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Abstract.— Let S be a closed surface of genus g > 2. In this paper, we consider a space,
which we call F, of equivalence classes of measured foliations of S, defined as the quotient
of Thurston’s measured foliation space where one forgets the transverse measure associated
to a measured foliation. We give a presentation, in the sense of symbolic dynamics, of the
action of a pseudo-Anosov mapping class of M in the neighborhood of its attracting fired
point in F. The action is semi-Markovian. The elements of the combinatorics associated
to the presentation consist in an invariant train track with a marking on its set of vertices
and a certain number of elementary moves on it.
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§0.—Introduction

In this paper, we show that the theory of RLS expansions for measured foliations, as
described in the paper [8] by R. Penner and the author, provides the elements of a semi-
Markovian presentation (in the sense which Gromov uses in [3]) for an action of a pseudo-
Anosov mapping class of a surface. This action takes place in a (large) neighborhood of
the attracting fixed point in the space F of equivalence classes of measured foliations of the
surface, where one forgets the transverse measure. (In other words, F is the quotient space
of Thurston’s measured foliation space MF by the equivalence relation which identifies
two elements of MF if they can be represented by measured foliations on the surface which
agree as foliations, regardless of the transverse measure.) This gives a natural combinatorial
description of the action of the pseudo-Anosov mapping class in the neighborhood of its
attracting fixed point. The elements of the combinatorics are objects which are naturally
associated to the map: an invariant train track with a marking on its set of vertices and
a certain number of elementary moves on it. It is true that the action that we consider in
this paper takes place in our space F and not in the usual space MF, but as we explain
at the end of the paper, the space F is, in a certain sense, equal to the space MJF up to
a subset of measure zero, and it is in any case an interesting space to study.

§1.—Background (foliations and subshifts)

Let S be a closed surface of genus ¢g > 2 and let MJF be Thurston’s space of equivalence
classes of measured foliations on S. We refer the reader to [2] for background material and
basic facts concerning the space MJF. We recall that a measured foliation is a foliation
with a measure defined on each transverse arc which is equivalent to Lebesgue measure,
such that the local holonomy maps are measure preserving. Such a foliation is allowed to
have singular points of the types described in Figure 1.
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Figure 1
An element of MJF is an equivalence class of measured foliations, the equivalence

relation being generated by isotopy and Whitehead moves (that is, collapsing to a point a
segment joining two singularities; see Figure 2).
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Figure 2

We introduce now another space, which we call F. It is the quotient of MJF by
the following equivalence relation (denoted by ~): two elements of MF are equivalent
if they can be represented by measured foliations on S which are identical as foliations,
regardless of the transverse measure. Let PMJF be the space of projective classes of
measured foliations on S, that is, the quotient of MJF by the natural action of the group
R* of positive real numbers (this action consists of multiplying the transverse measure of
a foliation by a positive scalar). The space F is a quotient of PMF, and we denote by

MFLpMFLF

the sequence of quotient maps.

There is a natural topology on MF, which we shall review in section 2 below, and
which makes it homeomorphic to a Euclidean space of dimension 6 — 6 which is punctured
at the origin. The spaces PMF and F are equipped with the quotient topologies. Let
us note right away that the equivalence relation ~ is not closed, and F is not a Hausdorft
space. Even so (and perhaps because of its complicated nature), it is an interesting space
to study. The result which we prove in this paper concerns the space F, and the reason for
which we began by considering MF is that F is naturally defined as a quotient of MF.
As we shall recall below, there is a well-known canonical measure on MF, which defines
canonical measure classes on the spaces PMF and F. jFrom this measure-class point of
view, the two spaces PMF and F are equivalent. Indeed, there is a subset of full measure
of PMF (consisting of the equivalence classes of uniquely ergodic measured foliations) on
which the restriction of the map f is one-to-one, and such that the measure class on F is
defined by the push-forward of the measure class on PMF by this map.

Let T' be the mapping class group of S, that is, the group of isotopy classes of
orientation preserving homeomorphisms of this surface. T' acts naturally on the three
spaces MF, PMF and F. According to Thurston’s classification (see [10]), an element
of I is either of finite order or reducible or pseudo-Anosov. We are interested here in the
dynamics of the action of a pseudo-Anosov element on the space F. Let us note that the
action of an element of finite order is not interesting from the dynamical point of view. The
action of a reducible element is itself “reducible”, in the sense that an iterate of it can be
decomposed into pseudo-Anosov and finite order actions on subspaces of F, and then one
can study how these components are combined. If an element v € I' is of pseudo-Anosov
type, then it has two fixed points, F'* and F* on PMF, respectively the projective classes
of the stable and unstable measured foliations. For every element F in PMF which is
distinct from F°, the sequence 4" F' converges to F*, and thus the dynamics of the action
of v on PMUF is very simple. The same property holds for the action of v on F, where we
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denote by [F*®] and [F"] the equivalence classes of F* and F* in F. Despite the simplicity
of this action, one can ask for a symbolic coding of it, that is, a combinatorial description
of this action using a subshift of finite type where the set of symbols arises from the action
of the mapping class on the surface itself. This is the subject matter of this paper.

Let us note that one essential feature of a subshift of finite type is that it is defined by
means of a finite set of symbols, and it is always interesting to find subshifts of finite type
arising in different sorts of mathematical contexts. We recall now the precise definition:

We start with a finite set &, whose elements are called symbols. The associated
one-sided Bernoulli shift, denoted by ¥ = (N, §), is defined as the set of all maps from N
to §, where N is the set of nonnegative integers. Thus, elements of 3 are infinite sequences
of elements in §, indexed by N. The set ¥ 1s equipped with the product topology. The
shift map o: 3 — X is the map from ¥ to itself defined by

(zo,z1,22,...) — (1,22, 23,...).

A subshift X9 C X i1s a closed subset which is invariant by the shift map. It has
therefore an induced shift map, which we denote also by o : ¥y — ¥j. A subshift ¥y C X
is said to be of finite type if it can be defined in the following manner:

There exists an integer n>1 and a finite set W C 8™ such that an element « =
(zo,1,2%2,...) of ¥ belongs to ¥y if and only if for every ¢ = 0,1,2,..., the element
(Ziy...,&iyn—1) of 8™ belongs to W.

The elements of W are called the admissible words of length n.

A subset C' C X is called a cylinder if there exists a finite set of integers ' C N and
a set A of maps from F' to § such that C = {z € X | zp € A}.

Finally, a semi-Markovian subset of X is the intersection of a cylinder with a subshift
of finite type. This last notion is introduced in [3], section 8.5.H where it appears as a
basic notion in the theory of symbolic dynamics applied to the study of compact metric
spaces (see also [1], chapter 6, where this notion is further developed). Let us note that
a semi-Markovian subset is, in general, not invariant by the shift map. As we shall see in
§4, the semi-Markovian set that we produce will have an induced action (which will be a
section of the shift map), and thus one can talk about a semi-Markovian action.

§2.—Train Tracks and RLS Sequences

A train track on S is a graph imbedded in this surface whose vertices are all trivalent
and such that at each vertex, the edges meet smoothly according to the local model given in
Figure 3. In other words, at each vertex, there is a well-defined notion of a side where two
edges abut together and a side where only one edges abuts. For natural reasons, a vertex
in a train track is called a switch. We refer the reader to [9] and [7] for the basics of the
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theory of train tracks. We note however that the notion of train track as defined in these
two references is more general than the one we are using here in the sense that it allows
local models with n-valent switches, with n > 3. But for our purposes here, it is sufficent
to consider trivalent switches only. On the other hand, it is in general necessary (and this
is usually made part of the definition) to exclude some special kinds of configurations for
the connected components of S — 7 (the surface S cut open along 7), and we deal now

with this matter.

Figure 3

Lte 7 be a train track, and consider S — 7, which consists in a collection of surfaces
with boundary and with cusps on their boundary. It is sufficient for our purpose here to
consider only the case where each connected component of S — 7 1s a disk with three cusps
on its boundary (see Figure 4).

Figure 4

A train track with this property is usually called mazimal.

There are three basic types of operations which are performed in a small neighbor-
hood of an edge of a train track. They are represented in Figure 5 (r), (¢) and (s) and
are called the elementary moves of type R, L and S, respectively. There is some (visual)
advantage in thinking of an elementary move as being associated to one of the two switches
bordering that edge. The first two types of moves are imagined as an unzipping operation,
and the third one as sliding one of the switches above (or below) the other one.

Without going too deeply into the details of the theory, let us review for the con-
venience of the reader how a train track can be used to describe a parameter space for a
subset of MF ( and we denote by MF(7) this subset) as well as the effect of an elementary
move performed on 7 on the associated space MF(7).

Let 7 be a train track on S, and let N be the number of edges of 7. We define
a convex cone, E(7), in the vector space RY, as the set of nonnegative real weights on
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Figure 5

the edges of 7 satisfying the switch conditions (the sum of the weights on the two edges
incoming from the same side is equal to the weight of the remaining edge). If E(7) contains
a point whose coordinates are all positive, then the train track 7 is said to be recurrent.

There is a natural map ¢,: E(7) — MJF which is defined in the following manner:
Let X be an element of E(7), and suppose that X has at least one non-zero coordinate
(otherwise, we define ¢ (X)) to be the “empty foliation”). To define an associated measured
foliation, we begin by replacing each edge of 7 by a rectangle foliated horizontally in a
standard manner, and we equip this foliation with a transverse measure such that the
total transverse measure of each “vertical” side of the rectangle is equal to the weight of
the given edge. We then glue together all these foliated rectangles along their vertical sides
by a measure preserving map, the gluing pattern being prescribed by the incidence of the
edges themselves in the train track. We obtain in this way a partial measured foliation
on S, that is to say, a measured foliation supported on a subsurface with boundary in 5,
which has cusps on its boundary (see Figure 6).

!
1]

Figure 6

We then collapse each of the nonfoliated regions to a spine and obtain a measured
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foliation on S, whose equivalence class depends only on the element X € E(7). This
defines the element ¢, (X) € MF. For further details, we refer to [6], [7] and [9]. In
the case where 7 is maximal and recurrent, the image MF(7) = ¢,(E(7)) has nonempty
interior in MF, and ¢, is a homeomorphism between E, and its image. We note finally
(although we shall not use this fact) that the maximal recurrent train tracks on S define
the basis of a natural PL structure for MF.

Let 7 and 7' be two train tracks on S, with 7/ being obtained from 7 by an elementary
move. We have then a natural injective map ¢ : MF(7') — MF(7). In the case of a move
of type S, this map is also surjective. In the case of a move of type R or L, it is generally
a strict injection.

One of the main ideas in this kind of study is that an infinite sequence of successive
elementary moves performed on a train track (and we call such a sequence an RLS se-
quence) defines a sequence of nested sets in MJF. The intersection of these nested sets in
general is not equal to a point, but under suitable conditions on the sequence, it is equal
to a cone of dimension at most 3¢ — 3, and in fact, in a certain generic sense (which we
describe below), the intersection is indeed equal to a point in MJF. For our purposes, we
shall rather work in the space F and study the effect of an RLS sequence on subsets in F.

§3.—More about the space F

In the same manner as for the space MJF, maximal recurrent train tracks can be

used to give parameters for open subsets in the space F. Indeed, let us consider such a

train track 7 and let E(7) denote the interior of the convex cone E(7), defined in §2 above.
The train track 7 possesses a regular neighborhood V(7) in S, which is naturally fibered
over 7, each fiber being homeomorphic to a closed interval. The fibers are called ties,
and 7 can be viewed as the quotient of V(7) by the relation which identifies each tie to a

point. The open set MF(7) in MF is the image ¢.(E(7)). An element of MF(7) is in
MUF(7) if and only if it can be represented by a partial measured foliation whose support
is contained in a regular neighborhood V(7) of 7, which is transverse to the ties and such
that the intersection of each tie with the foliation is nonempty. The same property can

be used to describe open sets in F. Indeed, let us first note that the open set MF(7) is
saturated for the equivalence relation ~ on MF. It follows that a maximal recurrent train
o

track 7 defines an open set F(7) of F, which is the interior of the image F(7) of MF(7)
under the composed map f o p. Elements in the space

o

F(7) are characterized by the fact that they can be represented by partial measured
foliations with support in V(7) and which intersect transversely and nontrivially each tie.

Let 7 be a train track with n vertices and suppose that we have a fixed marking on
the vertices, that is, a one-to-one map from the set of vertices to the set {1,...,n}. If we
perform an elementary move on 7, then the marking on the vertices of 7 induces naturally
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a marking on the vertices of the resulting train track. (This is clear when we think of the
move as an unzipping or a sliding operation, as explained above). The following is a basic
result:

Proposition 1.— Consider an infinite sequence of elementary moves which are performed
starting from the marked train track 7. At each stage, we suppose that the vertices of the
train track are equipped with the marking induced from that on the vertices of the preceding
one in the sequence. Suppose the following condition holds:

(3.1) For every it = 1,...,n, there are infinitely many elementary moves performed on
the vertex marked t.

Let us call 79 = 7,71, 72, ... the sequence of train tracks successively obtained from T
by these mowves, and consider the infinite nested sequence of subspaces of F,

F(ro) DF (1) D F(m2) D---

Then the intersection _?WOO F(7;) consists of a finite number of points in F, whose
1=

cardinality is bounded by 23973, Furthermore, if this intersection contains an element of
F which s represented by a foliation of S which has no leaves connecting singular points,
then it 18 a singleton.

Proof: We give only a sketch of the proof, since it uses the same ideas and follows the same
outline as the proof of Theorem 1 of [§].

Using condition (3.1), one shows that if F} and F, are any two elements of the set
EWOO MUF(7;), their geometric intersection number ¢(Fy, Fy) is zero. In [8], instead of con-

dition (3.1), there is a weaker condition which says only that there are infinitely many
elementary moves of type R or L in the sequence. This is sufficient in the setting of [8]
where we consider only foliations in which every leaf is dense. In the present setting,
we need condition (3.1), which is used in the following argument. Start with an arbi-
trary nonnegative weight on 7 which represents a measured foliation in the intersection

4%00 MUF(7;) and consider the sequence of induced weights on the sequence of train tracks
1=

i (¢ = 1,2,...). When an elementary move of type R or L is performed on a vertex of
the train track 7;, then there is an edge in the train track 7,41 (which results from 7; after
the move) whose weight decreases by a controlled amount (it decreases with respect to
the weight of the corresponding edge in 7;), and the weights of the other edges remain
unchanged. Condition (3.1) implies that there are infinitely many moves of type R or
L involved in the sequence, and furthermore that these moves are not confined to some
proper part of the train track, since the index of each vertex appears infinitely often in the
sequence. We can see easily that this implies that the sequence of weights on the edges of
7; tends uniformly to zero as ¢ tedns to infinity, and this is the main point needed in the
proof of i(Fy, Fy) = 0, as explained in [§].

Given now a set {F;};er C MUF satisfying «(F;, F}) = 0 for every ¢ and j in I, we
can find a measured foliation F' on S such that each Fj is represented, as a topological
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foliation, by a union of components of F', that is, by a partial foliation on S defined as a
closed saturated subset of the foliation F'. Since any measured foliation on S has at most
3g — 3 components, the set {F}};e;r C MF gives rise to at most 23972 clements of F.
Finally, if F' is a measured foliation on S which has no leaves connecting singular points,
then it cannot be equivalent to a closed saturated proper subset of another foliation. ;From
that we deduce the proposition. ]

64.—The semi-Markovian action

We explain now the construction which gives the set of symbols and the subshift
that we seek to define. The main technical points in this construction consist in some
improvements of results proved in [8], and instead of doing the whole theory again, we
shall use the results of [8] and give explicitly the necessary modifications. Let v € T be
a pseudo-Anosov mapping class. (We shall denote by the same letter, v, the mapping
class and a homeomorphism of the surface representing this mapping class.) There exists
a recurrent train track 7 with the property that v(7) s carried by v (see [6], Chapter 2,
Proposition 1, or [8], Theorem 4.1). Let us recall that this means that v(7) is, up to isotopy,
contained in a regular neighborhood V(7) of 7 transversely to the ties. We represent the
fact that v(7) is carried by 7 by the relation v(7) < 7. Furthermore, it follows from the
proof of the result which we have just cited that, up to replacing « by one of its powers,
say 74, we can assume that 7 is maximal. (In fact, this property holds if the integer ¢
is chosen in such a way that 47 preserves each singular point of the stable or unstable
foliation and each sector at such a point.)

By [8], the relation v(7) < 7 is equivalent to the fact that there is a finite sequence
of elementary moves which produce the train track (7) from 7. Let A be such a sequence.
Without loss of generality, we can suppose that the sequence A satisfies a condition which
we formulate now.

Let n be the number of vertices of 7 and let us fix a marking on the set of vertices. For
each elementary move, we have an induced marking on the set of vertices of the resulting
train track. The condition which we impose on the sequence A of moves is the following:

(*) Forany: € {1,...,n}, thereis at least one elementary move in A which uses a vertex
whose index is .

By examining the construction of the train track 7 in [6], Chapter 2, Proposition 1
or in [8], Theorem 4.1, we can see that if we take ¢ large enough, then we can choose A
with the required property. The main point that is being used here is that the pseudo-
Anosov map 7 stretches by a definite amount the leaves of the unstable foliation F*, and
7 is defined in an appropriate manner as a quotient of that foliation. Now by taking a
sufficiently large power ¢, the way the train track %(7) sits naturally in a neighborhood
V(7) of 7 (as explained in the results we are referring to) insures that each edge of ()
intersects each of the ties of V(7) in a large number of points. This clearly suffices to find
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a sequence A of moves which satisfies property (*).

The semi-Markovian subset ¥y which we are going to define will be the intersection
of a cylinder C with a subshift of finite type ¥§ in a Bernoulli shift. Let us first describe
the Bernoulli shift.

We take as the set S of symbols the set of pairs (¢, s) where:

— ¢ is an element of the set of all conjugacy classes of maximal recurrent train tracks
on S together with a marking on the set of vertices, and

— s belongs to the set {Ry,..., Ry, L1,...,Ly,, S1,...,5,}, where n is as above the
number of vertices of 7.

Let us note that given a marked train track 7 and a a vertex marked ¢, it is not true
that we can apply on 7 any one of the moves R;, L; and S;. This fact will be taken into
account in the definition below (conditions (ii) and (iii) ).

Let ¥ = 3(N,S) denote the one-sided Bernoulli shift on S. The subshift 3§ C ¥ is
defined by the following conditions (i), (ii) and (iii).

(i) A symbol (¢, s) is admissible only if it is possible to perform an elementary move s
on a marked train track in the class c.

(ii) A sequence of two symbols (¢, s) and (¢', s') is admissible only if the result of applying
the elementary move s to a marked train track in the class ¢ produces a marked train
track in the class c'.

Before formulating condition (iii), we begin by fixing once and for all a marking on
the vertices of 7, which is chosen in the following manner:

Suppose that 7 is equipped with a certain marking A: {vertices} — {1,...,n}. Con-
sider the sequence A of elementary moves which transforms 7 to 4%(7). This sequence
induces naturally a marking A" on the vertices of v%(7). This train track v%(7) is of course
conjugate to 7, but the conjugacy does not necessarily carry the marking A of 7 to the
marking N’. However, up to replacing the mapping class ¢ by one of its powers, we can
find a marking A" which has the property that A" coincides with the marking v7(N'). We
fix once and for all such a power (which we denote also by v7), with a marking N having
the required property. Let (ag,. .., ax) be the sequence of symbols represented by the word
A. Each q; is therefore a pair (¢;, s;), and the last symbol ar = (¢x, sx) is such that the
elementary move s; on a marked train track in the conjugacy class ¢; produces a marked
train track in the class v9(7), that is to say, in the class of 7.

We can state now condition (iii):

(iii) For every subword w of length n (= the number of vertices of 7) in an element of
35, one of the following two properties hold:

— either each one of the integers {1,...,n} appears at least once as an index value for
an elementary move involved (i.e., as a second coordinate of a symbol) in the word,
or:



— if w is preceded by a word w' whose length is equal to length(A), then the word A
appears as a subword of w'w.

Let 3§ be the subshift defined by conditions (i), (ii), and (iii). The following lemma

is clear :
Lemma 2.— The subshuift 33 s of finite type. ]

Let C' be the cylinder in ¥ defined by the property that the first symbol zy in the
sequence (xg, 21,3, ...) representing an element of ¥ is the conjugacy class of the marked
train track 7.

Let ¥y be the semi-Markovian subset of ¥ defined by
(4.1) So=CnN

We define now a multivalued map
(4.2) m: ¥y — F

in the following way: given an element x = (zo, 21, 2,...,) in Xy, perform the sequence
of elementary moves starting with the train track 7 together with its marking N'. Let 7 =
7,71, T2, ... be the resulting sequence of train tracks. The image m(x) is the intersection

Cﬁo F(7;). We note that condition (iii) insures that in the infinite sequence of elementary
1=0

moves that we are considering, the index of each vertex appears infinitely often. (This
uses condition (*) on the sequence A that was stated above. Therefore, condition (3.1) in

Proposition 1 is satisfied. The cardinality of the set .CE}OO MUF(7;) is therefore bounded by
239_3. 1=
Before stating our final result, we need to make one more definition :

Let ¥ be a Bernoulli shift and ¥y C ¥ a subshift of finite type or a semi-Markovian
subset, and let Ag = (ao,...,ar) be a finite sequence of symbols with the following prop-
erty:

For every element & = (zg, 21,22 ...) of ¥, the element
Aox = (ag,ay,...,a, To,T1,Ta,...)

is also in .

We define then a map 04,: X9 — Yo by the rule z — Agz, and we call it (by abuse
of language) a section of the the restriction of the shift to Xy. (In fact, 04, is a section of
the (n 4 1)-th power o™ of the restriction of the shift.)

To state the theorem, we consider again our pseudo-Anosov mapping class ~, the
semi-Markovian subset ¥y defined by (4.1), and the map m defined by (4.2), and we let A
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be the finite sequence of symbols which we have defined above, obtained from the relation
o(7) < 7. We can now state the following

Theorem 3.—The map g4:X¢ — Yo 1s a section of the shift restricted to the semsi-
Markovian subset oy, and there exists an integer ¢ >1 such that the following diagram is

commautative: o4
Yo —— X

.
Vv — VvV
Furthermore, for every x € ¥y, the number of points in the image m(z) is bounded by
23973 and if Fo C F 1is the subset of elements which can be represented by foliations which
have no leaves connecting singular points, then the restriction of m to the set m™1(Fy) 1s
a genuine map (i.e., it is not multivalued).

Proof: The proof follows from the construction. Let us only note that the fact that the
map o4 is a section of the shift is also a consequence of condition (iii) above and that the
commutativity of the diagram follows from the relation v4(7) < 7 and from the definition

of the word A. |

Finally, let us make the following remarks which can help explaining the technical
side of the theorem :

1. The equivalence relation ~ on MF is not closed and the space F is not Hausdorff.
Indeed, let F' be an element of MJF which can be represented by a measured foliation Fj on
S which has a closed leaf separating S into two subsurfaces with boundary. The foliation
F, induces two measured foliations on these subsurfaces, which we denote by F| and F'.
Each of the foliations Fjj and F{' has a well-defined equivalence class as a measured foliation
on S, and we denote these classes respectively by F' and F" € MJF. For every positive
real numbers x; and x5, the expression z1F' + 22 F" defines naturally an element in MF.
These elements are distinct if the x;’s are distinct, but all such elements are ~-equivalent
to F. Let x, be now a sequence of positive real numbers converging to 0. The measured
foliation class z,F' + F'" converges to F'' in the topology of MJF, whereas F'"' is not
~-equivalent to F. This proves that the topology of F is not Hausdorff. In fact, the set of
elements such as F', F' or F'" above, which either can be decomposed into the sum of two
disjoint measured foliations on the surface, or can be represented by a component of such
a decomposition, is exactly the “bad set” of the space F, that is, the set of points which
the topology does not separate. The set of such elements is exactly the complement of Fj
in F, and it is not surprising that the map m, whose domain is ¥y, which is Hausdorft, is
precisely multivalued when it takes values in the set Fy C F.

2. In a certain sense, the space Fy of “good points” in F is equivalent, as a measure
space, to the space PMF. Let us make this statement more precise. For this, recall that
MUF is equipped with a canonical measure which is invariant by the action of the mapping
class group. This measure, which has been defined by Thurston in [9], coincides with
Lebesgue measure in the coordinate charts of MJF associated to maximal recurrent train
tracks (see section 2 above). The projection map p: MF — PMUF induces a well-defined
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measure class on PMF (a set E C PMUF has measure zero if and only if its inverse image
p~1(E) C MF has measure zero). Let £ C F be the set of equivalence classes of uniquely
ergodic foliations and with no leaves connecting singular points. The set £ has full measure
in MF (cf. [4], [5] or [11]). The image p(€) has also full measure in PMF. It is easy to
see, from the definitions, that the restriction of the quotient map f to p(€) is a bijection
between p(€) and its image. In this way we define a measure class on f o p(€) and extend
trivially to a measure class on F.

Note. After a first preprint version of this paper, Lee Mosher informed the author that he
is preparing a paper which contains related ideas. Finally, the author would like to thank
the referee for a detailed list of corrections.
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