rrxT
3.29 L(sinh0(z)) = {3a,7\* + ﬂ)\ + aa cosh 0(x
~3
3 4 9 2 4 "
{0+ @V (a0 + 2%))\ + % + 7; + ij }sinh6(z).
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This together with (3.24) implies :

f1

(3.30) |Lvy| <
Al

where f; € L*(0,1) depending only on a. Next writting

)\QUI - A/Q)\Z’Ulz:c + Vigger — 2)\(aulz)z - Lvl;
(3.31)

V1 (0) = ’Ulm(O) = ’Ulmm(O) = 07 ’Ulzlw(O) =1.
from the variation of constants formula, it follows that

(3.32) vi(x) =y (x) + /090 y1(x — s)Lvy(s)ds.

Then indeed using the estimates (3.13) and (3.30), we get

(3.33) lvi(2) — g1 (2)] < /Om lys(z — 5)||Lvs(s)|ds < |§[3,
(3.34) lv1s(2) — y1o(z |</ [y1a(z — 5)||Lvi(s)|ds < 537
(3.35) 0100 (%) — Y100 (z \</ Y120 (z — s)|[Lvi(s)|ds < |§|;

Step 4. Approximation of the solution y-. Following the same idea, we
construct the approximate solution vy of the damped initial value problem (3.2) as
follows

4 xr
(3.36)  wa(z) = % {30,'(0)(7% + a(0)) (sinh 0(z) — (72X + a(0)) sinh ;)

+ % ((’Yz)\ + a(0)) — (¥2X + a(0))® — ’ya"(O)) (cosh@ — cosh %) }

Then a straightforward computation gives

(337) "UZ‘ S TN 1o |U2w| S |v2m.7:| S C

<
Al

PROPOSITION 3.4. — Let —23/v% < Re) < 0. Assume that a € W31(0,1).
Then the following estimates hold.

Q | ) | < — c
|>\‘27 Y2xx — V2za |>\|

C
(3.38) ly2 — v2| < e’ Y2z — V22| <
Proor.  First using (3.24), (3.28), (3.29) and (3.36), we find easily

(3.39) |Lvz| < fo
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where fo € L'(0,1) depending only on a. Writting
{ )\2U2 - ’\/2)\ V2zz + V2gzzae — 2)\(au2$)z = Lv2;

'UZ(O) = 'U2x(0) = U2mcx(0) =0, 'Umc(o) =1,
from the variation of constants formula, it follows that

(3.40) va(x) = ya(x) + / y1(z — s)Lva(s)ds.
0
From (3.13) and (3.39), it follows that
C
BAY o) = 1n(o) < [ e = o) Lun(o)lds <
C

(342) |v2m( ) y2m | </ |y11 T — 8)||L02( )|d8 < |/\|2,

C
(343) |'U2m:r( ) y2zz | </ |y1mm HL’UQ( )|d$ < — ‘)\|

In particular, combining (3.37) and (3.38) we obtain the following bounds on ys.

C C
A2 A
The proof is complete.

Step 5. Approximation of the function Y (z, ). Now we are able to give the
approximation of the function Y (z, \).

THEOREM 3.5. — Let —2(3/7% < ReA < 0. Assume that a € W>1(0,1). Then
the following estimates hold.

1

(3.45) Yo(z, \) — Sm};;,) sinh 9(95,)\)‘ < %,
. a1

(3.46) Yoo(z, A) — Slﬁf;; cosh 6(z, A)‘ DB

ProoF. — We first define the natural approximation of Y'(z, \) by putting
(3.47) V(z,\) = v1(1, Nva(x, A) — v (1, N)vy (2, N).

Then using the estimates (3.13), (3.25), (3.26), (3.37), (3.38) and (3.44), a
straightforward computation shows

(3'48) |Yx(xv )‘) - Vx (LL', A)‘

< |y1(17)‘)|‘y2m(x7)‘)_v2z(x: )‘)| + |y1(1a )‘) - Ul(la )‘)Hy%c(xa >‘)|
C

Hy2 (1, M|y1z (2, A)—viz (2, )| + |y2(1, A) — v2 (1, N[y (2, V)| < s

(3.49) Yow (2, ) = Vi (2, V)]
< Ny (1 M)l [y2za (2, A)=v2za (2, A)| 4 [y2(1, A) — 02 (1, M) |y2az (2, M)

< 9

Fly2 (L )[Y122 (2, A) —v1e (2, A)] + 2 (1, A) — 02 (L M[y10a2 (2, A)| < o
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On the other hand, from the explicit expressions (3.23), (3.24), (3.36) and (3.47)
we find easily

_ sinhy Tt 1
(3.50) Val, ) = =gy sinh () + O(W),
inh~~—! 1

Then indeed inserting (3.50)-(3.51) into (3.48)-(3.49) gives the estimates (3.45)-
(3.46). The proof is thus complete.

Now for any integer n > 0, we define the following sets
(3.52) Oy = {-28/v < ReyA < 0,—n7m < Imy\ < nr}.
(3.53) Gup={-28/y<ReyA <0, =£(n—-1/2)7 <Imyl<=x(n+1/2)r},
(3.54) Tip = {|yA +aFinn| < Cy*/nsinhy '}

where we have put
1
(3.55) a1 / o) dz.
0

ProprosSITION 3.6. — There exists an integer N such that for any n > N the
following estimate holds

Cv?

. inh(y\ 4+ a _
(3.56) [sinh(A +)| > et

Ae oly, UdG4,.

ProoF. — First let A = u + iv € 0G4, then we have
|sinh(yA 4 @)|? = sin?(yv) + sinh?(yu + a).
If u =0 or yu = —283/~, then we have
|sinh(yA + a)| > |sinhal.

If yv = (n £+ 1/2)m, then
|sinh(yA + a)| > 1.

Setting © = min{1,sinha}, then we obtain
|sinh(yA + a)| > u, VA € 0G4y,.
But [yA| > (n — 1/2)7 for A € 9G4, then we obtain (3.56) provided that

cy3
—— + 5.
pm sinh 7y 2
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Now let A € OT',,. Writting

cy3
_17

—, 0€]0,2
nsinhy € [0,2n],

YA+ @ = tinm + ppe, p, =

we deduce that

\}

2C~*
| sinh(y\ + a)| = \/sinhQ(pn cos #) + sin’(p,, sin §) > —fn = Wz’fl
Since |[yA| > nm — a — 3C/sinhy ™!, then we obtain (3.56) provided that

2(asinhy 1 +~20)

n > I

msinhy~

Finally we complete the proof by choosing

3 1 2(asinhy~! +~3C
(3.57) N = max (7'70_4__7 (asin 0l ‘_l‘ Y ))
pmsinhy=1 2 msinh~~1

THEOREM 3.7. — Leta € W1(0,1). Then A has one simple eigenvalue in each
neighborhood Iy, forn > N, and a finite number of eigenvalues in Cn. This exhauts
the spectrum of A.

ProoF. — From Proposition 2.1, we know that the spectrum o(A) is contained
in the strip —2(3/7% < ReX < 0. Let n > N, then using (3.45) and (3.56) we have

_,sinh( 7)\ +a)

‘ _ysinh(yA + a)
R |)\|4

(3.58) Y.(1,\) — sinh~y 2N

< ‘Sl h~
for any A € 9T'4,, U JG4,,. Via Rouché’s theorem we know that Y, (1, \) possesses
one simple zero A, in each neighborhood I' 1,,, and this exhauts the zeros of Y, (1, \)

in the region G,,. In particular, we have
. Cy*

Since the spectrum o(A) is discrete and C'y is compact, then there exists a finite
number of eigenvalues in C. The proof is complete.

THEOREM 3.8. — Let a € W31(0,1). Putting

(3.60) Yn(@) = Sljhf/ Y(z,M\), |In|>N,
1 [ x !

(3.61) &(x) = ;/0 a(s)ds — ://(J a(s)ds,

then we have

(3.62) [V Anyna(z) — sinh(¢(z) + inmz)| = O(%),

(3.63) |Ynaa(x) — cosh(&(z) + inmz)| = O(%)
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ProoF. — From (3.22) and (3.59), we obtain
1 (" z [ , 1
(3.64) O(z,\y) == [ a(s)ds—= [ a(s)dsz +inmz + O(=).
7 Jo 7 Jo n
Inserting (3.64) into (3.45)-(3.46) gives (3.62)-(3.63). The proof is complete.

4. System of root vectors

Let A, be an eigenvalue of A. Then from Theorem 3.7 we know that the algebraic
multiplicity m,, = 1 for |n| > N. We will numerote the eigenvalues A, of high
frequencies (|n| > N) following the asymptotic form (3.59). For clarity, we denote
by e the eigenvalues of low frequencies (0 < k < K) with algebraic multiplicity
my, > 1. Then we can write the spectrum of A into the following form :

(4.1) o(A) = (M. Il >NYU{A 0<k<K}.

Correspondingly, we denote by ¢, = (yn, A\nyn) the eigenvector associated to the

eigenvaue \,, of high frequency, and by {¢ ;}i"* the Jordan chain of root vectors
associated to the eigenvalue Ay of low frequency. Thus we obtain a system of root
vectors of A :

(4.2) {¢n: |n|>N}U{or;, 0<j<mp O0<k<K}.
Denoting by £ the subspace

(4.3) (f.9) € L*(0,1) x L2(0,1) )

) <f§ fada = [} af (o) = [} glo)d = 0

we define the linear bonuded operator T' by setting
(4.4) T(y,2) = Yaus 22),  Y(y,2) € H3(0,1) x H;(0,1).

ProOPOSITION 4.1. — The operator T definerd in (4.3)-(4.4) is an isomorphism
from HZ(0,1) x H}(0,1) onto L.

PROOF. — It’s easy to verify that T is bounded from HZ(0,1) x H}(0,1) into L.
On the other hand, for any (f, g) € £ there exist a unique pair (y, z) given by

y:/ox(:v—s)f(s)dseHg(O,l), z:/oxg(s)dseHé(O,l)

such that T'(y,z) = (f,g). Therefore by Banach’s well-known theorem, we deduce
that 7" is an isomorphism from HZ(0,1) x H}(0,1) onto £. The proof is complete.

Now for any & € L°°(0, 1), we define the system

(4.5) ®,, = (cosh(¢(x) + inm), v~ ' sinh(é(z) + inm)), neZz.
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We will prove later that the system (4.5) is a Riesz basis in L?(0,1) x L*(0,1). Then
we see that the estimates (3.62)-(3.63) mean exactly that the system {T'¢p} 5> is
quadratically close to the sub-system {‘I)n}\n\>N in the space L?(0, 1) x L?(0,1). On
the other hand, the number of eigenvalues )\k of low frequencies : Z k—o Mk, including
algebraic multiplicities is a prior: less than 2N + 1. This means that there is no one
to one mapping between the complementaries {T%,w-, 0<j<mg, 0<Ek<K}
and {®,},,<n. Therefore Bari’s classical theorem can’t be applied directly to the
system of root vectors (4.2). Hence we need to establish the following result.

THEOREM 4.2. — Let {¢,}5° be a Riesz basis in the Hilbert space X, and let
{gn}:S be a w-linearly independent system. Assume that

(46) S b~ gullk < +oc.

n=no

Then {gn}ne is a Riesz basis in the subspace Xo spanned by itself in X.

Proor. — We will adopte the same method as that one used in Gohberg-Krein
[9, Thm. VI.2.3].

Since {1, }§° is a Riesz basis in the Hilbert space X, then there exist a linear

bounded invertible operator S, and an orthonormal basis {¥,}3° in the space X
such that (Gohberg-Krein [9, Thm. VI.2.1])

(4.7) SU, =, n=012--

Defining the operator T by setting

%) no—1 [e%)
(4.8) T(chllfn) = Z Cnp + Z en(¥n — gn) for 2 < 400,
n=0 n=0 n=ng n=0

then from (4.6) comes

’nol

o
DoIT,* = Z lvonl® + Z [t = gnll* < +oc.
n=0

n=ngqo

This proves that T is an Hilbert-Schmidt operator X.
On the other hand, from (4.7)-(4.8) we have

(4.9) (S — T)(i cn\I/n) = i cngn for i len]? < +oo.
n=0 n=0

n=ngo

Then it follows that
(4.10) R(S-T) C Xo.

But R(S — T) is closed and contains all the finite linear combinations of the system
{gn}ne, this gives that

(4.11) Xo CR(S-T)
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which together with (4.10) imply that R(S — T') = X,. Hence we have proved that
S — T is a linear bounded operator from the subspace E spanned by the subsystem
{¥n}5e onto the subspace Xg spanned by the subsystem {g,,}5°

Now let

U= Z oV, € E suchthat (S —T)¥ = 0.

n=—nqo

Then from (4.9) it follows that

o0 o0
(4.12) Z Cngn =0 for Z len]? < +oo.

n=ng n=ngqo

Since the system {gn};c is w-linearly independent, it follows that ¢, = 0 for all
n > ng. From Banach’s well-known theorem, we deduce that S—T is an isomorphism
from E onto Xj. Bearing in mind the following obvious equalities

(S—T)¥), = gn. Vn > ng,

we conclude that the system {g,};° is a Riesz basis in the subspace Xg. This
achieves the proof.

Now given any (f,g) € HZ(0,1) x H}(0, 1), we solve the equation A(y, z) = (f, g)-
Then a direct computation gives that

(4.13) y=G4Df — G4(I - 7289090)9’ z=f

where D = 29, (ad,) is a linear bounded operator from H}(0, 1) into H1(0,1), and
Gy = (8mm)71 is an isomorphism from H~2(0,1) onto HZ(0, 1) such that

1

(414) / (G4y)xw¢mcdz = <y7 ¢>H—2(0,1)><H§(0,1)a Vo € Hg(ov 1)
0

Then from (4.13) comes the following expression

0 *G4(I — 728m) G4D 0
(4.15) AT =i +i
I 0 0 0

We next define the linear bounded operators

0, —Ga(I —7Iss) 0, 0
(4.16) L=i ,  S=
I, 0 —GyD, 0

where Gy = (I — 728m)71 is an isomorphism from H!(0,1) onto Hg(0,1) such
that

1
(4.17) / (G2y¢ + 72(G2y)$¢x)dz =(y, ¢>H*1(0,1)><Hé(0,1)7 Vo € H&(Ov 1).
0
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Then we can write (4.15) into the following form

(4.18) iAT = L(I +8).

ProposITION 4.3. — The system (4.2) of root vectors of A is complete in the
energy space H = H3(0,1) x H(0,1).

Proor. — Since GyD is continuous in H{(0,1), then from the compact
embedding HZ(0,1) — H}(0,1) we observe that S is compact in the energy space
HZ(0,1) x H3(0,1). Similarly from the compact embedding H~'(0,1) < H~2(0, 1),
we deduce that G4(I — v20,,) is compact from HE(0,1) into H2(0,1). This implies
that L is also compact in the energy space HZ(0,1) x HE(0,1). Moreover using
(4.17), an elementary computation gives that

(4.19)  (L(y,2), (f.9))m = / (2(F) + 72 F)e — 9(79) — +*ya(9)s) da

for all (y,2),(f,g) € HZ(0,1) x HJ(0,1). This implies that L is selfadjoint in the
energy space H = H2(0,1) x H}(0,1).

On the other hand, in the case a = 0 we have L = iA~!. Then using (3.59) we
obtain the following asypmtotic expansion of the eigenvalues of L

i ol g !
(4.20) An(L) = A (A) = inm + O(1/n) B +O(ﬁ)'

Since L is compact and selfadjoint, then its s-numbers are given by (Gohberg-
Krein [9, p. 27]).

(4.21) sn(L) = [An (L) Vn > 0.

Therefore L is of finite order : p(L) = 1 (Gohberg-Krein [9, p. 256]). Then we
conclude that the system of root vectors of iA~1 is complete (Gohberg-Krein [9,
Thm. VI. 8.1). This achieves the proof.

ProprosITION 4.4. — The system (4.2) of root vectors of A is w-linearly
independent in the energy space H3(0,1) x Ha(0,1).

Proor. — Since L is selfadjoint, from (4.16) we obtain the imaginary component
of iA™!

G4D 0
(4.22) Im (iA™Y) =Imi
0 0

Since G4D is compact in HZ(0,1), so is Im (iA™!) in the energy space
HZ(0,1) x H}(0,1).
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Now let A\, be an eigenvalue of A. Since A has no pur imaginary eigenvalue,
then iA~! has non real eigenvalue. Therefore i/, is a normal eigenvalue of iA~!
(Gohberg-Krein [9, Thm. 1.5.2]). Hence for sufficiently small r,, > 0, the operator

1
(4.23) Py=—— (A = XI)"tdA
2700 Jix—i/Anl=rn
projects HZ(0,1) x H}(0,1) onto the root subspace Ker(A — A\, I)™.
Now assume that

K mp—1
(4.24) SO ritki+ Y catn =0.
k=1 j=0 |n|>N

Applying the projector P, to (4.24) gives that
ck;j =0, 0<j<mp—1 1<k<K; cn =0, |n|> N.

The proof is complete.

From Proposition 4.1, we know that the operator T' defined in (4.3)-(4.4) is an
isomorphism from HZ(0,1) x H}(0,1) onto the subspace £, then the following result
is an immediate consequence of Propositions 4.3 and 4.4.

COROLLARY 4.5. — The following system :
(4.25) {(Top;: 0<j<mp—1, 0<k<K}U{T¢n: |n|>N}
is complete and w-linearly independent in the subspace L.

PROPOSITION 4.6. — For any £ € L*(0,1), the system (4.5) is a Riesz basis in
L2(0,1) x L?(0,1).

Proor. — A straightforward computation gives that

cosh{(x), % sinh &(x) )

(4.26) ®,,(z) = (cos(nmz),sin(nrz)) < o
isinh§(z), I cosh¢(z)

Since the transformation matrix has a bounded inverse in L2(0,1) x L?(0,1),
and since the system (cos(nmz),sin(nmz)) is equivalent to an orthonormal
basis in L?(0,1) x L2(0,1), it follows that the system (4.5) is a Riesz basis in
L?(0,1) x L?(0,1). The proof is complete.

THEOREM 4.7. — Assume that a € W31(0,1). Then the system of root vectors
(4.2) is a Riesz basis in HZ(0,1) x H}(0,1).

Proor.  Since the operator T' defined in (4.3)-(4.4) is an isomorphism from
HZ(0,1) x HE(0,1) onto £ (Proposition 4.1), then it is sufficient to prove that the
system (4.25) is a Riesz basis in the space L.
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But from the estimates (3.62)-(3.63), it follows that

(4.27) Z ITdn = ®nllZ2(0,1)% £2(0,1) < 00

In|>N

On the other hand, we know that the system (4.25) is w-linearly independent
(Corollary 4.5) and the system (4.5) is Riesz basis in L?(0, 1) x L?(0, 1) (Proposition
4.6), then applying Theorem 4.2 we conclude that the system (4.25) is a Riesz basis
in the subspace spanned by itself in £, therefore in the whole space L, since it is
complete in £ (Corollary 4.5). This achieves the proof.

THEOREM 4.8. — Assume that a € W31(0,1). Then we have
(4.28) w(a) = p(a).

The proof is analogous to that one in Cox-Zuazua [6] and Morgul et al [11],
therefore we omit it here.
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