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Abstract: It is well known that interfaces usually play a major role in the definition of the 

mechanical behaviour of engineering structures having interactions with the soil. In this paper 

the general framework of an elasto-plastic constitutive model developed on purpose for 

describing the interface behaviour is presented. The model is based on a Mohr-Coulomb 

failure criterion, including deviatoric hardening/softening, phase transformation state 

(compaction and dilatancy) and ultimate state. The choice of the constitutive parameters and 

their identification is first discussed. The predictions of the model are then presented and 

compared with available experimental data from various interface tests between sand and 

metal plates. The results of the numerical analyses emphasise the key role played by the 

volumetric behaviour of the interface (compaction and dilatancy), linked in some cases with 

the change in the normal stress acting on the structure surface and, consequently, controlling 

the shear resistance at the interface. 

 

 

Keywords: soil-structure interface, elasto-plasticity, constitutive law, interface testing, 

modelling 
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1. Introduction 

The serviceability of a wide range of engineering structures involving interfacing between 

structural elements and soil is highly dependent on the behaviour of the layer of soil forming 

close to the structure surface. Interfacing between bodies of different stiffness is also 

encountered in rock mechanics in systems of jointed and faulted rocks. In this case the zone of 

fracture is generally filled by granular materials, that are often the results of previous 

degradations of block surfaces. This layer, commonly referred to as the “interface”, acts as a 

transition zone between the stiffer structural element and the softer soil medium or between 

the two rock blocks as well. In general this transition zone is mainly strained in the tangential 

direction. However, in granular materials, the volumetric behaviour of this layer is often 

complex, leading to compaction as well as dilatancy with displacement in the normal 

direction. 

Probably the first complete and systematic experimental investigation of the interface 

behaviour has been presented by Potyondy [1]. In Potyondy’s study experimental data are 

derived from tests performed with a modified direct shear box, obtained by replacing the half 

bottom part of the classical Casagrande direct shear box with a material simulating the 

structure. Various materials and different roughness have often been employed to highlight 

the factors controlling the interaction between the two media. This laboratory equipment 

(modified direct shear box) has been the object of several modifications, especially related to 

the possibility of reducing its principal deficiencies  ([2] - [6]). In this respect it is worth 

noting that a wide range of increasingly sophisticated testing devices are available to date. 

Among others, let us quote: the pull out apparatus ([7]), the ring torsion apparatus ([8], [4], 

[9]), the simple shear apparatus ([10]) and more recently the cyclic three-dimensional simple 

shear interface apparatus ([11]), and the ring simple shear apparatus ([12], [13]). One basic 

phenomenological aspect is however common to all the apparatuses for interface testing: the 
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observable kinematic state variables required for the description of the interface behaviour are 

the relative displacements, rather than deformations like as for a standard continuum medium. 

From a numerical viewpoint, a number of models have been presented recently for the 

description of the behaviour of interfaces. Most of them mainly concentrate on the behaviour 

of interfaces between granular soils and metal. 

In a first class of models, on the basis of results concerning the modelling of rock joints, the 

material of the interface is supposed to be linear elastic, or non-linear with a stress-

displacement relationship of hyperbolic type in the normal and tangential directions ([14]). 

Hardening is not taken into account and the condition of failure, in terms of shear strength, is 

brought back to the traditional relation dictated by the Mohr-Coulomb failure criterion. More 

complex models, incorporating the concepts of dilatancy, compaction and damage, have been 

also proposed within this theoretical framework ([15] - [17]). 

A second class refers to the theory of elasto-plasticity. Formulations relate as well to the 

assumptions of a perfect plasticity as to those of an hardening material (inter alia: [14], [18] - 

[23]), permitting also the analysis of particular conditions such as cyclic loading and softening 

([24] - [26]). Along with a new definition of the kinematic state variables, stresses are related 

to displacements, and the theoretical structure of these models remains identical to that of the 

majority of the elasto-plastic models suggested for the description of soil behaviour. Finally, 

also the use of polar continua ([27]) and of directionally dependent rate type laws ([28], [29]) 

has been attempted. 

Given the results of previous studies already published in the literature, the research presented 

herein addresses the possibility to model in a unified and simple way the behaviour of an 

interface subjected to monotonic loading using a purposely developed elasto-plastic 

constitutive model. The model has direct links with the Mohr-Coulomb failure criterion, 

includes deviatoric hardening/softening behaviour, and integrates the phase transformation 
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state (concept of compaction-dilatancy). An original treatment of the ultimate state condition 

at large tangential displacements (parallel to the direction of shear) is proposed, allowing to 

account for the modification of the granular assembly structure during shear. The choice of 

the constitutive parameters and their identification is discussed. The potential of such an 

approach to describe the response of a real interface is assessed through the comparisons of 

model predictions with various laboratory interface test results performed either at constant 

normal stress or at constant volume. 

2. The elasto-plastic stress-displacement law 

Before starting the formulation of the elasto-plastic law adopted for the description of the 

behaviour of the granular soil-structure interfaces subjected to monotonic loading, the 

following assumptions and definitions are adopted: 

1. The interface represents the remoulded zone of soil adjacent to the surface of the 

structural element. In granular materials, in absence of a direct measurement, the thickness “t” 

of this layer can be estimated as being a multiple of the average diameter D50 of the grains 

with values ranging between 5 to 10 D50 for a rough interface ([38] - [40]). 

2. The formulation will be limited to the two-dimensional case (case of problems in plane 

strain or having a symmetry of revolution). Following the general approach of incremental 

elasto-plasticity the kinematic state variables are the normal relative displacement of the 

interface, un , and the tangential relative displacement of the interface, ut . The associated 

stress variables are the normal stress, σn, and the shear stress, τ, parallel to the direction of the 

interface; Σ = (σn, τ)T is the stress vector and U = (un , ut )T is the relative displacement vector. 

3. Stresses and relative displacements are taken as positive in compression, and considered 

homogeneous within the interface layer. The soil is assumed to be dry, so that the analysis can 

be performed in terms of total as well as effective stresses. 
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In the following the general formulation briefly outlined, based on experimental evidence, 

will be applied to the specific problem of the soil-structure interface. 

Elastic response 

The elastic behaviour of the interface is given by the following linear relation: 

⎥
⎦

⎤
⎢
⎣

⎡
==Σ

t

neee

K0
0K

;dUd KK  (1) 

The Ke is the matrix containing the stiffness of the interface in the normal (Kn) and tangential 

(Kt) directions, which might be considered dependent on the initial normal stress and the 

initial density. For instance, possible expressions are: 

N
nitt

N
ninn kK;kK σ=σ=  (2) 

where kn , kt and N are three constitutive parameters of the model, σni is the initial normal 

stress acting on the interface. Note that this choice of the elastic stiffness matrix implies 

uncoupled behaviour of the interface in the normal and tangential directions. 

Stresses: yield criterion and hardening/softening law 

Experimental evidence show that during interface tests under various conditions (i.e. constant 

normal stress, constant volume, constant normal stiffness) the relationship between normal 

and shear stresses at failure is well approximated by the Mohr-Coulomb failure criterion. 

Therefore, neglecting cohesion, the failure condition is given by: 

nfnff tan σµ=σδ=τ  (3) 

where δf is the friction angle of the interface at failure and µf = tan δf is the coefficient of 

friction. In perfect analogy with granular soils, rough interfaces experience during loading 

(shear) progressive hardening behaviour and significant reduction in shear stiffness until 
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failure is reached. Such a hardening phase could either tends to a plateau (loose interfaces) or 

evolves into strain-softening and then lean towards a final plateau corresponding to the 

ultimate state (dense interfaces). 

A schematic sketch of such a response, in terms of evolution of the stress ratio µ = τ/σn and 

normal displacements un versus tangential displacements ut, is presented in Fig. 1. Continuous 

hardening, typical of loose interfaces, leads to a progressive mobilisation of the coefficient of 

friction µ, which increases until reaching the limit value µf at failure. The latter coincides with 

the ultimate value µr at large tangential displacements (ultimate state). In the case of a loose 

interface compaction is predominant (see un
L Fig. 1). 

The hardening/softening response of the dense interface, on the other hand, corresponds to 

increasing values of the coefficient of friction µ, which grows towards µp, and then decreases 

to the asymptotic ultimate value µr corresponding to the coefficient of friction at constant 

volume (ultimate state). In the plane σn-τ such an evolution of the stress state during 

hardening, in agreement with the frictional failure criterion (3), corresponds to a counter-

clockwise rotation of the locus τ = µσn , starting from the initial position coinciding with the 

axis τ = 0, until the failure line (µf = µp) defined by equation (3). The softening phase is well 

represented by a clockwise rotation of the same locus until the ultimate state (µf = µr). For a 

loose interface, dilation is preponderant and appears at the beginning of the loading process 

(see un
D Fig. 1), after a reduced initial phase of compaction. 

Consequently the yield mechanisms, whatever hardening or softening, are obtained by a 

generalisation of the Mohr-Coulomb failure criterion, as suggested by the deviatoric 

hardening concept ([30] - [33]). The rotation of the yield surface in the σn-τ stress plane due 

to deviatoric hardening/softening is assumed to be a function of the plastic tangential relative 

displacements p
tu  generated within the interface layer during shearing. 
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The yield surface F is governed by the standard Mohr-Coulomb failure criterion; the equation 

adopted is (see dot line Fig. 2): 

0)u(F n
p
t =σµ−τ=  (4) 

In this equation )u( p
tµ  is the hardening/softening function, giving the evolution of the 

mobilised friction coefficient during loading. 

Based on the schematic diagram shown in Fig. 1, for a loose interface in the hardening regime 

the function )u( p
tµ is assumed of hyperbolic type; it can be defined explicitly as: 

p
t

o

ni

p
t

ofo
p
t

ut
p

A

u
)()u(

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
µ−µ+µ=µ  (5) 

The plastic tangential relative displacement p
tu is the hardening parameter of the model. 

In equation (5) µf is the coefficient of friction at failure, µo = tan δo is the friction coefficient 

delimiting the initial elastic region (δo is the initial mobilised friction angle). Inside this 

wedge-shaped region (Fig. 2) only reversible relative displacements are permitted, given by 

inverting relation (1). The parameter t is the thickness of the interface layer, A is a parameter 

of the model governing the shape of the hardening fonction, σni is the initial normal stress 

acting on the interface, and po is a reference pressure ensuring a dimensionless expression of 

equation (5). We have assumed po = 1 kPa in all our calculations. The introduction of t 

(thickness of the interface layer) into equation (5) allows to consider an internal length 

parameter for the interface. The ratio 
o

ni

p
σ

 is introduced in order to take into account the effect 

of the initial normal stress σni on the shape of the curves of mobilised shear stress. Indeed, as 

for parameter A, a modification of this ratio via σni modifies the shape of the hardening 

function )u( p
tµ  (eq. (5)). 
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As already observed in Fig. 1 in the case of a dense interface, the initial hardening phase with 

increasing values of )u( p
tµ , after a peak of maximum mobilised friction at failure (µf = µp), 

evolves into strain-softening until a final plateau corresponding to the ultimate state (µf = µr). 

Thus, in the softening regime it is assumed that the evolution of the yield surface is governed 

by the following equation: 

( ) p
tf

p
t

p
tf

p
t

o
rfr

p
t uuanduu

t
A

hsec)()u( >⎥⎦
⎤

⎢⎣
⎡ −µ−µ+µ=µ  (6) 

Here three more parameters are introduced, namely: Ao , µr and p
tfu . The parameters Ao 

controls the shape of the softening function (6), µr defines the ultimate friction coefficient of 

the interface at large tangential displacements, i.e. at constant volume or ultimate state. The 

value p
tfu  is related to the plastic tangential displacement at peak of maximum mobilised 

friction, and corresponds to the value of the hardening parameter p
tu  at failure. As a matter of 

fact the value of p
tfu  defines the position of the peak of shear resistance. It has to be 

mentioned that softening behaviour has been considered in this work only with a view of 

modelling simplicity. There is no doubt that many factors are at the origins of this 

phenomenon, for instance shear banding instability ([34]) or other various aspects that have 

been fully described elsewhere and will be not be investigated here ([25], [26], [35]). 

Displacements: plastic potential and flow rule 

Plastic relative displacements appear if the condition F = 0 and the condition of consistency 

dF = 0 are simultaneously fulfilled. Their magnitude and direction are given by the definition 

of the plastic potential function Q and of the flow rule. The pertinent choice of the plastic 

potential function, Q, is essential to reproduce the typical volumetric behaviour observed 
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during interface tests (Fig. 1). Consequently, its expression should be suitable for the 

description of the following phenomena: 

1) the presence of an initial compaction (dun>0) in a test with constant normal stress, or 

correspondingly a reduction of the stress σn, normal to the interface layer, in a test with 

imposed constant volume or constant normal stiffness; 

2) the existence of a threshold corresponding to the phase transformation from compaction 

(dun>0) to dilatancy (dun<0), which corresponds, in a test with imposed constant volume or 

constant stiffness, to an increase of the normal stress σn; 

3) the stabilisation of the normal relative displacement un, or the normal stress σn, on an 

asymptotic value for large relative tangential displacements of the interface (i.e. dun = 0 or 

dσn = 0). This corresponds to the salient features of the critical state theory, where constant 

volume conditions are assumed at failure. 

Compaction (i.e. dun > 0 or dσn < 0) due to grain crushing at very large tangential 

displacements and/or high normal stresses is not considered in the present version of the 

model. 

In order to describe the above-mentioned phenomena (points (1) to (3)), non-associated 

elasto-plasticity has been assumed. The plastic potential function is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
σ

σµ+τ=
o

n
nc lnQ  (7) 

where the parameter µc is the slope of the phase transformation line τ = µcσn and σo is defined 

by the current state of stress acting on the interface. Taking into account equation (7), σo can 

be expressed as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ

µ
σ=σ

c
no exp  (8) 
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The plastic potential function introduced is analogous to the original formulation proposed by 

Schofield and Wroth [41] in the Cam Clay model. In this respect, it is worth mentioning that 

Nova [42] first introduced in an elasto-plastic theoretical framework the modelling of the 

phase transformation state in soils, using the same form of the plastic potential. Typical plots 

of the function Q in the σn-τ plane are presented in Fig. 2. This function describes a series of 

continuous surfaces which expand progressively during deformation, changing in size but not 

in shape (i.e. with the same derivatives on points having the same coefficient of mobilised 

friction). Differentiating equation (7) and rearranging using equation (8), the plastic 

increments of relative displacement are: 

⎥
⎦

⎤
⎢
⎣

⎡ µ−µ
λ=⎥

⎦

⎤
⎢
⎣

⎡
1

d
du
du c

p
t

p
n  (9) 

Thus compaction holds if µ < µc ( p
ndu  > 0) and dilatancy takes place if µ > µc ( p

ndu  < 0). The 

phase transformation state corresponds to the condition µ = µc, as a result p
ndu  = 0 (points A, 

B, C in Fig. 2). The dilatancy of the interface, D, is given by the following relation: 

µ−µ== cp
t

p
n

du
du

D  (10) 

It is worth noting that dilatancy at large relative tangential displacements is constant and tends 

towards the asymptotic value D = µc - µr (µr = µf in a loose interface). Therefore, ultimate 

zero rate of volumetric deformation of the interface at large tangential displacements, in 

agreement with experimental observations (i.e. ultimate state), cannot be reproduced if 

equation (7) is considered. 

In order to introduce this further important feature of the volumetric behaviour of the 

interface, a modified form of the potential function is now proposed. 
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Behaviour at ultimate state 

We examine now the conditions that allow to introduce the required zero dilatancy rate at the 

interface associated to the ultimate state. From equation (10) such a requirement is fulfilled if 

ut → ∞ ⇒ D = (µc - µ) → 0 (11) 

In addition, at ultimate state, we also know that: 

ut → ∞ ⇒ µ → µr = tan δr = constant (12) 

and µr = µf in the case of continuous hardening until ultimate state condition. From equations 

(11) and (12) it can be deduced that: 

ut → ∞ ⇒ D = (µc - µr) → 0 (13) 

and condition (13) is fulfilled if 

µc → µr (14) 

Consequently, the condition of zero dilatancy at the interface at ultimate state can be obtained 

if the coefficient µc , the stress ratio at phase transformation state, increases after phase 

transformation towards the final value µr (i.e. towards the stress ratio at ultimate state). 

Condition (14) corresponds to an evolution of the size of both compaction and dilation 

regions in Fig. 2. The mechanism is described in Fig. 3, on a typical stress path involving 

initial compaction, phase transformation and dilatancy (e.g. interface tests at constant 

volume), without taking into account for the time being softening behaviour (towards µf = µr). 

Following the indicated path, at point C, for a friction coefficient µ = µco there is a transition 

from compaction (µ < µco) to dilatancy (µ > µco). At a generic point M, in the dilation region, 

two different potential surfaces are plotted. The first (Q’o) is given by the family of functions 

in equation (7), admitting µco constant. The second (Q1) has been plotted admitting an 

increase of the coefficient µc from the initial value µco to µc1 according to condition (14). By 
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comparing the direction of the plastic displacement vector at point M, it can be argued that 

dilatancy at the interface can be substantially reduced assuming Q1 as the current potential 

function. The minimum value of dilatancy is obtained when the phase transformation surface 

τ = µc1 σn is close to the failure locus τ = µf σn, so that D = (µc1 - µf) → 0 (condition (13) with 

µr = µf). This is associated to a progressive shrinkage of the dilation region. If softening is 

expected (µf = µp), after reaching the maximum value µp, the coefficient of friction reduces to 

µr while the dilation region slightly expands (Fig. 2). In this case the minimum value of 

dilatancy is obtained when the phase transformation surface is close to the ultimate locus        

τ = µr σn , so that D = (µc1 - µr) → 0. Such a mechanism has a direct physical interpretation. 

Yield of dense interface layers due to shearing causes plastic dilation, resulting in an increase 

of the voids in the sample (shrinkage of the dilation region). On the other hand, shearing on 

loose interface layers causes an opposite effect, leading to an overall compaction of the 

interface and a reduction of the void ratio (shrinkage of the compaction region). 

It is noticed that, within the theoretical framework of the model, this is equivalent to a change 

in shape of the surfaces given by the plastic potential function Q (equation (7)), which is 

implicitly taken into account by allowing for an evolution of parameter µc. It is then admitted 

that the parameter µc in equation (7) is not a constant during deformation but is a function of 

plastic tangential displacement p
tu  (hardening parameter), so that: 

)u( p
tcc µ=µ  (15) 

After that, the equation of plastic potential function can not be a function of the plastic 

displacement. However, in the specific case where the form of the yield surface is always 

linear (equation (4)) with the hardening/softening functions as in equations (5) and (6), the 

direction of plastic flow at any point of the stress space remains path-independent. 

ha
l-0

01
29

50
9,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

07



14 

In order to reproduce the condition of shearing at constant volume at large tangential 

displacements (i.e. ultimate state), the following expression is proposed for the 

parameter )u( p
tcc µ=µ : 

( ) )u()u( p
tcoco

p
tc Dµ−µ+µ=µ  (16) 

The rate of dilatancy at the interface is controlled by the function D( p
tu ), defined as 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
−= p

t
o

nip
t u

pt
Bhsec1)u(D  (17) 

In equations (16) and (17), B is a constitutive parameter of the model, µ is the coefficient of 

friction mobilised during shearing, σni is the initial normal stress, t is the thickness of the 

interface and po is the reference pressure. Again, the ratio 
o

ni

p
σ

 is introduced in order to take 

into account the observed reduction in dilatancy at higher normal stresses. Obviously, at phase 

transformation µ = µco, and equation (16) is thus written co
p
tc )u( µ=µ . Figure 4 shows the 

evolution of µ, µc and dilatancy D = µc - µ versus the hardening parameter p
tu  (plastic 

tangential displacement). 

In the case of a dense interface dilation is predominant (see un
D in Fig. 4). The coefficient of 

friction µ first increases towards µp and then decreases towards µr (equations (5) and (6), 

hardening/softening response), while D(e) increases towards unity (equation (17)). Therefore 

equation (16) at ultimate state can be written: 

µ=µ )u( p
tc  (18) 

and on the basis of equation (11) D = 0. 

In the case of a loose interface, compaction appears from the beginning of the loading process 

(see un
L in Fig. 4). The coefficient of friction µ increases progressively until the limit value µr 
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(equation (5)) and, as in the case of a dense interface, D( p
tu ) increases towards the unity 

(equation (17)). Again, based on a similar discussion, condition (18) is fulfilled at large 

tangential displacements and D = 0. It must be noted that for a loose interface the value of L
coµ  

(Fig. 4) is close to the limit value µr. This leads to a reduced rate of mobilised dilatancy 

during shear and an overall compressive volumetric behaviour of the interface. 

3. Identification of constitutive parameters of the model 

As formulated the model requires fourteen parameters; these are: kn , kt , N, µo , µp , p
tfu , µr , 

µco , A, Ao , B, σni , t and po. Eleven among the fourteen parameters mentioned need to be 

determined with a specific procedure. Indeed, the value of σni is given by the initial condition 

of the test (in terms of initial normal stress acting on the interface), the value of t (thickness of 

the interface layer) is assumed proportional to the value of the D50 of the granular medium 

and po is a reference pressure (assumed equal to 1 kPa in this work). 

For the determination of the remaining eleven constitutive parameters one can use results of 

interface tests at constant normal stress or constant volume and, if available, the results of 

oedometric or isotropic compression tests. In the following, the methodology of parameters 

determination is briefly examined. 

Elastic parameters: kn , kt and N 

On the basis of relation (1), the normal and tangential stiffness of the interface depend on the 

values of parameters kn , kt and N. These relations are similar to existing empirical 

relationships proposed for the Young’s modulus of granular materials. Both kn and kt are 

introduced in order to take into account the dependence of the stiffness on density, whereas 

the coefficient N allows to consider a possible dependence on the normal stress. If N = 0, the 

dependence on the normal stress is neglected, in this case kn and kt are directly the normal and 
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tangential stiffness of the interface, respectively. 

The value of parameter N is obtained through curve fitting of the values of the initial 

tangential stiffness plotted against the applied initial normal stresses σni. As it will be 

discussed later in this section, due to the difficulty in the estimation of Kn , we have 

considered for N the usual value 0.55 obtained for the Young's modulus of silica sands 

(Fontainebleau sand) from triaxial tests on samples at various density ([36]). 

The parameter kt is found knowing the initial slope of the curve of mobilised shear stress (τ) 

versus tangential displacement (ut) of the interface. Such a slope, corresponding to the ratio 

tu
τ , is the value of the tangential stiffness Kt . The determination of the initial slope is rather 

delicate and often imprecise. In practice, one can either consider a secant stiffness or, if 

available, the slope of the unloading branch of the shear stress versus tangential displacement 

curve. For instance, in the first case it can be assumed that: 

to

f
t u

K
τ

=  (19) 

where uto is the tangential displacement when 
2
fτ=τ , τf is the maximum shear strength and 

σni is the value of the initial normal stress acting on the interface. From equation (1) it can be 

deduced that: 

N
ni

t
t

K
k

σ
=  (20) 

The parameter kn depends on the compressibility of the interface. Its determination is thus 

possible from oedometric compression tests on the interface material. Obviously, this type of 

test is not easy to perform, because of the difficulty to reconstitute samples having small 

thickness at a given initial density. Moreover this determination is systematically biased by 
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the effect of the remaining part of the undisturbed (not sheared) soil sample. Other factors, 

such as the density state, the normal stress level, the type of test (constant normal stress, 

constant volume) and the type of apparatus also affect the determination of interface normal 

stiffness. When appropriate, it is proposed to deduce kn from standard eodometric 

compression tests. Volume changes during oedometric compression are: 

iii h
dh

e1
de

v
dv

=
+

=  (21) 

where vi is initial specific volume, hi is the initial height of the sample and ei is the initial void 

ratio. In oedometric compression: 

v

v'
s

dCvd
σ
σ

−=  (22) 

where C’s is the swelling index giving the slope of the unloading branch of the vertical 

(normal) stress (σv) versus the specific volume change curve. Then, from equations (21) and 

(22): 

( )
dh

hC
e1

d
i

'
s

iv
v

+σ
−=σ  (23) 

Equation (23) allows to identify the normal stiffness of the interface, admitting that during the 

direct shear test the behaviour of the interface in the normal direction is of "oedometric type" 

with same elastic soil properties. We obtain: 

( )
tC

e1K '
s

ini
n

+σ
=  (24) 

where σni is the normal stress acting on the interface and t is the thickness of the interface. It 

is then possible to evaluate kn 

N
ni

n
n

K
k

σ
=  (25) 
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Plastic parameters: µo , µp , p
tfυ , µr and µco 

The value of the parameter µo = tan δo defines the extension of the initial elastic region of the 

interface, where δo is the minimum friction angle mobilised at the interface (Fig. 2). 

The parameters µf and µr are the coefficients of friction of the interface at peak and at ultimate 

state, respectively. Usually µf = µr in loose interfaces and µf = µp > µr in dense interfaces. 

They can be determined easily from interface tests at different constant normal stresses by 

linear interpolation of points (σn , τ) at peak failure and at ultimate state. Their values 

correspond to the slope of the Mohr-Coulomb peak failure line (µf) and the ultimate linear 

envelope at ultimate state (µr), as shown in Fig. 2. It should be mentioned that, due to the 

amplification of dilation characteristics of granular materials at low imposed normal stress 

levels, such a determination could lead to a small underestimation of µf. 

As mentioned, the value of p
tfu  defines the position of peak shear resistance in the diagram  

ut-τ (Fig. 1) and is adjusted in order to have the best curve fitting. We emphasise that here the 

aim is not to give a criterion to detect the instability point corresponding to the peak shear 

resistance. For a first estimation of p
tfu  it is proposed to apply the additivity postulate, we can 

write 

e
tftf

p
tf uuu −=  (26) 

Here e
tfu is the elastic tangential relative displacement given by 

t

fe
tf K

u τ
=  (27) 

τf tfuand  are the shear stress and the tangential relative displacement at the peak of shear 

resistance, respectively (Fig. 1). Obviously, if no peak is present in the ut-τ curve (case of a 

loose interface, Fig. 1), p
tfu  value is assumed large enough to avoid the occurrence of the 
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peak. 

The parameter µco is the coefficient of friction at the points of phase transformation (Fig. 2). 

At these points, the rate of the normal relative displacement or the variation of the normal 

stress are zero (Figs. 3 and 4). The value of µco can be identified much easier from an 

interface test at constant volume: it can be determined at the point of inversion of the stress 

path in σn-τ plane (point C in Fig. 3). 

Parameters: A, Ao and B 

The parameter A appears in the expression of the hyperbolic hardening function (5). It allows 

for the control of the shape of the curve of mobilised friction at the interface. Differentiating 

equation (4), it is possible to write: 

( )
( )

t
p

A;
udu

d

o

ni
2p

t

ofni
p
t

σ
=β

+β

βµ−µσ
=

τ

 (28) 

Where t is the thickness of the interface layer, assumed to be a multiple of the average grain 

diameter D50. The value of A can be obtained imposing the continuity of the value of the 

initial slope of the experimental curve (ut, τ) with the value of the analytical tangent p
tdu

dτ  

given in equation (28), calculated when 0u p
t = . The initial slope of the experimental curve 

(ut, τ) is the tangential stiffness Kt, so that 

 

( )
t

ofni K=
β

µ−µσ
 (29) 

As a result, the parameter A is 
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( )
tK

p
A

t

oof µ−µ
=  (30) 

The parameters Ao and B can be deduced following a procedure of optimisation by successive 

adjustments. Ao controls the shape of the softening function in equation (6), B controls 

directly the shape of the evolution rule of the parameter µc (equation (17)) and indirectly the 

rate of mobilisation of dilatancy at the interface (equation (10)). 

4. Comparison between model predictions and 

experimental results 

The validation of the proposed approach for interface modelling has been performed 

considering three classes of tests on the interface: tests at constant normal stress, tests at 

constant volume and tests at constant normal stiffness. We present in the following the results 

of the comparison between model predictions and experimental results. 

Test at constant normal stress 

Two different sets of experimental results of direct shear tests on the interface have been 

considered in order to validate the model on a constant normal stress path. 

The first set of experimental data ([36]) has been obtained performing interface tests in a 

modified direct shear box between a loose Fontainebleau sand and a rough metal plate (Rn = 1 

as defined in [10]). The physical characteristics of this sand are summarised in Table 1. Loose 

sand samples have been reconstituted pouring dry sand inside a square shear box 60 mm x 60 

mm. Density states are controlled by two parameters: the rate of deposition and the height of 

grains drop. One advantage of dry pluviation is that the repeatability of the process is 

satisfactory. Following this procedure initial density index ID equal to 0.46 (eo = 0.753) have 

been obtained. An imposed normal stress ranging between 25 kPa and 100 kPa has been 
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applied before shearing. These tests show clearly the influence of the normal stress level on 

the behaviour of the interface, involving: higher values of maximum shear stress (Fig. 6a) and 

decreasing at the interface when σni increases (Fig. 6b) 

The second set of experimental data examined are taken from the two interface tests presented 

by Tabucanon and Airey [6]. The tests were performed in a modified direct shear box on 

samples of siliceous Sidney sand and rough interface. This sand has physical characteristics 

similar to Fontainebleau sand (Table 1). Details of the experimental procedure can be found in 

the original reference. Both tests were carried out at constant normal stress σn = 150 kPa; the 

authors considered two different densities, namely ID = 0.15 (eo = 0.790, test A) and ID = 0.96 

(eo = 0.580, test B). As a consequence these tests allow to assess the influence of the material 

density on the mechanical response of the interface, as well as the capability of the model in 

reproducing it. 

Numerical computations of the interface tests on Fontainebleau sand have been performed 

with the set of parameters determined from test SB3 at σn = 100 kPa (Table 2). Other tests 

have been simulated just changing the initial conditions in terms of imposed normal stress σni. 

The results of the simulations are also presented in Fig. 6. The comparison between the 

experimental results and simulations is satisfactory with regard to the evolution of the shear 

stress (τ) and the normal displacement (un) versus the tangential displacement of the interface 

(ut). As it can be noted, there is a slight underestimation of the maximum peak shear stress 

predicted by the model for the tests carried out at low levels of normal stress. As evoked, this 

divergence between simulations and the experiments translates the effect of σn on the value of 

µp (i.e. non-linearity of Mohr-Coulomb failure line in the σn-τ plane for low values of σn). 

With regard to the evolution of the normal relative displacement (un) versus the tangential 

relative displacement (ut), it can be observed that the transition from compaction to dilatancy 

reproduced by the model is more gradual than the observed experimental response. It should 
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be mentioned, however, that the shapes of the experimental curves are rather singular. Indeed, 

where dilatancy appears (i.e. at low normal stress levels), the experimental results also show 

an extended initial phase where the change of normal relative displacement is zero (test SB1 

with σn = 25 kPa), or a very prolonged phase where the rate of normal relative displacement is 

zero (test SB2 with σn = 50 kPa). 

It is emphasised that the transition from compaction (test SB3, Fig. 6b) to dilatancy (test SB1) 

is associated exclusively to the change in normal stress σn . This behaviour is well depicted by 

the model via the ratio 
o

ni

p
σ

 introduced in equation (17) in order to control the rate of 

dilatancy, which increases when σni decreases. 

For the simulations of interface test on Sidney sand, the complete set of parameters used has 

been obtained from the experimental results of test A (Table 2). For such computations, due to 

the lack of experimental data, we have assumed kn = 2 kt. The comparison between the 

experimental results and simulations is presented in Fig. 7. The predictions are again 

satisfactory; as it is possible to observe, the softening phase present in test B is well captured 

by the numerical computations, as well as the response in terms of volumetric deformations 

due to the transition from a loose state to a dense state. 

Test at constant volume 

In order to check the model predictions on different stress path conditions, the results of 

interface tests at constant volume between Fontainebleau sand and rough metal plate (Rn = 1) 

are now analysed. These tests have been carried out on a ring simple shear apparatus ([12], 

[13]). A detailed description of this apparatus, showing its advantages and its shortcomings 

can be found in the given references and is discussed by De Gennaro [36]. In the ring simple 

shear apparatus the shear stress is applied to the internal surface of a thin-walled cylinder of 

granular material (Fontainebleau sand in this study) via a cylindrical inclusion subjected to 
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torsion. Rigid steel platens at the top and the bottom of the soil sample allow to reproduce 

plane strains conditions, and a glass window, integrated into the bottom steel platen, allows 

for the visualisation of grain motion at the interface ([37]). Therefore for these tests it has 

been possible to estimate by direct visualisation the thickness of the interface layer, assumed 

equal to 10 D50 (2 mm). The dimension of the annular sample are: 100 mm in height, 100 mm 

of inner radius, 200 mm of external radius. The sample is contained into a latex membrane 

and confined externally using a pressure-volume controller (GDS); the constant volume 

condition is obtained by a servo-mechanism allowing the control of the pressure of water 

injected or ejected as a function of the volume target (initial volume of the sample). 

Obviously this is a “global” constant volume condition, obtained all over the sample, and not 

restricted at the interface layer. Three test results ([36]) corresponding to initial external radial 

pressure of 100 kPa (test CS1), 200 kPa (test CS2) and 400 kPa (test CS3) are simulated. The 

sand samples tested have an initial density index ID of about 0.49 (eo = 0.743), and the 

normalised roughness of the surface of the cylinder is Rn = 1. 

The numerical computations have been performed assuming the set of parameters given in 

Table 3, determined from the results of test CS1 at σn = 100 kPa. The definition of this new 

set of parameters has been necessary although the same sand (Fontainebleau sand) has been 

used for both tests carried out with the ring simple shear apparatus and the modified direct 

shear box (Table 2). This is due to the dependency of the mechanical characteristics of the 

interface on the different boundary conditions imposed by the two testing devices. 

It can be seen that the computed responses match quite well the observed experimental results 

(Fig. 7), although the computed restrained contractancy predicted by the model (local 

reduction of σn) for the higher levels of normal (radial) stress acting on the interface seems to 

be overestimated. 

As a concluding remark, it should be mentioned that the difference between the thickness of 
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the sand samples (100 mm) and the average grain size of the sand (0.2 mm) being quite large, 

the state of stress inside the sample can not be assumed to be rigorously homogeneous. As a 

consequence the mechanical response of the sample in terms of evolution of the external 

radial pressure should be considered in a qualitative way. As a matter of fact, it does not 

correspond to the real (local) behaviour of the interface in the normal (radial) direction. From 

a computational viewpoint it is believed that this is not of major trouble, in the sense that the 

right trends of the mechanical behaviour of the interface should be well captured by the 

model, which is the case. 

Test at constant normal stiffness 

The final set of interface tests considered in order to validate the capability of the model is the 

one presented recently by Fakharian and Evgin [43]. Tests were conducted on a Cyclic 3-

Dimensional Simple Shear Interface (C3DSSI) apparatus between samples of medium Silica 

sand and steel plates having variable range of roughness. The only relevant physical 

characteristic reported by the authors is a D50 of 0.6 mm (Table 1). Also in this case details of 

the experimental procedure can be found in the original reference. We have considered three 

tests carried out between dense Silica sand (ID = 0.88) and rough steel plate. One test has been 

performed at constant normal stress σn = 100 kPa (Test 1, Fig. 9). The other two tests (Test 2 

and Test 3) were conducted with the same initial conditions given in test Test 1 (σn = 100 

kPa, ID = 0.88), but imposing during the test a constant normal stiffness as a new boundary 

condition (i. e. dσn/dun = K). The calibration of model parameters have been achieved  using 

the results of the constant normal stress test Test 1 at σn = 100 kPa (Table 2), the values of the 

stiffness Kn and Kt which are those proposed by Fakharian and Evgin [43]. These parameters 

were consequently used to predict the results of tests Test 2 and Test 3 at constant normal 

stiffness of 400 kPa/m and 800 kPa/m, respectively. The results of the simulations presented 
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in Fig. 9 seem to be qualitatively and quantitatively in agreement with the experimental 

results. This agreement is obviously good for the Test 1, which served for the parameter 

calibration. 

5. Closure 

This work addresses the description of the mechanical behaviour of granular soil-structure 

interfaces. To this purpose, the formulation of an elasto-plastic model able to describe the 

main features of the behaviour of the interface is proposed. The model allows for the 

description of the basic aspects identified in the interface tests, such as: hardening/softening 

mechanical response, phase transformation and ultimate state. It also includes the effect of the 

normal stress level on the mobilised dilatancy at the interface. 

It is believed that the major advantages of the proposed constitutive law lie in the fact that: 

1) parameters have a direct meaning and are relatively easy to found; 

2) behaviour at ultimate state is introduced in a simple way, and reflect the relevant physical 

mechanisms involved (compaction and dilation). 

With respect to point (1), the number of parameters of the model is somewhat limited and a 

methodology for their determination has been briefly outlined. Concerning point (2), as 

already discussed in section 2, the mechanism associated to the modelling of the interface 

behaviour at ultimate state is fully consistent with the choice of the plastic potential function 

and its evolution. 

The validation of the proposed approach has been carried out on the experimental results of 

interface tests achieved by means of a modified direct shear box, a ring simple shear 

apparatus and a Cyclic 3-Dimensional Simple Shear apparatus (C3DSSI). However, other 

stress paths or boundary conditions could be considered in future works. The model provides 

satisfactory predictions of the behaviour of the interface for tests at imposed constant normal 
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stress, at imposed constant global volume and finally at imposed constant normal stiffness. It 

is believed that further improvements of the present version could be included in the 

formulation of the constitutive law without major difficulties, namely: cyclic loading and 

material degradation (grain crushing). 
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TABLES AND FIGURE CAPTIONS  
 

Table 1. Physical characteristics of the tested sands 

Table 2. Values of the constitutive parameters used for the numerical study of interface tests carried out on a 

modified direct shear box and C3DSSI apparatus at constant normal stress (N = 0.55, for Silica sand N = 0). 

Table 3. Values of the constitutive parameters used for the numerical study of interface test between 

Fontainebleau sand and rough metal plate carried out on a ring simple shear box at constant global 

volume (N = 0.55). 

 

 

Fig. 1. Typical mechanical response of the interface 

Fig. 2. Yield surface and plastic potential functions 

Fig. 3. Evolution of the plastic potential function in the σn-τ stress plane 

Fig. 4. Evolution of µ, µc and D versus parameter p
tu  

Fig. 5. Comparison of model predictions and experimental results: interface tests at constant normal 

stress carried out on a modified direct shear box (Fontainebleau sand-rough metal plate ID = 0.46, 

experimental data from De Gennaro [36]) 

Fig. 6. Comparison of model predictions and experimental results: interface tests at constant normal 

stress carried out on a modified direct shear box (Sydney sand-rough metal plate, experimental data 

from Tabucanon and Airey [6]) 
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Tables and Figures 
 

 

 

 

 

Table 1. Physical characteristics of the tested sands 

Sand γdmin (kN/m3) γdmax (kN/m3) γs  (kN/m3) emax emin D50 (mm) CU 

Fontainebleau 13.8 17.2 26.7 0.94 0.54 0.23 1.78 

Sidney(1) - - 26.5 0.84 0.54 0.30 2 

Silica(2) - - - - - 0.60 - 
                     (1) Tabucanon and Airey (1992), (2) Fakharian and Evgin (2000) 

 

 

 

Table 2. Values of the constitutive parameters used for the numerical study of interface tests carried out on a 

modified direct shear box and C3DSSI apparatus at constant normal stress (N = 0.55, for Silica sand N = 0). 

Sand kn (m-1) kt (m-1) µo µf µr µco A Ao B (m) utf
p (mm) t (mm) 

Fontainebleau 0.86x105 0.37x105 0 0.78 0.7 0.67 0.00045 4 0.05 1.4 10-3 2 

Sidney 0.6x106 0.3x106 0 0.7#0.96 0.7 0.46 0.00011 20 0.08 4.7 10-4 3 

Silica 6x106 1x106 0 0.81 0.6 0.49 0.00006 12 0.05 4.3 10-4 6 

 

 

Table 3. Values of the constitutive parameters used for the numerical study of interface test between 

Fontainebleau sand and rough metal plate carried out on a ring simple shear box at constant volume (N = 0.55). 

Sand kn (m-1) kt (m-1) µo µf µr µco A Ao B (m) utf
p (mm) t (mm) 

Fontainebleau 0.24x105 0.14x105 0 0.45 0.45 0.34 0.0003 - 0.08 5 10-3 2 
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Fig. 1. Typical mechanical response of the interface 

 

 

Fig. 2. Yield surface and plastic potential functions 
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Fig. 3. Evolution of the plastic potential function in the σn-τ stress plane 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Evolution of µ, µc and D versus parameter p
tu  
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Fig. 5. Comparison of model predictions and experimental results: interface tests at constant normal 

stress carried out on a modified direct shear box (Fontainebleau sand-rough metal plate ID = 0.46, 

experimental data from De Gennaro [36]) 

 

 

 

Fig. 6. Comparison of model predictions and experimental results: interface tests at constant normal 

stress carried out on a modified direct shear box (Sydney sand-rough metal plate, experimental data 

from Tabucanon and Airey [6]) 
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   (a)        (b) 

   (c) 

Fig. 7. Comparison of model predictions and experimental results: interface tests at constant volume 

carried out on a ring simple shear box (Fontainebleau sand-rough metal plate, ID = 0.49) 
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   (a)        (b) 

(c) (d) 

 

Fig. 8. Comparison of model predictions and experimental results: interface tests at constant constant 

normal stress and constant normal stiffness carried out on the C3DSSI apparatus (Silica sand-rough 

metal plate ID = 0.88, experimental data from Fakharian and Evgin [43]) 
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