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AROUND REAL ENRIQUES SURFACES

ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV

ABSTRACT. We present a brief overview of the classification of real Enriques
surfaces completed recently and make an attempt to systemize the known clas-
sification results for other special types of surfaces. Emphasis is also given to
the particular tools used and to the general phenomena discovered; in particu-
lar, we prove two new congruence type prohibitions on the Euler characteristic
of the real part of a real algebraic surface.

NMETSA. A Bopona y6uu.
0OJIsI. 3Bauewm, zauem? Kowmy ke mano?

NMETA. On kapkaJ HaIo MHOWM.

Benumup Xne6aukoB. Muperdnya.®

There was a young fellow from Clyde,

Who was once at a funeral spied,
When asked who was dead,
He smilingly said,

“I don’t know. I just came for the ride.”
Limerick.

1. QUESTIONS AND THEIR HISTORY

In this paper we consider nonsingular real algebraic surfaces. From the
naive point of view, these are just surfaces given in a real projective space by
a nonsingular system of polynomial equations with real coefficients. However,
at certain stage it becomes natural, and even necessary, to enhance and extend
this notion. First, as polynomial equations also make sense over C, one can
consider complexification. The resulting complex surface, given by the same
equations in the corresponding complex projective space, is invariant under
the complex conjugation involution, and the original real surface is its fixed
point set. Then one can take the surface out of the ambient space, considering
it as an abstract analytic manifold, and thus arrive to the notion of complex
analytic manifold equipped with a real structure; the latter, by definition, is
just an antiholomorphic involution on the manifold, and it 1s this involution
(and, in particular, its fixed point set) that is subject of the study. (Note
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that one could as well consider algebraic surfaces over C endowed with a
Galois involution. In both the cases a real structure on a surface X is an
involutive isomorphism X — X. However, we prefer to deal with complex
analytic manifolds as, on one hand, the analytic category is wider, and on the
other hand, the problems we are interested in and the tools we are using are
topological. Above all, in all the cases considered below the topology of real
structures happens to be the same in both the categories.)

Apart of the main question, to study the real structure (involution) up to
homeomorphism or diffeomorphism, there are several other, more visual, levels
of investigation. In particular, the so-called purely real approach concerns only
the topology of the real point set of the variety (i.e., the fixed point set of the
real structure). The level of study being fixed, the question still can be posed
in various ways. The first desire is to classify the real structures (or fixed point
sets, or whatever is chosen for the subject). Then one has to confine oneself
to a certain class of complex surfaces, say, one or several related deformation
families.

Chronologically, the first family considered from this point of view were
cubic surfaces in Rp3, which were subjected to different classifications. Prob-
ably, the first classification taking into account the real structure was given
by Schlafli [S1], who in 1858 introduced his famous 5 kinds of generic (i.e.,
nonsingular) cubic surfaces. Tt is rather difficult to believe that he had no
idea about the shape of the real part of these surfaces; however, it was not
until 1872 (see [S2], [S3]) that we could find in his papers any related remarks.
Probably, in spite of Riemann’s input, the topological setting in that time was
still neither current nor respected.

Apparently, it was Klein who first explicitly posed and solved all the ba-
sic questions concerning topology of real cubic surfaces. In 1873 (see [KI])
he showed that Schlafli’s classification coincides with the topological classifi-
cation of the real parts of cubic surfaces. Furthermore, he showed that the
moduli space of cubic surfaces with a given topological type of the real part is
connected, which in fact gives the complete topological classification of Galois
involutions on cubic surfaces: two such involutions are equivalent if and only
if their fixed point sets (i.e., the real parts of the surfaces) are homeomorphic.

Cubic surfaces occupy a special position among other surfaces: from the
complex point of view they form one of the infinitely many components of
the moduli space (or, in other words, belong to a particular deformation
type) of rational surfaces. First results on the classification of general real
rational surfaces were obtained by Enriques [Enr] in 1897. The classification
was completed in 1912 by Comessatti (see [Col], [Co2]), who extended Klein’s
results to arbitrary real rational surfaces and described the topology of the real
parts for each (complex) deformation type (see Theorem 2.1 in Section 2).2

2The description of the connected components of the moduli spaces is also contained,
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In the late sixties Manin [M1], [M2] and Iskowskikh [Isk1]-[Isk3] put these
results into the modern framework, completed some statements, gave new
proofs, and generalized the results to 2-extensions of fields other than R.

It 1s worth mentioning that it is due to his solution of this classification
problem that Comessatti found a nontrivial bound for the number of com-
ponents of a real rational surface, which he later generalized to his famous
estimate on the Euler characteristic: in the modern terminology this result
states that the Euler characteristic of the real part of a real algebraic surface
is bounded by the Hodge number A! of its complex part.

Another natural direction of developing the subject is the study of real
quartics in Rp?, which was started by Rohn and Hilbert. (Hilbert even in-
cluded the corresponding questions in his famous list of problems.) After a
period of relative oblivion, in the late 1960’s they were made a subject of
study by Utkin, who followed the approach of Rohn and Hilbert (which re-
lates quartic surfaces to plane sextics) and used the classification of sextics
just obtained by Gudkov. The topological classification of the real parts of
real quartics was completed in 1976 by Kharlamov [Kh]. Once again the
solution of a classification problem stipulated the discovery of new general
phenomena: a series of congruences on the Euler characteristic of the real
part of a real surface (Gudkov, Arnold, and Rokhlin congruences and their
generalizations).

Quartic surfaces also belong to a special class: they are all so-called K3-
surfaces. Complex analytic K 3-surfaces form a connected moduli space, where
quartics constitute a connected subspace. From the differential point of view
all the complex K 3-surfaces are diffecomorphic to one another. In fact, the
topological classification of the real parts of general K 3-surfaces coincides
with and follows from the topological classification of the real parts of real
quartics: all the prohibitions on the real part are of purely topological nature,
and all the nonprohibited types are realized by quartics.

More advanced classification of real K 3-surfaces was done in 1979 by Niku-
lin [N1], who found and rather explicitly described the connected components
of the moduli space. According to Nikulin, two real K 3-surfaces belong to one
component if and only if their Galois involutions are topologically equivalent,
and the action of the Galois involution is determined up to diffeomorphism
by some simple numerical topological invariants.

Following the Enriques classification of complex algebraic surfaces, there
remains only five special classes of surfaces: abelian surfaces, surfaces with
a pencil of rational curves, hyperelliptic surfaces, surfaces with a pencil of
elliptic curves of canonical (Kodaira) dimension 1, and Enriques surfaces.

but, as far as we know, not explicitly stated in Comessatti’s works [Col]-[Co3]: with one
exception, within one complex deformation type the moduli space of minimal real rational
surfaces with a given topological type of the real part is connected.
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Abelian surfaces were classified by Comessatti (see [Co3]) for the precise
statements and further references. Some results on the topology of hyperel-
liptic surfaces and real surfaces with a real pencil of rational curves and the
classification of singular fibres of real pencils of elliptic curves were obtained
by Silhol [Si].

The topological classification of the real parts of real Enriques surfaces,
as well as of some canonical structures that they inherit from the complex-
ification, was started by V. Nikulin [N2] and recently completed by the au-
thors [DK1], [DK2]. Similar to what happened during the investigation of
other special classes of surfaces, as a by-product of this study we discovered
some new topological properties of the Galois involution. The purpose of this
paper is to present these results, with an emphasis on the relatively new tools
applied and the veritable information which they give about surfaces more
general than the Enriques surfaces.

The paper is organized as follows: In §2 we cite some results which answer
some of the questions posed above. In §3 we present a specific tool which
we used to classify real Enriques surfaces and state some of its properties
(see [DK2]). This tool, so called Kalinin’s spectral sequence, which we know
mainly due to O. Viro and I. Kalinin, unfortunately is not widely known to
the specialists in real algebraic geometry and, in view of its general nature,
rather belongs to topology of periodic transformation groups. In §4 we prove
two new results on topology of real algebraic surfaces, which, on one hand,
were originated by the classification of real Enriques surfaces and, on the other
hand, illustrate applications of Kalinin’s spectral sequence.

Acknowledgements. We would like to thank Mathematisches Forschungs-
wnsitut Oberwolfach: an essential part of this project was elaborated during
our RiP stay in this institute.

2. SOME ANSWERS

Below, when describing the topological type of the real part of a surface,
we denote by S, the orientable surface of genus g and by V, = #,Rp?, the
nonorientable surface of genus ¢g. We use any of S = Sy = V for the 2-sphere.

We start with reproducing Comessatti’s result on the classification of min-
imal real rational surfaces.

2.1. Theorem (Comessatti [Col-Co3]). Each minimal real rational surface
is one of the following:
(1) real projective plane P?: RX = Vi;
(2) real quadric P! x Pl: there are four types: S, S1, and two nonequiv-
alent empty surfaces;

(3) ruled rational surfaces ¥p,, m > 2:

m even: RX =@ or 51, m odd: RX = Vy;



AROUND REAL ENRIQUES SURFACES 5

(4) real conic bundles over P! whose reducible fibers are all real and con-
sist of pairs of complex conjugated exceptional curves: RX = mS,
where 2m > 4 is the number of reducible fibers;

(5) Del Pezzo surfaces of degree d = K? =1 or 2:

d=1. RX =V, U455, d=2: RX =235 or4s.

Remark. The two nonisotopic real structures on X = P! x P! with RX = @
is the exception mentioned in the introduction.

Remark. The Del Pezzo surface of degree 2 with RX = 35 can also be repre-
sented as a conic bundle over P! with six reducible fibers.
In order to state other results, we need the following notion:

2.2. Definition. A Morse simplification is a Morse transformation which
decreases the total Betti number, i.e., either removing a spherical component
(S — @) or contracting a handle (S;41 — Sy or V4o — V). A particular
complex deformation family being fixed, a topological type (i.e., a class of
surfaces with homeomorphic real parts) is called extremal if it cannot be
obtained from another topological type by a Morse simplification.

Remark. Note that a Morse simplification may not correspond to a Morse sim-
plification in a continuous family of complex surfaces. As a result, the notions
of extremal topological type and extremal (in the obvious sense) surface may
be different. E.g., according to Viro and Kharlamov [Vi], any surface whose
real part is mod 2 homologous to zero in the complexification is extremal,
though it may have nonextremal topological type.

In order to illustrate this notion we list all (not only minimal) topological
types of Del Pezzo surfaces of degree 1 and 2. (Certainly, this result follows
immediately from Comessatti’s classification).

2.3. Theorem. The topological types of the real parts of Del Pezzo surfaces
of degree d = 1 and 2 are those (and only those) which may be obtained by
a series of Morse simplifications from the following extremal types:

d=1: Vg, V3|_|S, V2|_|V1,a11dvl|_|45;

d=2: Vg, V2|_|S, V1|_|V1,4S, andSl.

Finally, we list the topological types of the real parts of real K3- and
Enriques surfaces.

2.4. Theorem (Kharlamov [Kh]). The topological types of the real parts of
K 3-surfaces are those and only those which may be obtained by a series of
Morse simplifications from the following extremal types:

(1) M-surfaces: SijgU S, SeUbS, Sy LUIS;

(2) (M — 2)-surfaces: S7U2S, S3U6S;

(3) Pair of tori: 2S5,
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2.5. Theorem (see [DK1]). There are 87 topological types of real Enriques
surfaces. Each of them can be obtained by a sequence of Morse simplifications
from one of the 22 extremal types listed below. Conversely, with the exception
of the two types 65 and S1 UbS, any topological type obtained in this way is
realized by a real Enriques surface.

The 22 extremal types are:

(1) M-surfaces:

(a) x(Eg) = 8: (b) x(Eg) = —8:
4V1 |—|2S, V11|_|V1,
Vo2V, U3S, VipU Vs,
Vau Vi u4s, Vo U V3,
2V, L 45, ValU Vi,
VU, Ve U Vs,
Vou Sy |_|45J 2V,

Vio U St
(2) (M — 2)-surfaces with x(Eg) = 0:
Vau2Vy, Vsuvius,
VaU Vo UV, VauVauu s,
Ve U 2S, 2Va U S,
Vau S, us, 2V5 U St;

(3) Pair of tori: 2S5,

Remark. Nikulin’s classification of real K3-surfaces contains the following re-
sult: a real K3-surface X is determined up to equivariant diffeomorphism
by the topological type of its real part RX and its type (i.e., whether the
fundamental class [RX] is or is not homologous to zero in H2(CX;7Z/2)).
Since the fundamental group of a complex Enriques surface CE is Z /2 its
real part inherits an interesting additional structure: the set of its connected
components naturally splits into two halves, RE = RE() URE®). Each half
is covered by the real part of one of the two real structures on the covering
K3-surface. The study of this decomposition was started by V. Nikulin [N2]
as part of his attempt to classify real Enriques surfaces. The complete classi-
fication of triads (R F; RE(M) R E®) up to homeomorphism is given in [DK2]:

2.6. Theorem. FEach half of a real Enriques surface may be either Sy, or 2V3,
oraVyUaViUbS, g >1,a>0,b6>0,a =0,1. With the exception of the types
kS and V5, UkS any decomposition into halves satisfying the above condition
is realizable. The exceptional topological types admit only the distributions
listed in Figure 1.

Remark. Tt seems reasonable to conjecture that a real Enriques surface E is
determined up to equivariant diffeomorphism by the topological type of its
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b b
b
a a a bIj a
{aS}Tu{bS}, {VsUaS}tu{bS} {VeUaS}u{bS} {VsUaS}u{bS},
{VouaS}tu{bsS} {ViguaS}u{bs}

FiGURE 1. Exceptional topological types

real part RE, the above decomposition into halves, and its type (i.e., whether
the fundamental classes [RE], [RE(M], and [RE(?)] are homologous to zero,
wy(CE), or none of these in Hy(CFE;7Z/2)), cf. the remark on K 3-surfaces.

3. TooLs

In this section we introduce our primary tool—so called Kalinin’s spectral
sequence, which was originally constructed by I. Kalinin [Ka] as a stabilized
version of the Borel-Serre spectral sequence for equivariant cohomology. This
sequence starts at the homology H.(Y) of a topological space Y with invo-
lution ¢ and converges to the total homology H.(Fix c) of the fixed point set
of e. (Unless stated explicitly, all the homology and cohomology groups have
coefficients 7./2.) The resulting filtration F* on H,(Fixe¢) and the isomor-
phisms bv, between the limit term of the spectral sequence and Grz H, (Fixc)
were discovered by O. Viro geometrically before Kalinin’s work and were pri-
marily related to the Smith exact sequence. As it is shown in [DK2], Kalinin’s
spectral sequence can be derived from the Smith exact sequence as well.

Below we give a geometrical description of Kalinin’s spectral sequence and
Viro homomorphisms bv, and state their main properties. Proofs of these re-
sults and /or further references can be found in [DK2]. Since homology groups
are more transparent and easier to deal with, we decided to use the homolo-
gy language (though we cannot certainly help mentioning cohomology when
speaking about multiplications and Poincaré duality). As our approach is ge-
ometrical, we have to appeal to the notion of chain. Depending on the nature
of Y, one may work with singular, simplicial, smooth, or any other kind of
chains considered in algebraic topology. To assure convergence of the spectral
sequence, Y must satisfy certain conditions, which, strictly speaking, depend
on the homology theory chosen (e.g., sheaf theories and locally compact finite
dimensional spaces). However, in this paper all the results are applied to the
best possible topological spaces—smooth manifolds, so they do not depend
on this choice.

Thus, let us fix a good (see above) topological space Y with involution ¢ and
denote by Fix ¢ the fixed point set of ¢. Consider the partial homomorphisms
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bv,: H.(Fixc¢) ——+ H,(Y) and the Z-graded spectral sequence ("H.,"d,) de-
fined as follows:

(1) bvg is zero on Hyi(Fixe) and its restriction to Ho(Fixc) coincides
with the inclusion homomorphism;

(2) bv, is defined on a (nonhomogeneous) element z € H,(Fixc) repre-
sented by a cycle Y~ z; (where 2; is the i-dimensional component of z)
if and only if there exist some chains y; in Y, 1 < i < p, so that
Oy1 = xg and Jyiy1 = 2 + (1 4 ¢x)y; for ¢ > 1. In this case bv, z is
represented by the class of z, + (1 + ¢4)yp in Hp(Y);

(3) Hl = Ho(Y) and 'y = 1 + ¢4

(4) "dp, considered as a partial homomorphism H,(Y) --+ Hppr—1(Y),
is defined on a cycle z, in Y if and only if there are some chains
Yp = Zp,Ypt1,-- > Yptr—1 S0 that dyiy1 = (1 + ci)y;. In this case
Tdpxy = (14 ca)Ypgr—1-

3.1. Theorem. The homomorphisms bv. and spectral sequence ("H.,"d,)
are natural with respect to equivariant maps. Furthermore, "H, and "d, do
form a spectral sequence (i.e., "d, are well defined homomorphisms "H, —
"Hpyr—1 and ’"+1Hp = Ker'd,/Im"d,_,41), and this sequence converges to
H,.(Fixc) via bvy, lLe., bv, induces an (honest) isomorphism FP/Fr+l —
*°H,, where 77 = Domainbv, = Ker bv,_;.

There is an obvious cohomology version "H* = H*(Fix c) of the spectral
sequence, which is dual to the homology one. The cup- and cap-products
in Y naturally extend to, respectively, a Z/2-algebra structure in "H* and
"H*-module structure in "H,. If Y is a connected N-manifold and Fixc #
@, then the fundamental class [Y] survives to ®Hy and the multiplication
AY]: "H? — "Hn_, is an isomorphism (Poincaré duality), which, in the
usual way, defines homology intersection pairing o: "H, @ "Hy = "Hpyq-n.
The relation between this pairing and the ordinary intersection pairing in Fix ¢
is given by the following statement:

3.2. Theorem. Let Y be a smooth closed N-dimensional manifold with a
smooth involution ¢: Y — Y, and let F = Fixc be the fixed point set of c.
Denote by w(v) the total Stiefel-Whitney class of the normal bundle v of F
inY. Then for a € FP and b € F? one has w(v)N (a ob) € FPT9=N and

bv, @ obvyb =bvyye_n[w(v) N (aob)].

The (homology) Steenrod operations Sq,: H.(Y) — H._:(Y) also ex-
tend to "H.. In order to describe their relation to the ordinary Steenrod
operations in H,(Fixc), let us introduce the weighed Steenrod operations
gatm = Zogjgt (};__]17) Sq; x, where = € Hp(Y) and P > p +1 is a power
of 2. (The binomial coefficients do not depend on P, see, e.g., Lemma 1.2.6
in [SE].) Then one has:
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3.3. Theorem. If x € FF andt > 0, then gatl‘ € FP~t and
Sq; bv, 2 = bv,_y gatm.

We conclude this section with the description of Viro homomorphisms (in
dimensions up to 2) in the case when Y is a real algebraic surface and ¢ = conj
is the real structure. Let Cp,Cs,...,Ck be the components of RY. Denote
by (C;) and [C;] their classes in Hg(RY) and fundamental classes in H2(RY)
respectively. Then the values bvg(C;), bvy a (with a € H1(RY)), and bva[C}]
are always well defined and coincide, essentially, with the inclusion homomor-
phisms. The value bv{(C; — C;) is also well defined and is represented by
the equivariant circle (1 + conj,)y1, where y; is an arc in CY connecting a
point in C; with a point in Cj;. If, under some appropriate choice of y;, this
circle is homologous to zero, (1 + conj,)y1 = Jys, then bvi(C; — C;) = 0
and (1 + conj,)ys represents bvo(C; — C;). Similarly, if bvia = 0, ie.,
a = (1 + conj,)y1 for some cycle y; in CY, then there exists a chain ys
in CY such that dy2 = a+ (1 + conj,)y1, and (1 4 conj, )y, represents bvs .
Finally, if bvy o = bv1(C; — C}), then bvy(a + (C; — Cj) is defined and is
represented by (1 + conj,)y2, where dys = o + (1 4+ conj,)y; and y; is an
appropriately chosen arc connecting two points in C; and Cj.

Elements of the form bvs[C}], bva(C; — C;), bvs a, and bvs(a + (C; — C;))
span ®Hy(CY') (i.e., ®H3(CY) consists of their linear combinations ) bvy 2;;
with an abuse of language we let ) bvsz; = bvy ) z; provided that the
latter is well defined, even if the summands are not well defined). According
to Theorem 3.2, Kalinin’s intersection form on ®H5(CY") is the one given by
Table 1. In the table, the intersection a0 is regarded as an element of Ho(Yg),
and (aoB)[RY] and (a0 3)[C;] are, respectively, the total intersection number
and its portion falling into Cj. d;; stands for the Kronecker symbol: 6;; = 1
and d;; = 0 if ¢ # j. The intersection form extends linearly to the classes

bva(a + bvo(C; — C})), as if bvy a and bvy(C; — C;) were well defined.

TABLE 1
bvo(C; — C;) bvsy a bv,[C]
bvo(Cx — Ci) 0 0 ik + it
bv, 3 0 (a0 B)[RY] | (B0 pB)[Ci]
bv,[Cl] dik + Ojk (a0 a)[Ck] dikx(Ci)

The Bockstein homomorphism Sq,: ®H3(CY') — *°H;(CY) is given by
Theorem 3.3: Sq; bv2[C;] = bvy w1(C;) and Sqy bva(a + (C; — C;)) = bvy a.
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4. OTHER RESULTS

The classification results cited in Section 2 can be considered as an ad-
vanced experimental part of the study of the topology of real algebraic sur-
faces. As any experiment, it serves not only to confirm the applicability of a
certain general theory but also to help to discover new phenomena. Several
examples have already been mentioned in Section 1: the classification of real
rational surfaces (Theorem 2.1) led Comessatti to his inequality on the Eu-
ler characteristic, and the Arnold-Gudkov-Rokhlin congruence [Ro] was first
observed for real K 3-surfaces (Statement (1) of Theorem 2.4).% The classifica-
tion of real Enriques surfaces also gives considerable material for observations.
Even a glance at the list of extremal types given by Theorem 2.5 and at the
complete list generated from it reveals several regularities. One can notice,
for example, that all the M-surfaces are nonorientable and that the orientable
(M — 2)-surfaces (appearing in the derived list) satisfy the same congruences
as M-surfaces. In [DK2] we established (and made use of) several general re-
sults of this kind. (References to other related results known in the literature
are also found in [DK2].) Below we suggest a slightly different interpretation
and generalization of this phenomenon. We hope that for a good observ-
er the classification of real Enriques surfaces may provide materiel for other
discoveries.

4.1. Theorem. Let X be a complex closed surface with antiholomorphic
involution, and let w2(CX) = 0. Then:
(1) if H1(CX) =0, then RX is orientable;
(2) if H1(CX;Q) = 0 and RX is nonorientable, then X is an (M — d)-
surface, d > 2, and
(a) ifd =2, then x(RX) = ¢(CX)
(b) ifd =3, then x(RX) = ¢(CX) £2 (mod 16);
(c) ifd=4 and x(RX) = o(CX) + 8 (mod 16), then the image of
[RX] belongs to Tors H2(CX;7Z)® Z./2 C H2(CX).

(mod 16);

4.2. Theorem. Let X be a complex closed surface with antiholomorphic
involution, and let w2(CX) # 0. Then:

(1) if X is an M-surface, then RX is nonorientable;

(2) if, besides, ws(CX) € Tors Hy(CX;7Z) ® Z/2 and RX is orientable,
then X is an (M — d)-surface, d > 2, and
(a) ifd =2, then x(RX) = ¢(CX) (mod 16);
(b) ifd =3, then x(RX) = ¢(CX) +2 (mod 16);

3More precisely, the congruence was conjectured by D. Gudkov based on his classification
of plane sextics, which are closely related to K3-surfaces. Note that the experimental
material known to Ragsdale and Comessatti could already reveal some congruences, but
they both did not notice them and put attention only to the inequalities.
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(c) ifd=4 and x(RX) = o(CX) + 8 (mod 16), then the image of
[RX] belongs to Tors H2(CX;7Z)® 7Z./2 C H2(CX).

The congruence part (Statement (2)) of Theorems 4.1 and 4.2 is proved
similar to the well known Arnold-Gudkov-Rokhlin type congruences. Let
Discr HT be the discriminant form of the lattice HT of the conj,-invariant
elements of Hy(CX;Z)/ Tors. Then in both the theorems it suffices to prove
that, under the hypotheses, in (a), (b), and (c) one has dim Discr H* = 0,
1, and < 2 respectively. This, in turn, would follow from the fact that either
dim ®H,(CX) < dim H1(CX) or portion of Tors Hy(CX;Z)®7Z/2 C H4(CX)
dies in ®H3(CX). (We address an interested reader to [DK2, §6].) Tt is this
assertion that is actually proved below.

Proof of Theorem 4.1. (1) If there is an element a € H{(RX) with a? = 1,
then (bvaa)? = 1. (bvga is well defined since H1(CX) = 0.) This contra-
dicts to the assumption that the intersection form in H5(CX) and, hence,
in ®H3(CX) is even.

(2) By assumption, there is an element o € H1(RX) with a? = 1. Similar
to (1) one concludes that for any such element bv; a # bvy C for any C €
Ho(RX) with bvgC = 0. (In particular, bv; @ # 0.) Furthermore, any
nonorientable component C; of RX is of even genus, i.e., w}(C;) = 0. Now it
is easy to see that bvy @ does not belong to the image of Sq; obva. On the
other hand, Sq; : H2(CX)/Ho(CX;Z)®7/2 — Torsy Hi(CY ;Z) = H1(CY') is
an isomorphism; hence, Imbvs does not cover Hy(CX)/H,(CX;Z)®7Z/2. O

Proof of Theorem 4.2. (1) If R X is orientable, there isno element o € H, (R X)
with (bvi @)? = 1; hence, w2(CX) dies in *°H5(CX) and the surface is not
maximal.

(2) According to (1), portion of Tors Hy(CX;7Z) ® 7 /2 (at least wq(CX))
dies in ®H4(CX). O
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