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DISTRIBUTION OF THE COMPONENTS
OF A REAL ENRIQUES SURFACE

ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV

INTRODUCTION

A real Enriques surface is a complex Enriques surface equipped with an
anti-holomorphic involution (called complez conjugation). With the only pos-
sible exception when the fixed point set of this involution, the real part of
the surface, is empty, the involution can be lifted to the covering K 3-surface.
Thus the study of real Enriques surfaces with non-empty real part is equiva-
lent to the study of real K 3-surfaces equipped with a holomorphic fixed point
free involution which commutes with the real structure.

A systematic study of the topological properties of real Enriques surfaces
was started by V. Nikulin. It is his preprint [N2] that stimulated our investi-
gation. In our preceding paper [KhD] we have completed the classification of
real Enriques surfaces by the topological types of their real part.

This classification has a natural refinement (also first studied by V. Niku-
lin): the real part By of a real Enriques surface admits a natural decomposi-
tion in two halves Ey = Eﬁél) U Eﬁf), each half being a union of components
of Ex. This splitting is due to the fact that the real structure lifts to the
covering K3 surface in two different ways: each half is covered by the fixed
point set of one of the two liftings (see 1.3). This gives rise to the following
problem: to classify the triads (Fg; Eﬁil), Eﬁf)) up to homeomorphism.

For a large number of topological types an arbitrary splitting is realizable.
For some other types the splittings are determined by the only restriction:
the orientation double covering of a half must either consist of two topologi-
cal tori or have at most one nonspherical component. The surfaces constructed
in [KhD] show the existence of such splittings in many cases. On the other
hand, as it was discovered by Nikulin, there are topological types whose dis-
tributions must satisfy to certain restrictions.

It is the distribution of the components between the two halves that is the
principal subject of the present paper. Our results and the methods which we
use are different from those by V. Nikulin: using a more topological approach
we obtain some prohibitions which apply as well to other classes of surfaces
with non simply connected complexification. More precisely, in this paper we
treat what we call generalized Enriques surfaces: quotients of a nonsingular
compact complex surface X with H1(X;Z/2) = 0 and wz(X)=0 by a fixed
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point free holomorphic involution (see 1.2 and Appendix D). The prohibitions
obtained (see 2.1, 2.2, and Appendix D) are a combination of the inequality-
type and congruence-type prohibitions. To an extent they may be regarded as
some kind of refinement of the Smith-Thom inequality and extension of the
Arnold-Rokhlin congruences. (It is worth mentioning that the prohibitions
obtained for the generalized Enriques surfaces are an example, probably the
first one, which shows that the topology of surfaces with non simply connected
complexification contains some elements which have no precise analogues in
the simply connected case.)

We apply these results to the classical Enriques surfaces and complete the
classification of the distributions of their components (see 2.3.2).

Another by-product is some prohibitions on the topology of a generalized
Enriques surface, see 2.1, which contain some results on the classical case
(see [KhD, 3.7-3.10]) as a direct consequence, and provide them with a new
proof.

Note that there are ‘quite classical’ examples of generalized Enriques sur-
faces: in Horikawa’s construction (see Section 8.1) bi-degree (4,4) can be re-
placed with (4k, 4k), k € Z 4. Thus, our results also provide some prohibitions
on the topology of symmetric real curves on quadrics.

The key role in our present study is played by so called Kalinin’s spectral
sequence and Viro homomorphisms, used in combination with more tradi-
tional tools of topology of real algebraic varieties. The spectral sequence in
question is derived from the Borel-Serre spectral sequence: it is some sort
of its stabilization with only one grading. It converges to the homology of
the fixed point set, and the corresponding filtration and identification with
the limit term are given by the Viro homomorphisms, which have an explicit
geometrical definition (see Section 5 for the details).

The paper consists of eight sections and four appendices. In Section 1 we
introduce the main objects, such as a generalized K 3-surface (which, from our
point of view, is just a Spin-surface X with H1(X;7/2) = 0) and a generalized
Enriques surface, give some definitions and fix the principal notation. In Sec-
tion 2 we formulate the main results and apply them to the classical Enriques
surfaces. In Section 3 we expose some auxiliary results on the arithmetic of
involutions. Section 4 is devoted to the study of the basic topological prop-
erties of generalized Enriques surfaces. In Section 5 we introduce Kalinin’s
spectral sequences and Viro homomorphisms and examine their general prop-
erties which we need in subsequent proofs; these results are then applied to
generalized Enriques surfaces in Section 6. Finally, in Section 7 we prove the
main results announced in Section 2, and in Section 8 we construct some sur-
faces to extend the list of distributions found in [KhD] and thus complete the
classification for the case of classical Enriques surfaces.

In Appendices A—C we discuss some properties of Kalinin’s spectral se-
quence, which complete and develop the content of Section 5. Certainly, these
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properties must be well known to the specialists on transformation groups,
but we could not find them in the literature.

Appendix A is intended for those who prefer the Smith exact sequence:
we show how Kalinin’s spectral sequence and Viro homomorphisms can be
extracted from the Smith sequence. In Appendix B we study the multiplica-
tive structure of Kalinin’s spectral sequence and, in the case of an involution
on a closed manifold, give a formula relating the intersection pairings on the
manifold and on the fixed point set. In Appendix C we study the relation
between the Steenrod squares acting in Kalinin’s spectral sequence and those
acting in the cohomology of the fixed point set.

In Appendix D we introduce Spin generalized Enriques surfaces and extend
to them the main results of Section 2.

Acknowledgements. We would like to thank the Maz-Planck-Institut fir
Mathematik and Universitd di Trento, where the final parts of the paper were
completed. Our special gratitude is to internet: without this great innova-
tion the paper would probably never appear.

1. PRELIMINARY DEFINITIONS AND NOTATION

1.1. Notation. We agree that, unless specified explicitly, the coefficients of
all the homology and cohomology groups are Z/2. When this does not lead
to a confusion, both the cohomology characteristic classes of a closed smooth
manifold and their dual homology classes are denoted by w;. Throughout the
paper we use the following notation:

o b, and 3, stand for the Betti numbers with the integral and Z/2-co-
efficients respectively: b,(-) =tk H,(-;Z) and B,(-) = dim H,(-);

B is the total Betti number: £,(-) = 27'20137'( -);

x(X) is the Euler characteristic of a topological space X;

o(M) is the signature of an orientable manifold M;

Torsy G is the 2-primary component of an abelian group G.

O O O O

1.2. Generalized Enriques surfaces. A nonsingular compact complex
surface X will be called a generalized K3-surface if H1(X;Z/2) = 0 and
wy(X) = 0. A generalized Enriques surface is a complex surface E which
(1) has wa(E) # 0, and (2) can be obtained as the orbit space X/7 of a gen-
eralized K 3-surface by a fixed point free holomorphic involution 7: X — X
the latter is called the Enriques involution.

As it follows, for example, from the Ghysin exact sequence, H1(F;7Z/2) =
7./2 (cf. 4.2.1). Thus, X is the only double covering space of E, and 7 is its
deck translation. Hence, they can both be uniquely recovered from F.

Remark. Orbit spaces of generalized K 3-surfaces with wz(E) = 0 are consid-
ered in Appendix D.
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1.3. Decomposition of the real part. As usually, by a real structure on a
nonsingular complex surface we mean an anti-holomorphic involution. When
not empty, the fixed point set of such an involution is a real 2-manifold.

Let E be a generalized Enriques surface, and let conj: E — FE be the real
structure on F. Denote by Ep the real part, Fy = Fix conj.

1.3.1. Lemma. If Ey # @, then there are two and only two liftings t(1),(2):
X — X of conj to X. Both the liftings are involutions. They are anti-
holomorphic, commute with each other, and their composition is T.

Both the real parts Xﬁf) = Fixt9), i = 1,2, and their images Eﬁﬂl), Eﬁf)
in E are disjoint, and Eﬁél) U Eﬁ{") = Ejy.

The proof is obvious as soon as the points of X are represented by homotopy
classes of paths in F starting at a point of Ey: two such classes define the
same point in X if and only if they differ by a loop homologous to zero in
H.(E;7Z/2). O

Due to the above lemma, Fpy canonically splits into two disjoint parts,
which we will refer to as the halves of E. Note that both Eﬁﬁl) and Eﬁ{")
consist of whole components of Ey, and that Xﬁ&l) and Xﬁf) are unramified
double coverings of Eﬁﬁl) and Eﬁf) respectively. In most cases these coverings
are determined by Fp intrinsically:

1.3.2. Lemma. Xy is orientable. The restriction of the projection X — E
to the real parts Xy = Xﬁﬂl) U X]g") — F7y is the orientation double covering
unless o(X) = 0 (mod 32), one of the halves is empty, and the nonempty half
1s orientable.

Proof. The orientability of Xy is well known (see [E], [S], or [K]). For the
rest, one can repeat, almost literally, the proof of Theorem A.2 from [KhD].
The assumption o(X) = 16 (mod 32) in [KhD] is used to prove the following
two assertions: E is not a Spin-manifold, and if one of the halves (say, Xﬁﬂz))
is empty, then the quotient X/t(z) is not a Spin-manifold either. The first
assertion is a part of our definition of generalized Enriques surfaces now. As
to the second one, we have to replace it by the following: if Eg") = &, then
T either preserves or reverses the canonical orientation of all the components
of Xy simultaneously. For proof just note that the Spin-structure on X defines
a canonical pair of opposite orientations on X, and it is this structure that
is preserved by Spin-diffeomorphisms of X. [

Since F is a compact surface, each component C of Fy is a closed manifold.
By the first part of 1.3.2, C' may be of one of the following three types:

S, — a trivially covered orientable surface of genus g > 0;

V, - a nonorientable surface of genus g > 0, V, = #,Rp?, covered by an
orientable component Sy C Xg;

T, - a nontrivially covered orientable surface of genus g > 0.
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When denoting the topological types we use any of S = Sy = Vy for the 2-
sphere S2?. To describe the decomposition of Ey into the two halves, we write

Ey = {half E{(N} U {half E{*)}.

Remark. The empty set has nothing to be distributed, and in what follows
we never consider the case Fyg = O.

Remark. According to Lemma 1.3.2, the type T, is a very special one: Ep
may have a component of type T, only if 5(X) = 0 (mod 32) (or, equivalently,
o(E) =0 (mod 16)), and in this case one of the halves of EFy must be empty
and the other one must be orientable. In particular, this type never occurs in
the case of the classical Enriques surfaces.

Remark. Lemma 1.3.2 gives rise to the following problem: Let X be a closed
complex surface with H1(X) = 0 and wy(X) = 0, and let 7 and conj be
two commuting fixed point free involutions on X, holomorphic and anti-
holomorphic respectively. If X/7 is not Spin, can X/ conj be Spin?

1.4. Types of the real part. Let ¥ be a nonsingular compact complex
surface with a real structure. Then, since Y5 is a closed (real 2-dimensional)
manifold, it has a well defined Z/2-homology fundamental class [Yy]. We say
that Y is of type Iaps if Y is homologous to zero in H2(Y) and of type Ire
if Yy is homologous to wy(Y ). The surface is said to be of type I if it is of
type Iaps or Ipe; otherwise it is said to be of type II.

In the case of a generalized Enriques surface E and its double covering X
the notion of type obviously extends to the halves Eﬁf) and Xﬁf). For the
covering and its halves the types I ps and I. coincide.

1.5. (M — d)-surfaces. According to the Smith-Thom inequality, for any
complex surface ¥ with a real structure one has £, (Yn) < 6«(Y), and the
difference B,(Y) — B« (Yn) is even. By definition, Y is called an (M — d)-
surface if the above difference is 2d.

2. MAIN RESULTS

From now on we fix a generalized real Enriques surface E with Ey # @
and follow the notation introduced in Section 1: conj: E — E is the real
structure on E, X is the double covering of £ with the Enriques involution
7: X — X, and (1), ¢(2) are the two real structures on X determined by conj
(see Lemma 1.3.1).

2.1. Prohibitions on the topological type.

2.1.1. Theorem. Suppose that Xﬁ&l) is of type 1 and both the halves are
nonempty. Then

(1) Ex has no nonorientable components of odd genus (i.e., Vagy1);
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(2) at most one of the two halves E’ﬁﬂl), Eﬁf) may have a nonorientable
component.

2.1.2. Theorem. Suppose that Ey is orientable. Then E is an (M — d)-
surface with d > 2, and

(1) ifd =2, then x(En) = o(E) (mod 16) and Ey is of type I;

(2) if d =3, then x(En) = o(E) + 2 (mod 16);

(3) ifd =4 and x(Er) = o(E) + 8 (mod 16), then Ex is of type 1.
If, in addition, all the components of Ew are spheres, then d > 3.

Remark. The last assertion of Theorem 2.1.2 follows, in fact, from Comessatti-
Severi inequality: x(Er) < hY(E) (see [Co]). If E is a generalized Enriques
surface and Ey = kS, this inequality transforms into d > 3+h%°(E). Thus, an
(M — d)-surface with only spherical components and d < 2 cannot exist, and
an (M — 3)-surface with only spherical components may exist only if Hy(E;Z)
is a hyperbolic lattice. Note that this is the case for classical Enriques surfaces.

2.2. Prohibitions on the distribution of components.

2.2.1. Theorem. Suppose that Ey consists of a single half and does not have
nonorientable components of odd genus (i.e., Vogy1). Then E is an (M — d)-
surface with d > 2, and

(1) ifd =2, then x(En) = o(E) (mod 16) and Ey is of type I;

(2) if d =3, then x(En) = o(E) £+ 2 (mod 16);

(3) ifd =4 and x(Er) = o(E) + 8 (mod 16), then Ex is of type 1.

2.2.2. Theorem. Let E be an (M — 3)-surface with Ex = kS. Then Ey =
{4pS} U {(4g + 1)S}, both the halves being nonempty unless k = 1 (mod 8).

2.2.3. Theorem. Let Ey = Vo, kS, g > 0. Suppose that E is an (M — d)-
surface and x(Ew) = o(E) + 26 (mod 16). Then for all the values of (d, §)
listed in Table 1 one has By = {Va, U k()S} U {k(2)S}, where k(?) (mod 4)
may take only the values given in the table and k(®) # 0 with the possible
ezception of the case d = 2, § = 0, Ey is of type 1. Besides, there are the
following additional prohibitions:

(1) fd =0, then E{Y) is of type Ips and Ef?) is of type Ipe;

(2) ifd =0, then k(1) £ 0 unless k = 0 (mod 8);

(3) ifd =1 and k() = 0, then either k = 6 (mod 8), or k = 0 (mod 4)

and Eg") is of type I;q.

Remark. Note that in the case d = 3 the last theorem only states that, if
X(Eg) = o(E)+6 (mod 16), then both the halves are not empty. This follows
also from Theorem 2.2.1.

2.3. Classical Enriques surfaces. The topological types realizable by the
real part of a classical Enriques surface were enumerated in [KhD]. In that
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TABLE 1

d | 6 () (mod 4)

0 0
1 1 0,1
-1 0,3
2 0 { 0,2 (if Eg is of type I)
0,1,3 (if Ep is of type II)
2 0,1,2
-2 0,2,3
4 0,2
3 +3 (0,1,2,3

paper we treated separately three types, 65, S; LI5S, and 3V;, and one series,
S1 U Vi U..., which were not prohibited by the standard inequalities and
congruences known in topology of real algebraic varieties. The prohibition
of these types is now an immediate consequence of the general results of the
previous section: the first two are prohibited by Theorem 2.1.2, the others—
by Theorem 2.1.1. To apply Theorem 2.1.1 one should note that, if the real
part of a real K3-surface contains two components S1, then this real part is
of type I and it cannot have any other component, see [Kh].

Consider now the decomposition Ef = Eﬁél) U E’ﬁf). The following obvious
observation can be found, e.g., in [KhD]:

2.3.1. Each half of a classical real Enriques surface may only be of one of the
following three types:

(1) aV,UaV, UbS, g>1,a>0,620,a=0,1;

(2) 2V2,’

(3) S1.

In [KhD] and in Section 8 we construct a number of different realizations of
Enriques surfaces which is sufficient to show that, with a few exceptions, any
distribution satisfying 2.3.1 is realizable. The exceptional topological types
are listed in Figure 1: the distributions marked by the black nodes are realized,
e.g., in [KhD]; the white node represents the distributions {25} L {25} and
{V2 1 2S5} U {25} constructed in [N2]. Theorems 2.2.2 and 2.2.3 imply that
this list is complete:

2.3.2. Theorem. With the ezception of the types kS and Vo, U kS any dis-
tribution of the components of a real Enriques surface satisfying 2.3.1 is real-
izable. The exceptional topological types admit only the distributions listed in
Figure 1.
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b b

bIj
a a a a

{aS}u{bS}, {ViuaStIu{sS} {VelaSIu{bS} {VsuaS}Iu{sS},
{VauaStu{sS} {ViouaS}u{ds}

FiGURE 1. Exceptional topological types

Remark. There are four distributions, {25} LU {25}, {V, U 2S5} U {25}, {VaU
25} U {V, 128}, and {V; LU 45} U {V,}, which are not constructed in [KhD]
or Section 8. Existence of these distributions is announced in [N2]. The first
two distributions cannot be obtained by our construction, i.e., the covering
K 3-surface is not a double of a symmetric quadric. (Proof will be published
elsewhere.)

3. INVOLUTIONS ON MODULES

In this section we expose some elementary facts on the Galois cohomology of
modules with involution and on the discriminant forms of integral lattices with
involution. Most of the results of this section appear, explicitly or implicitly,
in [N1]. We give the proofs when it is easier than to find a precise reference
or when the direct proof is simpler.

3.1. Galois cohomology of 7Z/2-vector spaces with involution. The
zero-dimensional cohomology group of a 7 /2-vector space V with an involu-
tion c is H°(V') = Ker(1+¢). All the other cohomology groups are isomorphic
to Ker(1+c¢)/Im(1+c); to be short and in accordance with the notation com-

monly used in the literature we denote them by ﬁO(V).

3.1.1. Lemma. Let V and V' be finite dimensional vector spaces over 7Z./2
with involution. If they are connected by one of the following two short ezact
sequences of spaces with involution

0 —-7Z/2—-V =V —0 or 0 -V -V >7Z/2—0,

then dim ﬁO(V) — dim I;TO(V') = +1. In the former case the difference is —1
if and only if the generator of the subgroup 7 /2 vanishes in I:IO(V). In the
latter case it is —1 if and only if the generator of the quotient group Z /2 does
not lift to I:TO(V), i.e., does not belong to the image of Ker(1+¢) C V.

Proof. Denote by ¢, ¢/, and ¢q the involutions on V, V', and Z/2 respectively.
Then Ker(1 + ¢g) = Coker(1 + ¢o) = Z/2, and the result follows immediately
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from the additivity of dimension and the Ker-Coker exact sequences (see,
e.g., [CE], Lemma V.10.1)
0 — Ker(1+ co) — Ker(1+¢) — Ker(1+¢') —
— Coker(1 + ¢g) — Coker(1 +¢) and

Ker(1+ c¢) — Ker(1 + ¢g) —
— Coker(1 + ¢’) — Coker(1 4+ ¢) — Coker(l+c¢g) — 0. O
Suppose now that V is equipped with a c-equivariant symmetric bilinear

formo: VQV — Z/2. Then o induces, in a natural way, a symmetric bilinear
form on ETO(V).

3.1.2. Lemma. Ifo: VQV — Z/2 is nondegenerate, then so is the induced
form o: HO(V) @ HO(V) — Z/2.

Proof. Since I;TO(V) = Ker(1 4 ¢)/Im(1 + ¢), the result follows from the ad-
ditivity of dimension and the existence of the induced form. O

3.2. Free abelian groups with involution. Let L be a finitely generated
free abelian group with involution ¢. Consider its eigensubgroups

L+:{mEL|cm:m}, L‘:{mEL|cm:—m}
and the cohomology group of the associated Z /2-vector space L/2L = LQZ [2:
H(L) = H°(L/2L).

Obviously, both L* are primitivein L (i-e., the quotients L/L* are torsion
free), and LT N L~ = 0.

3.2.1. Lemma. One has

Ker[(1+¢): L/2L — L/2L]) = (L*/2L) + (L™ /2L),
Im[(1+¢): L/2L — L/2L] = (LY /2L)n (L™ /2L),
dim A(L) = dim L — 2dim[(L*/2L) n (L~ /2L)).

Proof. In L ® (Q each element z is represented as z = 2zt + z~, where z1 =

%(m +ecz) and 27 = %(m — cz). The first statement follows from the fact

that, given an z € L, the elements (z + cz) and 3(z — cz) belong to L if
and only if £ = cz (mod 2L). To prove the second statement just notice that
(1+¢c)y = (1 — ¢)y (mod 2L) for any y € L, and that whenever z* € L*
and ¢~ € L~ are such that z+ = z= (mod 2L), one has zt = y + cy, where
y=3(t+z7) el

The last statement is an immediate consequence of the first two. [
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3.3. Integral lattices. Suppose now that L is a unimodular integral even
lattice, i.e., L is supplied with a symmetric bilinear pairing o: L L — Z
so that (1) the correlation ¢: L — L* = Hom(L,Z), pz(y) = zoy,is an
isomorphism (L is unimodular), and (2) z o z € 27 for any z € L (L is even).
Assume also that L is supplied with an involution ¢: L — L which is a lattice
morphism, i.e., cz ocy = z o y for any z,y € L.

Under these assumptions each of the sublattices L* is the orthogonal com-
plement of the other one, and they are both nondegenerated, i.e., their corre-
lations are injective. Thus, one can define two finite Z /4-quadratic spaces D¥,
which are called the discriminant spaces of L%, in the following way:

The underlying finite groups, called the discriminant groups, are Dt =
(L*)* /L*; here each (L*)* is considered, via the correlation, as an extensions
of the corresponding lattice L* in L* ® Q. The discriminant quadratic func-
tions g: D* — /27 are induced from the bilinear form extended from L*
to LT ® Q: given z € (L*)* C L* ® Q, define ¢(z) = z o z (mod 2).

3.3.1. Lemma (see [N1]). The quadratic spaces (D*,q) are anti-isometric,
i.e., there ezists a group isomorphism a: DY — D~ such that q(az) = —q(z)
for any x € Dt.

At the group level this statement has the following consequence:

3.3.2. Lemma. One has 2(L*)* C L, and the quotient
ot DY = (L¥)'/L* - L)2L

of the multiplication by 2 establishes an isomorphism between D and the
intersection (L /2L) N (L~ /2L) C L/2L. In particular, D* are 2-periodic
groups and dim H(L) = tk L — 2dimD*.

Proof. Let z € (L1)*, i.e.,let z € LT ® Q be an element such that zo Lt € Z.
Then for any y € L one has 2zoy = 2zo(y* +y~ ) = 2zoy™ = zo(y+cy) € Z.
Hence, 2z € L* = L and 2(L*)* C L. Since 2L* C 2L, the multiplication
by 2 has a well defined quotient at: D+ = (L*)*/L* — L/2L.

Let z € Kerat, ie, 2z € 2L. Thenz € LN (LT ® Q)= L*,ie,z=0
in Dt. Thus, Kerat = 0 and D7 is a 2-periodic group.

Given 2z = (1 +¢)y € (LT/2L) n (L™ /2L) (see Lemma 3.2.1), for any
zE€ LT onehaszoz = %(y oz+cyocz) € Z,ie., z € (LT)*. This proves
that Imat D (LT /2L)N (L™ /2L).

Since Dt is a 2-periodic group, 2z € LT for any z € (L*)*. Hence Ima™ C
L% /2L. Since L™ is primitive in the unimodular lattice L, the map L = L* —
(L*)* induced by the inclusion LT C L is onto, and, given z € (L*)*, there
is some y € L so that (z —y)o Lt = 0. Then z =2z — 2y € L~ = (L*)! and
2z = z (mod 2L). Hence Imat C L™ /2L. This completes the proof for at;
the other isomorphism is constructed similarly. O
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3.3.3. Corollary. An z € LT vanishes in I;T(L) if and only if 2 o LT € 27.

Proof. According to Lemmas 3.2.1 and 3.3.2, z vanishes in I:I(L) if and only
if 2 mod 2L € Imat, i.e., %m e (L) O

Remark. The result follows as well from Lemmas 3.2.1 and 3.1.2, which gives
a more direct proof.

3.3.4. To formulate the next statement, remind that, given a (not necessary
unimodular) nondegenerate lattice M and a nondegenerate primitive sublat-
tice M’ C M, one can define subgroups IV C discr M’ and I'"” C discr M'" and
an anti-isometry a: I — T so that M is the pull back of the graph T’ of «
under the projection (M')* @ (M’J‘)* — discr M @ discr M'* and discr M =
['1/T. (Details can be found in Nikulin [N1].)

3.3.5. Lemma. Suppose that M’ is a primitive nondegenerate sublattice of LT|]
and M is the primitive hull of M' © L™ in L. Letz € M’ C LT be an element
with z o M' € 27, so that %:z: defines an element in discr M'. If this element

belongs to the subgroup I defined above, then = vanishes in f-I(L)

Proof. According to Nikulin’s construction, if the element defined by %m in
discr M’ belongs to I, there are some y € L~ and z € M such that z =
%z + %y. Then ¢ = 2z —y and zo Lt € 27 (since yo Lt = 0). The statement
follows now from Corollary 3.3.3. O

4. BASIC TOPOLOGICAL PROPERTIES
OF GENERALIZED ENRIQUES SURFACES

4.1. General facts. First, let us consider an arbitrary algebraic surface ¥
equipped with a real structure conj: ¥ — Y. Denote L = H,(Y;Z)/ Tors
and D* = discr L*, where LT are the subgroups of conj,-invariant and conj, -
skew-invariant elements of L.

4.1.1. Lemma. The fundamental class [Yz] € H2(Y) end the Stiefel- Whitney
class wa(Y') are integral, i.e., they belong to the image of Ha(Y;Z) in Ha(Y).

Proof. As it is known (see [HH]), w2(Y) is integral for any closed orientable
4-dimensional manifold.?

According to [Ar], Lemma 32, [Y3] is the characteristic class of the twisted
intersection form (z,y) — z oconj, y . In particular, it is orthogonal to the
image of Tors H3(Y'; Z)in H2(Y'), which, by Poincaré duality, is the orthogonal
complement of the image of Ha(Y;Z). O

Thus, the projections of [Yg] and wy(Y') to L/2L are well defined, and since
both these classes are conj,-invariant, they further descend to H(L).
!For complex manifolds this assertion is completely obvious as w2(Y) = ¢;(¥') mod 2.

2 Arnol’d formulates and proves this assertion only for orientable Yjy; the proof in the
general case is literally the same.
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4.1.2. Lemma. The projections of [Yx] end wa(Y) in ﬁ(L) coincide.

Proof. Since I;T(L) consists of only conj,-invariant classes, the twisted inter-
section form on it coincides with the standard intersection form. It remains
to note that wy(Y) is the characteristic class of the standard intersection
form, [Yg] is the characteristic class of the twisted intersection form (Arnold’s
Lemma, loc. cit.), and the characteristic class is unique (Lemma 3.1.2). O

4.1.3. Lemma. IfY is an (M — d)-surface, then
(1) x(Yz)=0o(Y)+2BrD~ (mod 16);
(2) dimD~ =d (mod 2);

Proof. Hirzebruch’s signature theorem gives v(Yg) = o(L*)—o(L™). The left
hand side here is the normal Euler number of Y3 in Y and is equal to —x(Yn);
the right hand side is —o(Y) + 20(L*) = —o(Y) — 2BrD~ (mod 16). This
proves (1).

Since Y is an algebraic surface, o(Y) = b3(Y) + 2 = 8.(Y) (mod 4). By
definition, 8,(Y) = B+ (Yn)+2d. Substituting this into (1) and replacing x(Y)
with B.(Yz) = x(Yz) (mod 4) and BrD~ with dimD~ = BrD~ (mod 2)
gives (2). O

4.1.4. Lemma. The quadratic space D~ is even (i.e., q(&) € Z/2Z for any
& € D7) if and only if [Yu] — wa(Y) belongs to the image of Tors Ha(Y;Z)
in Hy(Y).

Proof. [Yg] and wo(Y) are the characteristic classes of the (respectively, twist-
ed and standard) intersection forms. In particular, they are both orthogonal
to the image of Tors Hy(Y;Z) in Hp(Y). In addition, they are both integral
(see Lemma 4.1.1). Thus, the condition that [Y5] —w2(Y") belongs to the image
of Tors Hy(Y;Z) in H2(Y) is equivalent to the condition that this difference
annihilates all the integral classes, which is equivalent to the congruence z% =
z o conj, z (mod 2) for any = € L.

Let z¥ = 1(z+conj, z) € L*®(Q. Thenz = z* +2~ and > —zoconj, z =
2(z7)? (mod 2Z). Since 2~ o L~ = z o L~ takes integral values, z~ belongs
to (L7)* and, hence, represents an element in D~. Moreover, each element
in D~ admits such a representative. Thus, (z7)? € Z for any z € L if and

only if D~ is even. [

4.1.5. Corollary. Suppose that the 2-primary component Torsy Ha(Y;Z) is
generated by wa(Y). (This is the case for generalized Enriques surfaces; see
Lemma 4.2.3 below.) Then Yy is of type 1 if and only if D~ is even.

All the preceding statements, except Lemma 4.1.32, extend, word by word,
to any (not necessary anti-holomorphic) orientation preserving involution conj

3Lemma 4.1.3 extends to any anti-holomorphic involution on any quasi-complex variety,

cf. [Wil.
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on any (not necessary complex) oriented 4-manifold Y. In this extended
version Lemma 4.1.4 has the following corollary:

4.1.6. Corollary. Let conj be a fized point free orientation preserving invo-
lution on an oriented 4-manifold Y. Then the quadratic spaces DT are even
if and only if so is Ha(Y'; Z)/ Tors.

4.2. Homology of a generalized Enriques surface. We now consider a

generalized Enriques surface E covered by a generalized K 3-surface X with

Enriques involution 7. We denote by pr: X — E the projection and by

tr: H.(E; R) — H.(X; R) the transfer (with the coefficients in a group R).
Note that H;(X) = 0 implies Torsp; Ha2(X;Z) = 0.

4.2.1. Lemma. There are isomorphisms Torsy; H1(E;7Z) = H.(E) = Z/2
and an ezact sequence
0 — Torsy Hy(E; Z) — Ho(E) 25 Hy(X),
where Torsy Ho(E;7) = 7/2 is generated by wa(E).
Proof. From the Smith-Ghysin exact sequence

Hi(X) 222 Hy(B) —— Ho(E) —%— Ho(X) —22 Ho(E)

IR

I

0
it follows that H1(E) = Ho(E) = 7 /2 and, hence, Torsp; H1(E;Z) is a cyclic
group. It cannot be larger than Z /2 since otherwise X would have a nontrivial
double covering. From Poincaré duality and universal coefficient formula it
now follows that Hs(E;Z) =0, H3(E) = 7Z/2, and Tors; Ho(E;7Z) = 7 /2,
and another portion of the Smith-Ghysin exact sequence,

tr

Hg(E) e Hz(E) e Hz(X),
H
7/2

shows that Ker[try: Ha(E) — Hy(X)] is at most Z/2. On the other hand,
since Hy(X;Z) does not have 2-torsion, Torsy H(E;Z) is contained in Ker tra.
Thus, Kertry is Z/2 and, since wa(E) # 0 and trwz(E) = wa(X) = 0, its
only nontrivial element is wy(F). O
4.2.2. Lemma. For any p=1, 2, 3 there is a short ezact sequence

try

0 — Tors; Hy(E;Z) — Hp(E;Z) — H;'T(X;Z) — 0,

where H;" (X;7Z) denotes the subgroup of T -invariant elements.



14 ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV

4.2.3. Lemma. Let L = H3(X;Z)/ Tors and let L™ be the sublattices of
Ty-tnvariant and T, -skew-invariant elements of L. Then Hy(FE;Z)/ Tors is an
even lattice isometric via tr to L7 (%), which is L™ with the modified pairing
(z,y) — %(m 0y).

Proof of Lemmas 4.2.2 and 4.2.3. The transfer H,(E; R) — H}"(X;R) for
R =Q and R =7/q, q odd, is an isomorphism (see, e.g., [Br]). Thus, in the
integral homology we have Kertr, = Torsy H,(E;Z), and, to complete the
proof of 4.2.2, it only remains to show that tr; reduced modulo torsion maps
H,(E;7Z)/ Tors onto L*7.

Denote L = Hy(E;Z)/ Tors and L' = frL C L, where tr is the integral
transfer reduced modulo torsion. Then L’ C L*7 is a subgroup of finite index.
The identity tr zotr y = 2(z oy) implies that L = L’(%) as a lattice and, since
L is unimodular, the discriminant group of L’ is 2-periodic of dimension equal
to rk L = rk L’. Since, due to Lemma 4.2.1, the index of L’ in L and, hence,
in L*7 is odd (tr ® Z/2 is a monomorphism) and discr L*7 is also 2-periodic
(Lemma 3.3.2), these two subgroups coincide.

Thus try provides an isometry between the lattices Hy(E;Z)/ Tors and
fﬁ"(%) and an isomorphism between the groups H(E;Z)/Tors and L*7.
The lattice fﬁ"(%) is even due to Corollary 4.1.6. O

4.3. Eigenspaces of conj,. Let now E be a generalized Enriques surface
equipped with a real structure conj: E — E. The following fact is well known
and follows immediately from Lefschetz fixed point theorem (part (1)) and
Hirzebruch signature theorem (part (2)). Note that Statement (2) applies, in
fact, to any real algebraic surface, and Statement (1) applies to any surface E

with H.(E;Q) = 0.

4.3.1 Lemma. Let L = Hy(E;7)/ Tors and let L* be the subgroups of conj, -
invarient end conj, -skew-invariant elements of L. Then

(1) kLt = %(bz(E) +x(Er)—1, kL™ = %(bz(E) —x(Ex)) + 1

(2) (L) = 5 (o(B) ~ x(Bu)),  o(L7) = 5(o(B) + x(Ex).

5. KALININ’S SPECTRAL SEQUENCE AND VIRO HOMOMORPHISMS

In this section we summarize some auxiliary results from algebraic topology
of involutions. The constructions below are presented in both the cohomology
and homology settings. They require, in principle, a cautious choice of the
cohomology and homology theories used, as well as certain appropriate condi-
tions on the underlying topological spaces. One possibility is to use the sheaf
theories and suppose that the topological spaces involved are locally compact
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and finite dimensional. Fortunately, in this paper we do not need any definite
choice and can use any homology theory (or even several theories). The rea-
son is the fact that all the results are applied to the best topological spaces
one can possibly expect—smooth compact manifolds.

Throughout this section Y is a good (see the paragraph above) topological
space with involutionc: Y — Y.

5.1. Kalinin’s homology spectral sequence.

5.1.1. There ezist a filtration
0=7F"*tcF*c...c F° = H,(Fixc),
o Z—graded spectral sequence (H},d}), where

d&: H) — H! d

A—
g+r—1» 1°dq_0’

.
gtr—

(H?,d%) is the chain complez of Y, and H;'H = Kerd,/Imd;_,,,,

and homomorphisms bv,: F© — H such that

(1) H = H,(Y) and d} = 1+ c,;
a cycle z, € survives to if and only if there are some chains

2 le z, Hx? ves to Hy if and only if th hai
UYp = Tp, Yp4ls «+- 5 Yptr—1 0 Y so that Oyiy1 = (14 ci)yi. In this
case dpzp = (1 + ¢ )Ypir—1;

(3) bv, annihilates 791 and maps F?/Fi+! isomorphically onto HX;

(4) the filiration, spectral sequence, and homomorphisms are all natural
with respect to equivariant mappings.

When necessary, we will use the notation H; = Hy(Y') and F¢ = F4(Y)
to indicate the original space Y.

The original construction of this spectral sequence is due to I. Kalinin [Ka]*,
who derived it from the Borel-Serre spectral sequence and related results
by Borel (see [Bo]). This construction is briefly outlined in Appendix B.
Property (2) is proven in [D]. In Appendix A we give an alternative description
of Kalinin’s spectral sequence, which is based upon the Smith exact sequence.

The following results are straightforward consequences of 5.1.1.

5.1.2. Corollary. IfY is connected and Fixc £ &, then
(1) Ho(Y)=H3(Y)= H(Y) = 7. /2
(2) each nonzero element of HX(Y) which survives to H®(Y) is nonzero
in H(Y).

“He presented the result only in its cohomological setting (see 5.3 below), but the con-
struction is literally translated to the homology language.
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5.1.3. Corollary-definition. If a cycle admits a representation by an equi-
variant chain, it survives to HX(Y). Thus, in particular, there are tautolog-
ical homomorphisms Hy(Fixc) — Hy°(Y); with certain abuse of terminology
we will cell them the inclusion homomorphisms.

5.1.4. Corollary. One has H(Y) = ﬁO(Hz(Y)).

5.2. Viro homomorphisms. The homomorphisms bv, appearing in Kali-
nin’s spectral sequence were discovered, in an equivalent form, by O. Viro
before Kalinin’s work. That is why we call them Viro homomorphisms. The
following geometrical description of Viro homomorphisms, given in terms
of Kalinin’s spectral sequence, is close to their original form due to Viro

(cf. [VZ]).
5.2.1. Suppose that Fixc # @. Then

(1) bve: Hy(Fixe) — HE(Y) is zero on Hyi(Fixc); its restriction to
Ho(Fixe) = HP(Y) = Ho(Y) coincides with the inclusion homomor-
phism (cf 5.1.2 and 5.1.3);

(2) o (nonhomogeneous) element z € H,(Fixc) represented by a cycle
> z; belongs to F, = Kerbv,_1 (see 5.1.1) if and only if there exist
some chains y;, 1 <1< p, so that 8y1 = 2o and Oyiy1 = zi+(1+c.)y:
fori > 1; the class of z, + (1 +c.)y, in H°(Y') represents then bv, z.

This result is proven in [D].

5.2.2. Evident Corollary. For any p the Viro homomorphism bv, is zero
on Hsp(Fixe) and coincides with the inclusion homomorphism (see 5.1.3)
when restricted to Hp(Fixc) — H°(Y).

5.3. Kalinin’s cohomology spectral sequence. Though in applications
the homology groups are more transparent and easier to manipulate with, in
a number of intermediate considerations it is the cohomology language that is
more convenient and gives the results. In particular, the cohomology spectral
sequence has the advantage that it carries a canonical multiplicative structure;
we will use this structure to introduce in a formal way and to evaluate (in
the general case, see Appendix B) the intersection pairing in the homology
spectral sequence.

5.3.1. There ezist ¢ filtration
H*(Fixe) =Fpn D Fpno1D -+ D F_1 =0,

o Z—graded spectral sequence (H),d}), where

r Yy
d2: HY — HI™, di=m+ o 42 =

(H§,dy) is the cochain complez of Y, and H}, , = Kerd?/Imdit" ™!,
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and homomorphisms bv": H', — H*(Fixc)/F,_1 such that

(1) bv? maps HY, isomorphically onto Fy/F,_1;

(2) the spectral sequence, homomorphisms, and filiration are all natural
with respect to equivariant mappings;

(3) the spectral sequence is multiplicative, the multiplication being induced
by the cup-product in Hg; the filiration and homomorphisms bv? pre-
serve the multiplication;

(4) HL(Y) is a graded differential module over H} (via the cap-product);
the homology filiration and homomorphisms bv, preserve the module
structure.

This spectral sequence is dual to that of 5.1.1 in the following sense: H? =
Hom(Hy;72/2), Fr-1 = Ker[H*(Fixc) — Hom(F";Z/2)], and d} and bv?
are dual to dj_, ., and bv, respectively.

The cohomology part of this statement is proved in [Ka]; the rest is the
standard relation between dual cohomology and homology objects.

5.3.2. Corollary. IfY is a closed n-dimensional manifold and Fixc # @,
then for any v, 1 < r < +oo, one has H* = 7. /2, and the product map
HP @ H? P — H is a nondegenerate pairing.

To our knowledge, the only publication where this result is stated explicitly
is [Ka]. It is a straightforward consequence of the Poincaré duality and a
simple lemma on spectral sequences which states that, given a multiplicative
spectral sequence of Z /2-algebras, if for some r = rg one has H = H} = 7/2,
and the product paring HY @ H'"P — H' is nondegenerate for r = rg, then
so it is for all r = rg, ..., 00 (cf. Lemma 3.1.2).

5.3.3. Corollary (the dual version of 5.3.2). IfY is a closed n-dimensional
manifold and Fixc # @, then the intersection pairing in H,(Y) descends to a
nondegenerate pairing Hy° @ Hp? |, — Z)]2.

Poincaré duality between cohomology and homology translates 5.3.2 into
5.3.3, along with the above proof.

The pairing Hy° ® H2® , — 7/2 introduced in 5.3.3 is called below the
intersection form.

5.4. Application to a real structure of a complex surface. Let Y be a
compact nonsingular complex surface with a real structure ¢: Y — Y. Then
the Z /2-homology fundamental class [Y] of Y = Fix ¢ is well defined.

5.4.1. Lemma. The Stiefel-Whitney class wa(Y) survives to HP(Y). The
projection of wa(Y) in H3°(Y) coincides with bva[Yx).

Proof. As any Chern or Stiefel-Whitney class, wz(Y") is realized by the fun-
damental class of a c-invariant divisor. (The earliest reference which we could
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find in the literature is [BH]; the statement is based on the simple observation
that Schubert cycles are defined over R and even over Z.) Thus, wy survives
to H$°(Y). The other part of the lemma follows from 5.3.3, 5.1.4, and the
fact that the image of [Yg] in H2(Y') coincides with the characteristic class of
the twisted intersection form (cf. the proof of Lemmas 4.1.1 and 4.1.2). O

Let Cq,Cy,...,Cr be the components of Yg. Denote by (C;) € Ho(Fixc)
and [C;] € Ha(Fixc) the classes represented by a component C;, and consider
the following values of Viro homomorphisms:

- bvo(C;) in HP(Y);

- bvia and bvy(C; — Cj) in H°(Y) (where a is an element of H:(Yg),

and (C; — Cj) = (Ci) — (C}));

- bvy[Ci], bvaa, bvy(C; — Cj), and bva(a + (C; — Cj)) in HP(Y).

From 5.2.1 and 5.2.2 it immediately follows that:

- all the above classes but the last three are always well defined;

- bvy a is defined if and only if bv; @ = 0, i.e., if in, & = (14 ¢4 )y1, where
y1 is a cycle in Y. In the latter case bvs a is represented by the cycle
(1+4c4)y2, where ys is any 2-chain in Y such that 8y +(1+c.)y1 belongs
to Yy and represents «;

- bva(C; — Cj) is defined if and only if bv,(C; — C;) = 0. The latter
class is represented by the equivariant circle (1 + ¢4)y1, where y; is a
segment in Y joining a point in C; and a point in Cj; it vanishes if
(1+ c4)y1 bounds in Y (for some appropriate choice of y1), and in this
case bvy(C; — Cj) is represented by (1 + c4)y2, where y; is any 2-chain
in Y with dyz = (1 4 ¢.)y1;

- bva(a+(C;—Cj)) is defined if and only if bvy & = bv1(C; — Cj); in this
case it is represented by the cycle (1 + ¢, )y2, where y; is a 2-chain such
that 8y, consists of an equivariant circle representing bvy(C; — C;) and
a cycle representing & in Yg.

One can smoothen all the chains above. For our purpose it is sufficient to
smoothen them in a tubular neighborhood W of Yy and thus to represent the
last four classes near Yg by smooth equivariant 2-submanifolds of Y.

Remark. If ¢, = id on H1(Y'), then one can ignore the term (1 + ¢,)y; in the
above description of bv. This is the case, e.g., if Y is a generalized Enriques
surface.

5.4.2. Intersection matrix. The intersection form on H$(Y) = Imbvy
is that defined by Table 2, where C;,...,C; are some connected components
of Yn, and a, B are some 1-dimensional homology classes in Y. The intersec-
tion aof3 is regarded as an element of Ho(Yn), end (o f3) [Yﬂg]) and (aoB)[Ci]
are, respectively, the total intersection number and its part which falls into C;.
6;; stands for the Kronecker symbol: 6;; = 1 and 6;; = 0 if i # j. The inter-
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section form extends linearly to the classes of the form bvy(a+ (C; — Cj)), as
if bva o and bvy(C; — Cj) were well defined.

TABLE 2
bva(C; — Cj) bvy e bv[C;]
bV2<Ck — C’z> 0 0 bk + b
bva B 0 (@oB)vf) | (BoB)Ci]
bva[Ck] Sir + 05k (o 0 @) [Ch] 8iex(Ci)

Proof. Pick some smooth equivariant representatives (see above) of two ele-
ments of the table. By 5.3.3, their intersection number in H,(Y') is equal to
the intersection number of the corresponding classes in H$°. By a small equi-
variant perturbation put the representatives in a position without common
points in W \ Fixc (see above). Since the intersection numbers are consid-
ered modulo 2, one can ignore all the imaginary intersection points, which
appear in pairs (cf., for example [Kh2], Lemma 2.3), and counting the inter-
section points in W of some (not necessary equivariant now) perturbations
of the cycles gives the desired result. When counting bvy[C;] o bvy 8 and
bva[C;] o bva[C;], one should take into consideration the fact that the normal
bundle of Fixc in Y is (anti-)isomorphic to its tangent bundle. O

Remark. One can avoid the geometrical arguments in the proof and to gen-
eralize the result to higher dimensions, see Appendix B.

6. VIRO HOMOMORPHISMS IN GENERALIZED ENRIQUES SURFACES

Recall that we denote by F a generalized real Enriques surface, which is
supposed to have nonempty real part: Eg # @.

The main goal of this section is to prove Propositions 6.1 and 6.2 below. In
the proofs we use Kalinin’s homology spectral sequence H}; we denote dim Hy

by 8.

6.1. Dimension of the discriminant space. Let E be an (M — d)-surface,
and let D~ be the discriminant space of the sublattice of conj-skew-invarient
vectors in Hy(E;Z)/ Tors. Then:
d—dimD~ = 0 if either
(1) Eg has a component Vagy1 (i.e., wa(En) #0), or
(2) Eg is nonorientable and both the halves are nonempty;
d—dimD~ = 2 if either
(1) Eg is nonorientable, wy(EgR) = 0, and one of the halves is empty, or
(2) Eg is orientable and both the halves are nonempty;
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d —dimD~ may be 2 or 4 if Ey is orientable and one of the halves is
empty.

6.2. Relations between real components. There is at least one and at
most two relations between the elements of H3° (E)/wa(E) realized by the fun-
damental classes of the components of Ex. One relation is bva[En] = wa(E);
the only other possible relation is bva[E{N)] = bva[E{?)] = 0 (mod wa(E)).

6.3. Proof of Proposition 6.1.

6.3.1. Lemma. Let Cy, C3 be two components of En. Then bv,(C1—C2) =0
if and only if these two components belong to the same half of Ey.

Proof. Pick two points ¢; € C; and connect them with a path v in E. By
5.1.2, bv1(Cy — C2) = 0 if and only if the loop § = (conjy)~!-v is homologous
to zero in H1(E). Thus bvi(C; — C3) = 0 if and only if § lifts to a loop in X.
Suppose that C; € Eﬁél) and lift 4 to a path 7 with the endpoints ¢;, ¢3. Then
§ = 3- (t()F)~1 is a lift of § which connects t(1)¢, and &. It is a loop if and
only if t(1)g, = &,, i.e., cy € Eﬁl). O

6.3.2. Lemma. Let a be an element of H1(Ew). Then bvia # 0 if and only
ifwoa =1, where w € Hi(ER) is the characteristic element of the covering
Xn — Egn. Moreover, bvy o # 0 whenever o? = 1.

Proof. Since H1(E) = 7 /2, from 5.1.2 it follows that bv; e = 0 if and only if
in, @ € H1(E) is zero, or, equivalently, if w o &« = 0. The last assertion follows
from Lemma 1.3.2: if wi(Eg) # 0, then w = w1(Eg). O

6.3.3. Lemma. The Stiefel- Whitney class wa(E) (which, due to 5.4.1, always
survives to H°(E)) represents ¢ nonzero element in H3°(E) if and only if
either

(1) Eg has a component Vogyq (i.e., wa(En) # 0), or

(2) En is nonorientable and both the halves are nonempty.

Proof. By 5.3.3 and since wy(E) is a characteristic element of the intersection
form, wa(E) # 0 in H°(FE) if and only if there is an element z € H,(Eg)
with (bvyz)? # 0. According to 5.4.2 such an z can be found in one of the
following three forms: (i) z = [C4], where C; C FEp is a component of odd
Euler characteristic; (ii) 2 = e+ (C1 — C2), where o € H1(ER) is an element
with @? = 1 and bv; a # 0; (iii) 2 = @ € H1(Ep) with «? = 1 and bv; a = 0.
In (i) we have case (1) of the lemma. In (ii), according to 6.3.1, we have
case (2). Finally, (iii) contradicts to 6.3.2. O

6.3.4. Lemma. H®(E) # 0 if and only if either

(1) En is nonorientable, or
(2) Eg has a component Ty, or
(3) both the halves of En are nonempty.
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If H®(E) # 0, then the spectral sequence collapses at HZ; in particular,
B2 —BL =0. IfFHP(E) =0, then 82 —B° = 0 or 2 and B° = B = 0.

Proof. By 5.2.1, H°(E) = bvy; H¢i(Fixe). According to 6.3.1 and 6.3.2, a
homogeneous element z € H,(Ew) with bvy z # 0 is either & € Hy(Ep) with
woa =1 (cases (1) and (2) of the lemma, see 1.3.2) or (C; — C3), where
C; C E’ﬁf) are two components from different halves of Ey (case (3) of the
lemma).

The last statement of the lemma is a straightforward consequence from
the relations B2 = B° = 1 and B2 = 1 > B° and from the existence of the
nondegenerate pairing in the spectral sequence. In the case H{® # 0 one has

B2 — B = 0if H2(E) is killed by d®, and 82 — B° = 2 if it is killed by d2. [

6.3.5. End of the proof.
By definition, 2d = S,(F) — 8. According to Lemma 4.3.1, we have
2dimD~ = by(E) — b2, where b2 = dim ﬁ(conj*, Hy(E;Z)/ Tors). Therefore,

2(d - dimD™) = [(2- 67 - B°) + (B3 — B5°)] + [2 — (65 — ¥3)].-

The first term of this expression is zero if H{®(E) # 0 and 2 or 4 otherwise,
see 6.3.4. Applying Lemma 3.1.1 to the exact sequences

0 — Torsp Hy(E;7Z) — Ha(E;Z)R Z/2 — (H2(E; Z)] Tors) ® Z./2 — 0,
0— Hg(E;Z)@QZ/Z — Hz(E) — Z/2—0

gives that 32 —b2 is equal to 2 if wy(E) # 0in HZ(E), and it is equal to 0 or —2
otherwise. The combination 82 — b2 = 0 and w3(E) # 0 in HZ(E) is excluded
by an additional argument: the intersection form on H2(E) is nondegenerate,
hence, wy(F), which generates Torsy Ha(E;7/2) C Hy(E), and an arbitrary
element, which generates the quotient Hao(E)/(H2(E;7Z)® 7 /2) and thus has
a nonzero intersection with wy(E), must either both survive to HZ(E) or both
disappear.

Now the lemma follows from Lemmas 6.3.3 and 6.3.4 and the (mod 2)-
congruence given by Lemma 5.1.2(2). O

6.4. Proof of Proposition 6.2.

The relation bva[Er] = wa(E) is given by Lemma 5.4.1.

Suppose that bva([Ci] + --- + [Cr]) = kwa(E), k € Z/2, is a relation
other than bvy[E{)] = 0 (mod wz(E)) or bva[E{?)] = 0 (mod wy(E)). This
means that one of the components C; involved in the relation, say C;, belongs
to E’ﬁél), and there is another component of Eﬁil), say D, which does not belong
to the relation. Then bvo(Cy — D) is well defined, and, according to 5.4.2,
bvy(Cy — D) o bvy([Cq] + -+ + [Cr]) = 1 and (bv2(Cy — D))? = 0. On the
other hand, wa(E) survives to H°(FE), and, since wa(E) is the characteristic
class, one has bvy(C; — D) owz(E) = (bva(C1 — D))? = 0. This contradicts to
sz([Cl] + -4 [C.,-]) = k’UJ2(E) and sz(Cl — D> Osz([Cl] 44 [C’.,-]) =1.
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7. PROOF OF THE MAIN RESULTS

Below, as in Section 2, F is a generalized real Enriques surface with
nonempty real part, conj: F — FE is the real structure on E, and X is the
double covering of E with the Enriques involution 7: X — X and two real
structures ¢(1), ¢(2) determined by conj.

7.1. Proof of Theorem 2.1.1. By the hypothesis, the fundamental class
of Xﬁ&l) vanishes in Hy(X). On the other hand, it is equal to the image of the
fundamental class of Eﬁl) under the transfer homomorphism tr: Hy(E) —
H3(X), whose kernel is generated by wz(E) (see Lemma 4.2.1). Thus, the
half Eﬁil) realizes either 0 or wa(E) in Ha(E). Since, according to Lemma 5.4.1,
the union E{!) U E{?) realizes wy(E) in H$(E), the half E{?) realizes ei-
ther wz(E) or 0. In any case at least one of the two halves realizes zero
in H(E).

Suppose that C; C Eﬁﬁl) is a component of type Var41 and that Eﬁf) has
at least one component, say, C;. Then, by 5.4.2, bvz[Eﬁil)] obvy[Ci] = 1 and
bvz[Eﬁf)] obvy(w1(C1)+ (C1—C2)) = 1, i.e., both the halves realize nontrivial
classes in H3°(E). This contradiction proves the first assertion.

Suppose now that each of the two halves contains a nonorientable compo-
nent C; C Eﬁf) (which, due to the first statement, must be of an even genus).
Pick some classes a; € H1(C;) with bvy o # 0. Then for both (2, 7) = (1, 2)
and (7,j) = (2,1) one has bvy(a; + (C1 — C2)) o bvz[Eg)] = 1, which is also
a contradiction. O

7.2. Proof of Theorems 2.1.2 and 2.2.1. Let D~ be the discriminant
form of the sublattice of conj,-skew-invariant vectors in Hy(F;Z)/ Tors. From
Lemma 6.1 it follows that, under the hypotheses, d — dim D~ = 2 or 4. Since
the dimension is nonnegative, d > 2.

All the congruences are derived from x(Eg) = o(E) + 2BrD~ (mod 16)
given by Lemma 4.1.3(1) (just like the other congruences known in topology
of real algebraic manifolds, cf. [Kh3], [M], and [N1]).

If d = 2, then D~ = 0 and BrD~ = 0. This gives the congruence. The
fact that Ep is of type I follows from Corollary 4.1.5.

If d = 3, then dimD~ = 1. Hence D~ = (:I:%) and BrD~ = %1.

Ifd = 4 and x(Ex) = 6(E)+8 (mod 16), then BrD~ = 4 and dimD~ = 2.

The only such form is the one given by the (2 x 2)-matrix (1}2 1{2)_ This

form is even and Corollary 4.1.5 applies to prove that Fy is of type I. O

7.3. Proof of Theorems 2.2.2 and 2.2.3. In addition to the lattice L =
H,(E;7)/ Tors with involution conj,, the eigenlattices LT of conj,, and their
discriminant forms D, let us consider the sublattice M’ of Lt generated by
the classes si1,...,sr € L realized by the spherical components of Ep (with
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some orientations), and denote by N the orthogonal complement of M’ in L*.
Recall that L and all its sublattices are even, see 4.2.3.

7.3.1. Lemma. If M’ is not primitive in LY, then either Ey has o half {IS}
of type I with 1 = 0 (mod 4), or Egx = kS, it is of type I, and k = 0 (mod 4).
If all the k spherical components constitute one half of Ey and, besides, D~ =
0 and tk N = k — 2, then k =0 (mod 8).

Proof. Since s; o s; = —26;;, nonprimitiveness of M’ means that there is
an ¢ € L such that 22 = s; + --- 4+ s;, I > 0. (We simplify the notation
and assume that the relation involves the first I components.) Pick such a
relation with the smallest possible number ! of components. Then, due to 6.2
and 6.3.4, either the first [ spherical components form a half {IS} of Ey of
type I, or {{S} = Ey and Ey is of type I. Since | = —2z?, the first part of the
lemma follows from the fact that Lt is an even lattice®.

Suppose that all the spherical components form together one half of Ef.
As it follows from the first part of the proof, no partial sum of sg,..., st is
divisible by 2 (as otherwise the corresponding components would form a half),
and the primitive hull M” of M’ in L% is generated by M’ and an z € L
such that 2z = s; + --- + s;. Thus, the discriminant form of M is the
nondegenerate part of the restriction of —%(0% +---+62), 6; € Z/2, to
6, +---+ 6 = 0. In particular, dimdiscc M” = k — 2 and discc M" is
an even form. If D~ = 0, then Dt = 0 and L* is unimodular. If, in addition,
tk N = k — 2, then, since dimdiscr N = dimdiscr M" = k — 2, the lattice %N
is integral and unimodular. Besides, it is even, since so are discr M"' and L.

Hence, k = —o(M') = U(%N) —o(L*)=0 (mod 8). O

7.3.2. Lemma. If M’ is primitive in LT and dimdiscr M’ + dimD~ >
dimdiscr N, then either Ey has a half {IS}, or Ey = IS, where | # 0 and
I = 2¢(y) (mod 4) for some non trivial element y € D~. If, in addition,
Il=Fk, dmD™ =1, and tk N =k — 1, then k = BrD~ (mod 8).

Remark. If dimD~ = 1, then D~ contains only one nontrivial element, and
2¢(y) = BrD~ (mod 8). In all cases y = %y_ (mod L™) for some element
y- € L7, and 2¢(y) = %yi (mod 4).

Proof. Denote by M the primitive hull of L~ @& M’ in L. Since M and N are
the orthogonal complements of each other in the unimodular even lattice L,
their discriminant forms are anti-isometric. On the other hand, dim discr M’ +
dimD~ > dimdiscr N = dimdiscr M by the hypotheses, and, hence, L~ & M’
is not primitive in L and the subgroup I'V C discr M’ (see 3.3.4) is nontrivial:
for some [ > 0 there exists an element y_ € L~ which represents a nonzero

5As it follows from the existence of equivariant representatives of the Chern classes,
cf. 5.4.1, Lt is even for any compact complex (and even quasicomplex) surface with a real
structure.
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element y € discr M’ so that the class s = %(y_ + 814+ 5;) belongs to L.
Then s; + -+ + s; = s + conj, s. Thus s; + --- + s vanishes in I;T(L) and
therefore the element realized by the corresponding ! spherical components
of Ey in I:T(Hz(E,Z)) is either 0 or wy.

Due to 6.2 and 6.3.4, either these components form a half of Ey, or Ey = IS
and ! = k. Furthermore, 2¢(y) = %yi = %(31 +---+8)%2 =1 (mod 2).

If the additional assumptions hold, then discr M is an even discriminant
form of dimension (k — 1). Therefore, as in 7.3.1, %N is an integral even

unimodular lattice and £k — BrD~ = U(%N) =0 (mod 8). O

Now, in order to complete the proof of theorems 2.2.2 and 2.2.3, consider
separately the different cases.

7.3.3. The case Ey = kS (Theorem 2.2.2). Comessatti-Severi inequality
x(Er) < hYY(E) gives d > 3 + h%°(E). Hence d > 3 and, if d = 3, then
o(E) = 2 — by(E). In the latter case a calculation using Lemma 4.3.1 shows
that L~ is a positive definite lattice of rank 1 and LT is a negative definite
lattice of rank 2k — 1. In particular, dim?~ = 1 and BrD~ = 1. By 4.1.3,
this implies that £ = 1 (mod 4). This congruence excludes, in particular, the
second choice By = IS, I = 0 (mod 4) in Lemma 7.3.1. The theorem follows
now from 7.3.1 and 7.3.2, which cover the two possibilities for M’ and both
give the same decomposition {4pS} LI {(4¢+1)S} (with I = 4¢+ 1 in the latter
case). O

7.5. The case Ey = Vo, LU kS (Theorem 2.2.3). From Lemma 4.3.1(1) it
follows that rk LT = 2k +d — 2 and, hence, dimdiscct N <tk N = k+d—2. If
d = 0, then L7 is a unimodular lattice and dimdiscr M’ > dimdiscr N. Hence
M' cannot be primitive and 7.3.1 applies. Corollary 4.1.5 gives the missing
information: Ep is of type I. If d = 1, then dimPD~ = 1 and dimdiscr N <
k — 1, and the statement follows from 7.3.1 and 7.3.2. The possibility “k = 0
(mod 4), Eﬁf) is of type I” for k(1) = 0 arises from the case when M’ is not
primitive: then & = k(?) must be divisible by 4. If d = 2, then D~ is one of the
forms given in Table 3. D~ = 0 is the exceptional case of Theorem 2.2.3 when
k(?) may be trivial. (In fact, k(2 is trivial in this case since dimD~ = d — 2
and, according to Lemma 6.1, Ep must consist of a single half.) In all the
other cases 7.3.1 and 7.3.2 give all the values of k(?) (mod4) listed in Table 1.

The remaining case d = 3, § = £3 follows from Theorem 2.2.1, see the
remark in 2.2. (Though, due to 6.6 and 4.1.3, in this case dimD~ = 3, and
one can also apply 7.3.2.)

Finally, to decide whether type I in (1) and (3) is Iaps or Ire it suffices
to notice that, under the hypotheses, wz(E) represents a nontrivial element
in H3°(E) (see Lemma 6.3.3) and, hence, a half is of type I,ps if and only if
its fundamental class vanishes in H$°(E), i.e., if it belongs to the kernel of
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Odd forms Even forms
D~ BrD~ D~ BrD~
0 0 0 1/2 .
Med | 2 (112 102)
(2) @ (-3) 0 (1/2 { ) :
(-Dep | -2

the intersection form. Using 5.4.2 one can easily see that the spherical half
realizes wy(E); hence, it is of type Ire. O

8. CONSTRUCTION

8.1. General idea (see [KhD] for details). Let X be the K3-surface ob-
tained as the double covering of Y = Cp! x Cp! branched over a non-singular
curve C C Y of bi-degree (4,4). Denote by s: Y — Y the Cartesian prod-
uct of the nontrivial involutions (u : v) — (—u : v) of the factors. If C is
s-symmetric, s lifts to two different involutions on X, which commute with
the deck translation d of X — Y. If, besides, C does not pass through the
fixed points of s, then exactly one of these two involutions, which we denote
by 7, is fixed point free (see, e.g., [H] or [BPV]), and, hence, the orbit space
E = X/7 is an Enriques surface.

Suppose now that Y is equipped with a real structure conjy which com-
mutes with s, and C is a real curve. Then s o conjy is another real structure
on Y and C. We denote the real point sets of these two structures by Yﬂgi)
and C’Ig), t = 1,2 (¢ = 1 corresponding to conjy ) and call them the halves
of Y and C respectively. The involutions conjy and s o conjy lift to four
different commuting real structures (¢(1), t(3) = 7 0 t(1), d 0 (1), and d 0 t(?))
on X, which, in turn, descend to two real structures on F; we call them the
ezpositions of E. A choice of an exposition is determined by a choice of one
of the two liftings (1), ¢(2) of conjy to X.

We use for Y a quadric in Cp® real in respect to the standard complex
conjugation involution and invariant in respect to the real symmetry s: Cp® —
Cp®, (zo:z1: 2 23) — (Zo: Z1: —Z3: —z3). Since the bi-degree of C is even,
C’]g) separates Yﬂ&i) into two parts, which have C’Ig) as their common boundary
(at least one of the two parts is non-empty unless Yﬂgi) is empty). The fixed
point set X]g) of t(*) is the pull-back of one of the parts. Thus, a choice of ¢(1)
is equivalent to a choice of one of the two parts of Yﬂgl), and, since t(2) = rot(1),
the latter determines as well the part of YEP) whose pull-back is Fix ¢(2). This
correlation is easily controlled due to the fact that Xﬁ&l) and Xﬁ{") are disjoint
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and, hence, the pull-back of a point of Yﬂgl) n Y]éz) is contained in exactly one
of the sets Xﬁ&l), Xﬁ&z)‘ (Note that in all the examples we use here the above
intersection is not empty.)

To construct the branch curve C' € Y we start with a singular s-symmetric
curve C € Y, given by an equation f = 0, and perturb it to the curve C
given by f + eh = 0; here f and h are homogeneous real bi-degree (4,4)
polynomials either both s-symmetric or both s-skew-symmetric and € is a
small real parameter. All the facts necessary to construct a perturbation and
to control its topology can be found in [KhD, Sect. 4].

8.2. The distributions of 2V;LIkS. It suffices to construct the distributions
{aS} U {2V1 U bS} and {V; U aS} U {V; UbS} with (a,b) = (1,3), (2,2), or
(3,1); the rest is constructed in [KhD]. We start with the ellipsoid ¥ given by
z2 = 22 + 22 + z2 and the singular curve C=Cu 5’2, where C; and C; are
cut on Y by z2 = 0 and 2(zZ — z2) = 22 respectively (see Fig. 2(a), which
represents the two halves of Y, which are both topological spheres, and C.
The two black dots in each figure are the fixed points of the restriction of s
to the corresponding half.) To perturb C we take for h the equation of a bi-
degree (4,4) s-symmetric real curve which intersects the two real halves of C,
at eight points (the ramification points); all these points must be outside of
the ovals of 52 and different from the fixed points of s. Then, under a proper
choice of the sign of €, the portions of the real part of 51 which are either inside
the ovals of C; or between pairs of the ramification points double, and the rest
of C; disappears (see, e.g., Fig. 2(b), which corresponds to the distribution
{35} U {2V; U S}; to obtain the other distributions note that one or both the
ovals surrounding the fixed points can be moved to the ‘left hand’ half, and the
pair of small ovals can be moved to the ‘right hand’ half). If the exposition is
chosen so that X]g") covers the interior of the two ovals surrounding the fixed
points of s, then these two ovals produce the V; components of Ey; the other
pairs of symmetric ovals produce spheres.

FIGURE 2

8.3. The distributions of 2V;L1kS. The distributions constructed here are
{V2 1aS}uU{V>UbS} for all (a, b) except (0,0), (4,0), (2,2), and (0,4). (The
first exception is found in [KhD], the others, in [N2], see the remark at the end
of 2.3.) Let Y be the hyperboloid 23 = z?+z2—z2, and let C= 5’1U5’2, where
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C, and C, are given, respectively, by zZ = 0 and (2z3 — z2)? = €(z% + z2)
for some small real ¢ > 0 (see Fig. 3(a), which represents the projections
of the affine part zg # 0 of Yﬂgl) and Yﬂgz) to the planes (zo : z1 : z3) and
(zo : 1 : iz2) respectively; note that the right half of 51 coincides with the
visible counter of Yﬂgz))‘ The s-symmetric real perturbative term is chosen
so that its zero set does not intersect the right half of C: and intersects its
left half at 4(e — 1) points, a = 1,2, 3, located close to the fixed points of s.
Under a proper choice of the sign of the perturbation, the right half of 51
doubles and the ramification points generate 2(a — 1) ovals which do not
contain the fixed points of s (Fig. 3(b)). The exposition is chosen so that
the two strips containing the fixed points of s in the right half Yﬂgz) of Y are
covered by Xﬁ{"); these two strips produce the components V5 of Ey. Thus
we obtain the distributions {V2> UaS} U {V, UbS} witha =1,2,3 and b= 1.
To construct surfaces with & = 0, we replace C, with the curve given by
(223 — 23)? = €(zf — 22) for some small real € > 0; this makes the two ovals
at the top of the front side (and the bottom of the back side) of Fig. 3(a)

and (b) disappear.
ol
............ O==O8 oo
|
)

FIGURE 3

8.4. The distributions of V3 L V7 L kS. It suffices to construct the distri-
butions {Vs U V; UaS} U {bS} and {VaUaSTU{V1UbS} with2<a+b<4
and a > 1; the rest is found in [KhD]. (In fact, here we also cover the case
1 < a+b < 3) Let us start with a quartic @ C Rp? with (k + 1) real
components, 1 < k < 3, obtained by perturbing the union of two conics (see
Figure 4; in order to reduce the number of real components one should change
the perturbation so that two or three upper ovals form a single oval). Pick an
oval O (the lowest one in Figure 4) and denote by L the double tangent to O
and by L,, 0 < a < k, another tangent, which together with L separates in
the real projective plane O from a other ovals of Q.

We make use of the following technical result, whose proof we postpone to
the end of this section.

8.4.1. Lemma. The union LUL, can be perturbed to an irreducible conic K
which is still tangent to O at three points, has no other real intersection points
with Q, and such that O is in the outer part of the oval of K.
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2(k — a) ovals

FIGURE 4 FIGURE 5

Let K be the conic given by the lemma. Consider the double cover Y
of the projective plane branched over K. Denote by § the deck translation
involution, by K its fixed point set (whlch projects to K), and by @ the pull-
back of Q. Due to 5 (cf. 8.1), each of Y, Q and K has two real halves. Y]Kgl) is
the hyperboloid shown in Figure 5: Qﬁl) has a component (the pull-back of O)
with three nondegenerate double points in I_{ﬁ&l) and (k—a) pairs of symmetric
ovals. The other half Yﬂgz) is an ellipsoid in which Q&f) has a pairs of ovals
disjoint from I_{]g"). Now (Y, s) is obtained from (Y, 35) by the following real
3-symmetric birational transformation: we blow up the three singular points
of @ and then blow down the proper transforms of K and the two generatrices
G1,G; of Y through one of the singular points (more precisely, through the
smgular point whose image in Rp? is close to the tangency point of L, and O).
Let C be the transform of Q. It is easy to see that C’ﬁ&l) consists of a large
oval O (the transform of the singular component) surrounding (k —a) pairs of
symmetric ovals and three isolated double points: one (the image of K) is fixed
under s, and the two others (the images of G1, G2) are symmetric. The other
half 5]%2) consists of a pairs of ovals and an isolated double point (the image
of K). All the ovals but O are not nested and do not surround the singular
points of C. Finally, we perturb C toa nonsingular symmetric curve C
(see 4.3.1 in [KhD]); the fixed double point, which produces the V; component
of the resulting Enriques surface, can be made to pop up in either side, and
the two symmetric double points may either form a pair of symmetric ovals or
disappear. Thus, the distributions obtained are {VaU ViU (k—a+¢)S}L1{aS?}
and {VaU(k—a+¢)S}U{ViUaS}, where e =0,1.

Proof of Lemma 8.4.1. Given an imaginary point u € @, define an invo-
lution p, of a Zariski open subset of the symmetric power S3Q in the fol-
lowing way: for a generic triple (z1,z2,23) € S°Q there is a unique conic
through u, @, z1, z3, z3; it intersects @ at three more points y1, y2, ys, and we
let py(z1,22,23) = (y1,Yy2,y3). Clearly, the above conic is tangent to Q at



COMPONENTS OF A REAL ENRIQUES SURFACE 29

z1, z2, z3 if and only if (21, 23, z3) is a fixed point of p,.

Denote by a1, az, az the three tangency points of L U L, and @, and by v
one of the two imaginary intersection points of L, and @. Then the graph T,
of p, intersects the diagonal A C S3Q x S3Q at a = (a1, a2, as) x (a1, az,as)
transversally. (Note that S2Q is smooth at this point.) Indeed, let p;,p; be
the two projections §3Q x S3Q — 53Q, and let e; be some real generators of
the tangent spaces T,,Q, which we regard as basis vectors of T(al’aE,as)S?’Q.
Then T,A is spanned by pje; + pie;, ¢ = 1,2,3, and 7,T', is spanned by
pie; + a;pie;, 1 = 1,2,3, with some real o; < 0. (To see that, one can move
one point at a time; then the conic is still reducible, and it is easy to estimate
the tangent vectors.) Thus, for any other point v’ close to v the graph of p,:
also has a unique (and hence real) intersection point with A close to g, i.e.,
there is a real conic K through v’ tangent to @ at three real points close
to a1,a2,as. If the line (v'?’) is not tangent to @, this conic is irreducible.
Finally, to control the topology (actually, to choose one of the two possible
real directions of the perturbation), just note that K has no real intersection
points with (v'7’); hence, this line lies outside of the oval of K, and if v’ is
chosen so that (v'9’) intersects O at two real points, then O is also outside. [

Remark. The involution utilized in the proof is similar to that from [GH,
Sect. 7], where it is used for a similar purpose. It also seems possible to apply
Shustin’s approach [Sh].

APPENDIX A.
VIRO HOMOMORPHISMS AND SMITH EXACT SEQUENCE

A.1. Viro homomorphisms and differentials. Recall that the Smith ez-
act sequence of a 7 /2-space (Y, ¢) is the exact sequence

— Hpy1(Y', Fixc) 2 Hy(Fixe) @ H,(Y', Fixc) —

in, + tr relo pr,
s

Hy(Y) —= H,(Y',Fixc) —,
where Y/ = Y/c is the orbit space, in: Fixe — Y is the inclusion, pr: ¥ —
Y’ is the projection, tr: Hy(Y',Fixc) — Hp(Y) is the transfer map, and
rel: H,(Y') — H,(Y', Fixc) is the relativization map. The connecting homo-
morphism A is defined as follows. Given a relative cycle ' in (Y, Fixc), lift
it to a chain y in Y. Then 8y = 8y’ + tr z for some cycle z in (Y’, Fixc), and
we let Ay = 8y @ 2.

Viro homomorphisms and the differentials of Kalinin’s spectral sequence
are incorporated in the Smith exact sequence. To extract them, one should
regard both d; and bv, as additive relations (i-e., partial many-valued homo-
morphisms) Hp(Y) — Hp4,-1(Y) and H,(Fixc) — Hp(Y), and consider the
relation A~!: H,(Fixc) ® Hy(Y’,Fixc) — Hp41(Y’, Fixc) inverse to A (see,
e.g., [McL] for the notion of additive relation and its properties).
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A.1.1. Proposition. The differentials of Kalinin’s speciral sequence and
Viro homomorphisms, regarded as additive relations dy: Hp(Y) — Hpir—1(Y)
and bv,: H,(Fixc) — Hp(Y) respectively, are given by

d; = trptr_1 o(A_l)T_:l o pr, and

bvp (Xigp #i) = Inp zp +trp Ypr

where, in the latter equation, z; € H;(Fixc) and y, € Hp(Y', Fixc) is defined
recursively via yy =0, yi, ., = A" z; ®yj) € Hip1 (Y, Fixe).

Proof. To prove the first assertion, pick a cycle 2, in Y and consider some
cycles y; in (Y',Fixc), p <4 < p+r — 1, representing the iterated pull-backs
(A=1)=P (0 @ prz,). By the definition of A, for i > p one gets dy; = 0 and
there are some chains y; in Y such that pry; = y} and 8y; = try;_1 for i > p.
Now, replacing each y, with y; and using the fact that tropr = 1 + ¢,, one
obtains the definition of dj, given in 5.1.1.

The second assertion is proved similarly: we start with a sequence of cy-
cles z; in Fixe, 0 < ¢ < p, choose relative cycles y} in (Y’,Fixc) so that
Ay;,, = z; © y;, and lift them to chains y; in Y; this gives the definition
of bv, given in 5.2.1. O

A.2. Whitehead (semi-exact) triples. According to Proposition A.2.1
the relations tr oA™"*! o pr form a sequence of differential relations in the
sense of Puppe, see [P], which generates Kalinin’s spectral sequence. Thus
the latter can be derived from the Smith exact sequence. Below, in A.3, we
describe this derived spectral sequence in a direct way. For this purpose,
we need a slight modification of the machinery of exact couples (see [Ma] or
[McL]). Some elements of this modification are contained in [Wh].

A.2.1. Definition. A Whitehead (semi-ezact) triple C = (H, D, D; ., 3,7)
is a triangle
C: H
g N\
D—2>_D
of abelian groups and homomorphisms which is exact at D and D and such
that (1) D is a subgroup of D, and (2) y o8 = 0.
The homology group of C is IZT(C) = Kery/Im§g.

Given such a C, one can define the derived triple C' = (H', D', D’;d/,8',7')
as follows. Consider d = Bov: H — H and let H = Kerd/Imd, D' = Ima,

and D' = D'ND. The new maps o’ and 7’ are induced by o and 7 respectively,
and 3’ is given by ' = Boa~! (in the sense that 8'd’ = 8d, where d’ = ad).
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A.2.2. Proposition. The derived triple of a Whitehead triple is well defined
and is ¢ Whitehead triple. There is an ezact sequence

0 — D'/D' — D/D — H(C') — H(C) — 0,
where the middle homomorphism D/D — I;T(C’) 15 induced by B, and the
others are the natural projections.

Proof. Both the assertions can be proved by diagram chasing in the ini-
tial Whitehead triangle. (The exact sequence in question is, in fact, the

Ker — Coker sequence for D < D 2, Ker v.) O

Due to A.2.2, starting with a Whitehead triple C = C', one can define the
sequence CP = (CP~1)’ of derived triples and, as usual, its limit

c: H®
p==0 N
D™ =(),5; Ima? Z  Dp®=DnD>,

which is still a Whitehead triple with 8 = 0 and a¢® onto. The terms H"
of C" and differentials d": H™ — H" defined above form a spectral sequence,
which converges to H*. From the second part of A.2.2 it follows that there
are two filtrations

H(C®)D> H°> H'> .- , where H? = Ker[H(C®) — H(CP*')], and
D/D=F">F'>... | where ? = Im[DP*'/D?*' — D/ D],
and the isomorphisms
Fr ) Frtl =, Ar/HPH1
induced by BP*! establish an isomorphism of the associated graded groups
Gr;[(D/D)/(D®/D®)] = Gry Ker[H(C®) — H(C)).
Remark. Note that, in general, H° # H(C*®) and ﬂp>0 AP £ 0.

A.2.3. Proposition. Let C be an ezact triple (i.e., I;T(C) = 0) with nilpo-
tent a (i.e., there is a positive integer n such that o™y = 0 on all the ele-
ments y € D on which it is well defined). Then there are finite filirations
0=Frtlc...c F1cF°=D/D and 0= H**' C...C H' c H° = H®
and an tsomorphism Gr]:-(D/D) = Gry H® of the associated graded groups.
Proof. By the hypothesis, o™ is identically zero on D"*. Thus D**! = Dn+! =
0 and y**! = 0; hence, C*® = C**! and I;T(C°°) = H® = At = I;T(C”+1),
and, in particular, H"*! = 0. Besides, I:T(C) =0, and thus H° = H®. O
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A.3. The spectral sequence derived from the Smith exact sequence.
Given a Z /2-space (Y, c), its Smith exact sequence obviously forms an exact
triple

. H.(Y)

in, + tr/‘« \ relo pr,

H,(Fixc) ® H.(Y'; Fixe) A H,.(Y';Fixc).

If both Y’/ and Fixc have homotopy type of finite dimensional cell com-
plexes, their homology are graded groups with degree bounded from both
above and below, and A, being a map of degree —1, is nilpotent. Hence, ac-
cording to Proposition A.2.3, one obtains a spectral sequence H} = H,(Y) =
H,(Fixc). Instead of the nonhomogeneous filtration F? and Viro homomor-
phisms bv,: 77 — Hp° Proposition A.2.3 provides the homogeneous filtra-
tions _7:"5 on H,(Fixc) and I:Tg’ on H;° and isomorphisms 37 : ﬁg’/]}g’+1 —
7P frp+1
Hoyp/Hyip-

Let F? be the image of F2tP N H¢,(Fixe) in Ft? /FitP+L, For p fixed
the groups f;_i form a filtration on F? /FP*+1 and simple comparing Propo-
sition A.1.1 and definitions in A.2 gives the following result:

A.3.1. Proposition. The above speciral sequence coincides with Kalinin’s
spectral sequence HY(Y), p > 1, and there are isomorphisms .’Fg’/}"gfll x

_72—5/]2-;;+1 which make the following diagram commute:

bv ~ ~
D p+1 a+p P p+1
Fi /J—"q_1 —_— Hq+p/H

qtp
f‘p ]_A'p+1 Fa 1::]'}7 ﬁ'}’+1
q/ q q+p/ q+p
Remark. In particular, Proposition A.3.1 gives an alternative proof of the
fact that Viro homomorphisms induce isomorphisms of the associated graded
groups.

Remark. Note that, like HY(Y) and d%, the Viro homomorphisms and fil-
tration F? can be derived algebraically from the Smith exact sequence (cf.
Proposition A.1.1). To do that one can use the following properties of the
original exact triple: E, D, and D are graded groups with bounded degree;
B and vy are homomorphisms of degree 0; « is a homomorphism of degree —1;
and D is represented as a direct sum D = D @ (D/D).

APPENDIX B. KALININ’S INTERSECTION FORM

B.1. The local case. Kalinin’s spectral sequence and, in particular, Viro
homomorphisms admit an obvious relative version. We make use of such a
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version to do some calculations in a neighborhood of the fixed point set. Then,
in the next subsection, we apply the result obtained to establish (in the global
case) a relation between Kalinin’s intersection form (a,b) — (bv. a o bv, b),
a,b € H,(F) and the Poincaré intersection form (z,y) — z oy, z,y € H,(F),
see Theorem B.2.1.

B.1.1. Lemma. Let v be an m-dimensional vector bundle over a finite cell
complez F, and let T and 8T be the associated disk and sphere bundles,
respectively, supplied with the antipodal involution. Then the homology fil-
tration F* associated with Kalinin’s spectral sequence of (T, 8T) is given by
FmtP — w(v)~! NHy,(F), where w(v) = 14+ wi(v) +wa(v) +... is the total
Stiefel- Whitney class of v.

Proof. Given a topological space ¥ with involution ¢: ¥ — Y and an inte-
ger k, 0 < k < oo, denote by Y the twisted product

(B.1.2) Yy =Y x 5°/{(y,5) ~ (cy, 95)},

where g: S* — S* is the antipodal involution on the standard sphere S*.
It is clear (see, e.g., [D]) that T} and (8T): are, respectively, the disk and
the sphere bundles associated with ¥ ® 5 over Fy, = F x Rp*, where 7 is the
tautological linear bundle over Rp*. Let h; € H;(IRp*) be the generators. (We
let h; = 0 for s < 0 or ¢ > k.) In [D] it is shown that a sufficient condition for a
class ) x;, 2; € H;(F), to belong to F, is that the image of Y z; ® hg—_1_; in
H,_,(T,,8T,;) under the inclusion map H,(F,;) — H.(Ty, 8T,) should vanish.
(In [D] only the absolute case is considered, but the proof works in the relative
case without any change.) The inclusion map H,(F,) — H.(T,, 8T,) is equal
to the composition of the multiplication by w,(r ®n) = 3 w;(v) ® A™ ¢ and
Thom isomorphism, and spelling out the product w,(r@n) N 2; @ hg_1-;
and taking into account the coefficients of those of h; which are not identically
zero in H,(Rp?) shows that the above sufficient condition is equivalent to
w(¥)N Y. z; € Hygom(F), ie,, Y z; € w(v) "' N Hyy_m(F). A priori, the
subgroup obtained is only a portion of F?, but comparing the dimensions
shows that, in fact, these two subgroups coincide. O

B.1.3. Corollary. Let F, v, T, and 8T be as in Lemma B.1.1, and let
th: Hyym(T,8T) — H,(F) be the Thom isomorphism. Then for any class
a € Hy(F) one has bvgim(wl(v)Na) =th ' a.

Proof. The result has actually been proved for the case when F is a g-
dimensional polyhedron with Hy(F) = Z/2, and a is the generator of the
latter group: in this case w=!(v) N a is the only nontrivial element in F+™,
th™! @ is the only nontrivial element in Hyim(T,8T), and bvgym: FIT™ —
Hyym(T,0T) is an isomorphism. In general, one can find a singular g-
dimensional polyhedron f: P — F with H,(P) generated by a single ele-
ment [P] so that @ = f,[P]. The result follows then from the naturality
of bv, and th. O
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B.2. The global case.

B.2.1. Theorem. LetY be a smooth closed N -dimensional manifold with e
smooth involution ¢:' Y — Y, and let F = Fixc be the fized point set of c.
Then for any two classes a € FP and b € F? one has

w(v)N(aob) € FPte-N

and
bvyaobvy b= bvyi,_n[w(v)N(aob),

where w(v) is the total Stiefel- Whitney class of the normal bundle v of F
mY.

First, let us prove the following lemma:

B.2.2. Lemma. LetY, ¢, and F be as above. Denote by Dy: H*(Y) —
H,(Y) and Dp: H*(F) — H,(F) the Poincaré duality maps in Y and F
respectively, and by D.: H*(F) — H,(F) the map a — a N (w=i(v) N [F)).
Then:

(1) D. induces isomorphisms Fy_p, — FP;
2) given z € F,, one has bv¥ P(Dy'bv,z) = D'z mod Fa_p_1.
P y PVp ¢ P

Proof. From the naturality of Kalinin’s spectral sequence and Corollary B.1.3
it follows that the only nontrivial element of 7V is w~1(v) N [F] and, hence,
[Y] = bvy(w=t(v) N [F]). Thus, D, is the multiplication by the generator
of F¥; hence, it maps Fn_p to FP. Furthermore, D, is an isomorphism (as
composition of Poincaré duality and multiplication by an invertible element),
and comparing the dimensions shows that so is its restriction to Fy_, — FP.
(Recall that dim Fy_, = dim F? due to 5.3.1 and 5.3.2.)

From the above it follows that D, bvN_q(Dl_,1 bv,z) € Fp, and one has
(see 5.3.1(4)):

bv, (D bv P (Dy' by, 2)) = Dyt by, 2 N [Y] = by, z;

since Ker bv, = FP*1, this gives D, bv" P(Dy'bv, z) =z mod FP*tl. O

Proof of Theorem B.2.1. By the definition, w(v) N (aob) = D;'anb €
Fn_pNF? C FPHi=N and a direct calculation using Lemma B.2.2(2) shows
that bvpy,_n(D;'anbd) = Dy bv,anbv,b=bvyaobv,b O

We would like to also mention the following immediate consequence of B.1.1
and B.1.3:
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B.2.3. Proposition. Let Y, ¢, F, and v be as in Theorem B.2. Pick a
component F; C F of dimension (N — m), end denote by in;: F; — Y the
inclusion. Then F?N Hy(F;) C w'(v) N Hyy_m(F;), and for any class
a € F? one has in}bv,a = [w(v) ﬂa]q_m|Fi, where in' is the inverse Hopf
komomorphism and [-);_p stands for the (g — m)-dimensional component of
a nonhomogeneous homology class.

Proof. The first statement follows from the naturality of the filtration and
Lemma B.1.1 applied to v|g,. To prove the second one just note that iné is the
composition of the relativization homomorphism H,(Y) — H,(T;, 8T;) and
Thom isomorphism H,y(T;, 8T;) — H,_m(F;), and apply Corollary B.2.2. O

APPENDIX C.
VIRO HOMOMORPHISMS AND STEENROD OPERATIONS

Let Y be a good topological space (see the first paragraph of Section 5)
with an involution c.

Recall the original construction of Kalinin’s spectral sequence (see [Ka]
or [D] for details). Consider the fibration Y,, — Rp® = §%° /a (see B.1.2 for
the definition of Y, ) and its Borel-Serre spectral sequence Hl, = H,(Y) ®
H,(Rp*®) = H,(Y ). For q big enough, the cap-product by the generator h €
H(Rp™) defines isomorphisms Hp w1 — Hp,and Hyy1(Yeo) — Hy(Yeo ), see
[Bo]. Furthermore, the composition of the Kunneth formula and the homo-
morphism induced by the inclusion (Fixc)e = Fixe x Rp® < Y, defines an
isomorphism Hy(Yw) = H.(Fixc), loc. cit. By definition, Kalinin’s spectral
sequence is the stabilization Hy (V)= liﬂlﬂgq = H,(Fixc) = liilHq (Yoo )-

Since in this paper we are mainly dealing with homology groups, let us
consider homology Steenrod operations Sq,: H,(Y) — Hp_;(Y), which, at
least when Y has finite homology in each dimension, are just dual to the
cohomology Steenrod squares Sq*: HP~*(Y) — HP(Y) (see [SE] for details).

As it is known (see, for example, [McC, Theorem 6.10]), the Borel-Serre
spectral sequence H,(Y )® H,(Rp*®°) = H,(Y ) respects Steenrod operations:

C.1. Lemma. In the Borel-Serre spectral sequence H.(Y) ® H,(Rp™®) =
H,(Y), there are some natural homomorphisms (homology Steenrod opera-
tions) Sq,: H] , — H}_,,, 1> 0, so that

(1) Sa, commute with the differentials, i.e., Sq, od” = d" o Sq,;

(2) for each r > 1 the operations on HT}' coincide with those induced
by Sq, on HL, via (1);

(3) the operations on H}, = H,(Y)RH,(Rp™) are defined by the Steenrod
operations on Y via Sq,(z ® hs) = Sq, z ® hs;

(4) Saq, converge to the Steenrod operations in Yoo .
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C.2. Definition. Given z € H,(Y) and t > 0, define the weighed Steenrod
operation §atz = Eo<]’<t (f__f) Sq; z, where P > p +1 is a power of 2. (The
binomial coefficients do not depend on P, see, e.g., Lemma I1.2.6 in [SE].)

C.3. Theorem. The Steenrod operations naturally descend to HX(Y) so
that for any x € FP and t > 0 one has Sq, bv, £ = bv,_; Sq,z.

Proof. Pick some P > ¢ + dimY which is a power of 2. Since Hy, does
not depend on ¢ > 0, one can replace the stabilization homomorphisms
Nh: Hy .11 — Hp, with NAE: Hy ,.p — Hp,, which commute with Sq, and,
hence, induce some operation on Hy (Y). (Indeed, under the assumption on P
one has qu hY =0 for 1 < j < t, and Cartan formula applies.) The induced
operation depends on the initial row; if one starts with Sq,: Hjp — Hy_,; ps
it obviously coincides with that induced by Sq,: Hp(Y) — Hp_4(Y).

Since Sq, is natural, it only remains to evaluate it on, say, Hp(Fixc)e =
Hp(FixexRp®). For an element £Qhp_,, z € Hy(Fixc), the Cartan formula
gives

P—
Sa; 2 = Yogj<t 54 2 ® 8 hp—p = Yog;c: (5-7) 895 2 ® hp—p—s4j,
and, after dropping the h factors, one obtains §atz. O

Applying the last result to the Bockstein homomorphism Sq; gives:

C.4. Corollary. For any classz =) .. z; € FP one has

(A
Sq; bvy (Eigp mi) =bvp_1 (Eigp Sq; z; + Ej>0 "’p—2j)-

C.5. Corollary. If p = 2, then (see the notation in 5.4) Sq; bva[C;] =
bvy wi(C;) and Sq; bva(a + (C; — Cj)) = bvi a.

Remark. In general, Hy° ,(Y) is a subquotient group of H, 1(Y). Ifitisa
subgroup, Corollary C.4 allows to find all the classes in H,° (Y') which have an
integral representative. For example, this applies when p = 2, Y is connected,
and c, acts trivially on H1(Y).

APPENDIX D.
‘GENERALIZED ENRIQUES SURFACES’ WITH wz(E) = 0

In this section we assume that E satisfies all the axioms of generalized
Enriques surfaces (see 1.2) except the requirement wa(E) # 0, i.e., E is the
orbit space of a generalized K 3-surface X by a fixed point free holomorphic
involution 7: X — X, and wz(E) = 0. As in the case wy # 0, the components
of Ep may be of one of the types S, V,, or T, (see 1.3). Note that Ey has
no nonorientable components of odd genus (i.e., V2441), as the fundamental
class of such a component would have square 1.

Obviously, all the results of Sections 4 and 6, with ‘wz(E)’ replaced with
‘generator of Torsy Ha(E;Z)’, are still valid for this class of surfaces.
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D.1. Surfaces with nonorientable real part. Below, for brevity, we say
that Epy or Eﬁf) is of type I if its fundamental class belongs to the image of
Torsy Hy(E; Z) in Hy(E).

D.1.1. Theorem (cf. Theorem 2.1.2). If Ey is nonorientable, then Ex con-
sists of a single half and the restriction Xy — Epy of the projection X — E
is the orientation double covering (i.e., there is no components of type Ty).
Besides, E is an (M — d)-surface, d > 2, and

(1) if d =2, then x(En) = o(E) (mod 16) and Ey is of type I,

(2) if d =3, then x(En) = o(E) + 2 (mod 16);

(3) ifd=4 and x(Egr) = o(E) + 8 (mod 16), then Ex is of type 1.

Proof. Pick a nonorientable component C; C Eﬁél) and a disorienting cycle
a € Hi(Ch). If B2 £ @, say, E{?) D Ca, then [bvy(a + (C1 — C3))2 = 1. If
there is an orientable component C3 and a class 8 € H1(C3) which does not
vanish in H;(E), then [bva(a + 8)]?> = 1. In both the cases we constructed
a class z € HP®(E) with z? = 1; this contradicts to the assumption that

From Corollary C.5 it follows that, under the hypotheses of the theorem,
bvy z can be represented by an integral cycle for any z € F2. Indeed, since
Ey has only one half, there are no classes of the form bvy(a + (C; — Cj)),
and, since wz(E) = 0, each nonorientable component C; of Ey is of even
genus (otherwise one would have (bv3[C;])? = 1); hence, bv; wi(C;) = 0,
and C.5 applies. Thus, H$°(E) is a subquotient of fI(Hz(E’;Z)), and, since
H3(E) does have nonintegral classes, dim?D~ < d (see Lemma 5.1.2 for the
definition of D~). Due to the (mod 2)-congruence (Lemma 5.1.2) it must be
dimD~ = d — 2, and the rest of the proof repeats that of Theorem 2.2.1. O

D.2. Surfaces with orientable real part.

D.2.1. Theorem (cf. Theorems 2.1.2 and 2.2.1). If F is an (M — d)-surface
with orientable real part and either Ey is trivially covered by Xy (i.e., there
is no components of type Ty) or En consists of a single half, then d > 2 and

(1) if d =2, then x(En) = o(E) (mod 16) and Ey is of type I;

(2) if d =3, then x(En) = o(E) + 2 (mod 16);

(3) ifd=4 and x(Er) = o(E) + 8 (mod 16), then Ex is of type 1.

D.2.2. Theorem (cf. Theorem 2.2.2). Let E be an (M — 3)-surface with
Ey = kS. Then Eg = {4pS} U {(4g + 1)S}, both the halves being nonempty
unless k =1 (mod 8).

D.2.3. Theorem (cf. Theorem 2.2.3). Let Ex = T, U kS. Suppose that E is
an (M —d)-surface and x(En) = o(E)+26 (mod 16). Then for all the values
of (d, 8) listed in Table 1 in 2.2 one has By = {T,Uk(V)STU{k(2)S}, where k(?)
(mod 4) is given in the table and k() £ 0 with the possible ezception of the
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case d =2, 6§ = 0, Ey s of type 1. Besides, there are the following additional
restrictions:
(1) if d = 0, then both the halves (as well as Ey itself) are of type I,
(2) ifd =0, then k(1) # 0 unless k = 0 (mod 8);
(3) ifd =1 and k() = 0, then either k = 6 (mod 8), or k = 0 (mod 4)
and Eﬁf) is of type 1.

Proof of Theorems D.2.1, D.2.2, and D.2.3 repeats that of Theorems 2.2.1,
2.2.2, and 2.2.3 respectively and is based on the modification of Lemmas 6.2
and 6.1 given below (Lemmas D.2.4 and D.2.5 respectively). O

D.2.4. Lemma. There is at least one and at most two relations between the
images of the components of [Eg] in H3°(E)/ Torsy Ho(E;7Z). One relation
is [En] = 0; the only other possible relation is [E{})] = [E{})] = 0.
Proof. The relation [Ey] = 0 follows from Lemma 5.4.1. An element vanishes
in H°(E)/ Torsy Hy( E; Z) if and only if it annihilates all the integral classes
in HP(E), i.e., all the classes except bva(a + (C; — C;)) with bv{(C; — Cj) =
bvi a # 0 (see Corollary C.5). If bva[C1]+- - - = 01is a relation, C; C Eﬁél), and
there is another component D; C Eﬁél), then bva(Cy1—Dj)o(bva[Ci]+...) =1,
which is a contradiction. O
D.2.5. Lemma. Let E be an (M —d)-surface with orientable real part, and let
D~ be the discriminant form of the sublattice of conj-skew-invarient vectors
in Hy(E;Z)/ Tors. Then:
d =dimD~ if Eg has a component T, and both the halves are nonempty;
d =2+ dimD~ if either
(1) En kas a component T; and one of the halves is empty, or
(2) En has no components T, and both the halves are nonempty;
d=2+dimD~ or44+dimD~ if Eg has no components T; and one of the
halves is empty.

Proof is essentially the same as that of Lemma 6.1, with Lemmas 6.3.3
and 6.3.4 replaced with the following statements (where the first one follows
from Corollary C.5, and the second one is obvious):

D.2.6. Ep being orientable, Torsy Hy(E;7Z) does not vanish in H (E) (i.e.,
there is a nonintegral class in H$°(FE)) if and only if Ew has a component T,
and both the halves are nonempty.

D.2.7. Ep being orientable, HP(E) # 0 if and only if either

(1) Eg has a components Ty, or
(2) both the halves are nonempty.

Remark. Probably, one can enforce Theorem D.2.3 taking into account the
class represented by the component Tj.
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