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On Magid’s Approach to the Inverse Problem in
Differential Galois Theory

J. Kovacic* C. Mitschi’ M.F. Singer?
March 25, 1996

The aim of this note is to expand on a footnote contained in our paper [4]. This footnote
alluded to a counterexample (due to Kovacic) to the following Theorem (Theorem 7.13 of

[3]):

Let Dq,...,D, be a C-basis of Lie(G) and let f1,...,f, € F = C(x) be
linearly independent over C. With Dp = % let D=Dpr®1+> f; ® D; be the
corresponding derivation of F[GF]. Let P be a maximal D—stable ideal of F|Gp|
and let E be the fraction field of F|Gr|/P. Then E D F is a Picard-Vessiot
extension with G(E/F) < G, where codimg(G(E/F) < 1.

In particular, if G has no algebraic subgroups of codimension 1, then G(E/F) =
G and F(Gp) D F is a Picard-Vessiot extension with G(F(Gr)/F) =G.

This statement is incorrect as the following examples show [2]. Note that Theorem 7.3

of [3] is incorrect as well since the ideals presented in these examples have height larger than
1.

Example 1: Let G be C x C, under addition. If we wish, we may consider G to be a
subgroup of GL(3) by:

1
(a,b) — | O
0

S =

b
0
1
The ring of regular functions on G is C[G] = C[X,Y] where X and Y are the coordinate

functions: X(a,b) = a and Y (a,b) = b. It is nothing more than the ring of polynomials in
the indeterminates X and Y. The Lie algebra of right-invariant derivations (over C') has
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basis and the usual partial derivatives with respect to the variables.

BX BY ’

Define f; =1 and f; = 2x. These are in F' and are linearly independent over C' . Let D be
a derivation on F|Gr| = F ®c C|[G] defined as follows:

d 0 0
D—d—®1+1®8—X—l—2I®a—Y

Consider the ideal I = (z®1-1® X,2°® 1 —1®Y) of F[G]. Then

DEel-10X)=191-181=0

and
Dr*®1-1QY)=2r®1-22®1=0

Thus I is a D-differential ideal of F'|G]. Note that if we identify F'[G] with F[X, Y] then
I=(X—2zY—2?%.

Now consider the substitution homomorphism 7 : X +— z,Y +— 2° over F. In other
words, 7 : F[G] = F ® C[G] — F is given by Y (k; ® h;) — > (k;hi(x,2?)). One can show
that this is a D to d/dz differential homomorphism whose kernel is I. Since the image of
7 is a field (i.e., '), I is a maximal ideal, and therefore a maximal differential ideal. But
E = F[G]/I is isomorphic to F. The Galois group G(E/F) is the identity, which is of
codimension 2 in G. We note that arbitrary codimension can be achieved by using G = C"
and elements f; =izt i=1,....,n. 1

2

Analyzing this example further shows where the argument in the proof of Theorem 7.3 is
not valid. With notations as before, let V = Spec C[x] = A} as in the proof of Theorem 7.3
in [3] (the f; here have no denominators). Then V x G = Spec C|z, X, Y] and the irreducible
variety defined by the ideal I is the rational curve W = Spec Clz, X,Y]/(X — 2,V — 2?).
The generic point Spec F' of V' (as before, I’ = C'(z)) becomes an F-point of V' x G via the
natural homomorphism C[z, X, Y] — Clz, X,Y]/(X,Y)] — F. It extends to an F-point of
V x G which is not an F-point of W, since the ideal I is not contained in the kernel (X,Y") of
Clz,X,Y] — F. On line 24 of [3], an implicit assumption is made that (using the notation
of [3]) (7, ) is a point of Wi, that is, (¢,€) is a point of W (F') for all t € F. In the above
example (¢,e) = (¢,0,0) and W(F) = {(¢,t,t*),t € F} and so we see that this is not the
case.

One can also construct a counterexample for a reductive group.

Example 2: Let G = GL(n). Let &; be the coordinate functions on G. Thus &;;(g) = gi;
whenever g € GL(n). The ring of regular functions C[G] is C[¢;, Fltg} The derivations

D;j =3 gjkag% form a basis of Lie(G) (cf. [1], p. 329). As before, let F' = C(x).

One wishes to find fi1,..., fon € F and p11,...,ppn € F such that:
1) the f;; are linearly independent over C,
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2) the ideal P generated by p;; ® 1 — 1 ® &;; is a maximal ideal of F[GFp],
3)if D = % ® 1+ 3 fij @ Di; then P is a D-stable ideal.
We will then have a counterexample to the theorem.

Leave condition 1 aside for the moment. Condition 2 is satisfied so long as det(p) is not
0. This is equivalent to saying that p € Gg. Condition 3 is more interesting.

D(puu®1_1®€uu)

p;w®1—2fij ® &k

J

Pl @ L= fi; ® Dy
i

0w
3"

ijk

p:Lu@l_quj@gjv
J

(modP).

So it suffices to find a matrix p = (p,,) such that p/,, = > fu;pj,, or, in matrix form,

f=pp"

In order that all the conditions be satisfied (including condition 1), we need to find
examples of p € G such that the coordinates of its logarithmic derivative are linearly
independent over C'. We now do this for GL(2). Let

_U o o L

o
o
o
o

where the u,v,w,x are positive integers chosen so that with u < v < w < z (in fact
a=2,b=2%c=2%d=2"will work). Let p = (p) =

1
a
4

We then have that p/p—!

(

(

xd

1
za
1

zc

1

)

1
b
1
2d

1
b
4

zd

)

1
b
1

wa

ma+b+c+d

)

l.b+c _ $a+d

To show that the entries of this matrix are linearly independent over the constants, it is
enough to show that the entries of the follwoing matrix are linearly independent

1
b

1
gy

( )

(

3

—a b 1 1
ratl ob+1 rd b
—c_=d_ _1 1
petl pd+1 xc ra
—a__ | b a o b
$a+d+1 Ic+b+1 wa+b+1 wa+b+l
—c__ 4 c o d
mc+d+1 mc+d+1 mb+c+1 ma+d+l




Assume we have a relation 0 =

—a b a b —c d c d
(xa-i—d-i-l + xc+b+1) + B(xa—f—b-i—l o wa+b+1) + C(xc-i—d-i—l + xc—i—d—i—l) + D(xb—i-c—i—l o xa+d+1)

for some constants A, B,C, D. Sinced+c+1>d+a+1>c+b+1>a+b+1 (these are
2-adic expansions) we must have that

o O o O

Since d > ¢ and b > a, we have that C' = B = (. Since ac > bd we have that —ac+ bd # 0 so
A = D = 0. Therefore the entries of p'p~! are linearly independent. A similar idea should
work for GL(n),n > 2 as well.
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