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Abstract

In this paper, we prove new pinching theorems for the first eigen-
value A;(M) of the Laplacian on compact hypersurfaces of the Eu-
clidean space. These pinching results are associated with the upper
bound for A\;(M) in terms of higher order mean curvatures Hy. We
show that under a suitable pinching condition, the hypersurface is dif-
feomorpic and almost isometric to a standard sphere. Moreover, as a
corollary, we show that a hypersurface of the Euclidean space which
is almost Einstein is diffeomorpic and almost isometric to a standard
sphere.

Key words: Laplacian, eigenvalues, pinching, hypersurfaces, r-th mean cur-
vatures, almost-Einstein
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1 Introduction and Preliminaries

Let (M"™, g) be a n-dimensional compact, connected, oriented manifold with-
out boundary, isometrically immersed by ¢ into the (n + 1)-dimensional Eu-
clidean space, (R""! can), i.e., ¢*can = g. If, in addition, (M™, g) is Ein-
stein, then a well-known result of Cartan and Thomas ([[I0]), also proved by
Fialkow ([]), says that M is a round sphere S™(R) of corresponding radius.



A natural question is to ask what one could say if (M™, g) is almost-Einstein,
that is, ||Ric — kg||« < €, for some positive constant k.

Recently, J.F. Grosjean gave a new proof of the Thomas-Cartan theorem
using an upper bound of the first eigenvalue of the Laplacian. Indeed, Gros-
jean proved in [[] that if (M™, g) has positive scalar curvature, then the first
eigenvalue of the Laplacian satisfies

1
M (M) < —— [[Scal[x,

with equality only for geodesic spheres (here Scal denotes the scalar curva-
ture).

If (M™,g) is Einstein, i.e., Ric = (n — 1)g, we know by the Lichnerowicz
theorem that \;(M) > n, and by the above upper bound

1

So A\;(M) = n and we are in the equality case of both inequalities, that is,
M =S".

This approach leads naturally to consider a pinching result on the first
eigenvalue of the Laplacian, which allows to show that an almost Einstein
hypersurface of R is close to a sphere.

First, we can deduce from a theorem of Aubry ([]), which is a pinch-
ing theorem corresponding to the Lichnerowicz inequality, that if € is small
enough, then M is homeomorphic to S (see Theorem ).

Nethertheless, Aubry’s result does not yield to a sufficiently strong rigid-
ity result. For this, we will study another pinching of the first eigenvalue of
the Laplacian, which is associated with an extrinsic upper bound involving
the scalar curvature. In fact, in this paper, we are interested in more general
upper bounds in terms of higher order mean curvatures.

In [, Reilly gives upper bounds for A\;(M), in terms of higher order
mean curvatures Hj, which are defined as the symmetric polynomials in the
principal curvatures. He shows that for all k € {1,--- ,n}:

1) A (M) ( / m)?% |

with equality only for the standard spheres of R"*!.
By the Hélder inequality, we get similar inequalities with the L?’-norms
(p>1) of H:

(2) (M) ( /M H) < Wufm%p.
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As for inequality (), the equality case in (B]) characterizes the standard
spheres.

Then, a natural question is to know if there exists a pinching result as the
following theorem proved by B. Colbois and J.F. Grosjean ([f])? Forp > 2
and any € > 0, there exists a constant C. depending only on n and ||H ||~ so
that if the pinching condition

n
WHHH%@ —C: <M(M)
is true, then the Haussdorff distance between M and the sphere S (O, %)
1$ at most €.

We give a positive answer to this question, and, as we will see, the case

k = 2, that is involving H; and H,, will solve the problem for almost-Einstein
hypersurfaces.

Theorem 1. Let (M™,g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R™' and po the center
of mass of M. Assume that V(M) =1 and let k € {1,---,n} such that
Hy > 0. Then, for any p > 2 and for any € > 0, there exists a constant C.
depending only on e, n, ||H||w and ||Hg||2p such that

(Pc.) A (M) (/M Hk1)2 - WIIHL@\@ > —C.

is satisfied, then

i) ¢(M)CB(xO,\/%+E)\B(xo,\/%—e).

ii) Vr € S (:co, %) , B(z,e) N (M) # 0.

We recall that the Haussdorff distance between two compact subsets A
and B of a metric space (E,d) is given by

dy(A, B) =inf {n > 0|B C V,(A) and a C V,(B)},

where for any subset A, the set V,(A) is the tubular neighborhood of A
defined by V,(A) = {z € E|d(z, A) < n}. So, i) and ii) of Theorem [ imply

that the Haussdorff distance between M and S (:po, W) is at most €.



Remark 1. We will see in the proof that C. — 0 when ||H||ooc — 00 or

e — 0.

In this second theorem, if the pinching condition is strong enough, with
a control on the L*°-norm of the second fundamental form B, we obtain that
M is diffeomorphic and almost-isometric to a round sphere in the following
sense

Theorem 2. Let (M",g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R" and po the center
of mass of M. Assume that V(M) = 1 and let k € {1,--- ,n} such that
Hy > 0. Then for any p > 2, there exists a constant K depending only on n,
||Bl|so and ||Hy||2p such that if the pinching condition

(Pr) M (M) (/M Hk—1)2 - WHHM@I) > —K

15 satisfied, then M is diffeomorphic to S™.
More precisely, there exists a diffeomorphism F from M into the sphere

Sr ( /W) of radius AI?M) which is a quasi-isometry. Namely, for any

0 €]0,1[, there exists a constant Ky depending only on 6, n, ||Bl|s and
||H|l2p so that the pinching condition with Ky implies

||dF,(w)]* = 1] <6,
for any unitary vector w € T, M.

Remark 2. We will see in the proof that the constants C., K and Ky of
Theorems [] and 3 do not depend on ||Hy||2p if p > 3.

These results have a double interest. First, they improve the results in [g].
Second, the case k = 2 is especially interesting. Indeed, for hypersurfaces of
the Euclidean space, the second mean curvature Hs is, up to a multiplicative
constant, the scalar curvature. Precisely, Hy = F})scal Then we deduce
from Theorems [l and P two corollaries for almost-Einstein hypersurfaces.

Now, we give some preliminaries for the proof of these theorems. Through-
out this paper, we consider a compact, connected, oriented Riemannian mani-
fold isometrically immersed in (R™™, can) by ¢. Let v be the outward normal
unitary vector field. We denote respectively by V and A the Riemannian
connection and the Laplacian of M, and by V the Riemannian connection



of R™"!. Finally, we denote by {-,-) the Euclidean scalar product of R™"*.
The second fundamental B of the immersion is defined by

B(Y,Z)= (Vyv,Z)
and the mean curvature H by
H 1t (B)
= —tr (B).
n
Now we recall the following well-known identity
1

(3) SAIXP? = nH (v, X) .

where X is the position vector.

We finish by recalling the definition of higher order mean curvatures.
They are extrinsic geometric invariants defined from the second fundamental
form and generalizing the mean curvature. We saw that

1

H=—0(K1,- - ,Kkn),
- 1(k1 )
where o0 is the first symmetric polynomial and 1, - - - , k,, the principal curva-
tures of M. The higher order mean curvatures are defined for k € {1,--- ,n}
by

1

Hy =

————0(K1, - Kn),
(1)

where o}, is the k-th symmetric polynomial, that is,

Uk(l'l,"' 7xn): Z xuxlk

1<iy, i sn
This definition is equivalent to
1 iy Tk
Hk:'T . Z . € jla"'7jk Biljl"'Bikjw
k! k <, <n
LSy, ks

where the B;;’s are the coefficients of the second fundamental form B in a lo-

Jis 7j/€
the usual symbols for permutation. Finally, by convention, we set Hy = 1

cal orthonormal frame {ey, ..., e,}. Moreover, we denote by € ( “r )



and H, .1 = 0.
These mean curvatures satisfy some properties as the Hsiung-Minkowski
formula (see [f])

(4) A(Hkl—Hk <X,V>) IO,

and the following inequalities

Lemma 1.1. Ifk € {1,--- ,n}, and Hy is a positive function, then

N o)

1 1
Hf <H <.--<H} <H.

2 An L*-approach to the problem

We prove Theorems [[] and P in two steps. First, we prove that if the pinching
condition (Pc) is satisfied, then M is close to a sphere in an L*-sense. For
this, we prove a first lemma which gives an estimate of the L?-norm of the
position vector X.

Lemma 2.1. If the pinching condition (Pc) is satisfied for C' < %||Hy||3,,
then .
n)\l(M) (IM kal)

(C + 2 (M) (f,, Hk,l)Q)

where Ay is a positive constant depending only on n, ||H||sx and ||Hg||2p-

A (M)

Proof: 1f (P¢) is satisfied, we have:

2
w00 ([ mer) =i, - c.
M

If, in addition, we assume that C' < §||Hy||s,, we get

2
n
)\1(M) (/ Hk—l) > §||Hk||§p7
M

and so

2 2(k—1
) n__ 2(fy Hi)” _ 2H|EY
M(M) S [H, 1,13,




Moreover, by the variational characterization of A\;(M), we have

oo [ < [ Cf;luw) —n,

where X; are the functions defined by X = Z?Ill X;0;, where {0y, -+ ,0ps1}

is the canonical frame of R"™!. So we have || X|[3 < , and by (),

A (M)
1X113 < Av(n, [ H oo, || Hl|2p).

For the left hand side, we have

on () () < +(fm)

Then, by the Holder inequality, we deduce

won ([ H) <allmii, ([ 1x2).

and with the pinching condition,

O
From now, we denote by X7 the orthogonal projection of X on M. That is,
if for z € M, {eq,...,e,} is an orthonormal frame of T, M, then

XT:Z<X,ei)ei:X—<X,1/)1/.

i=1

In the following lemma, we show that the pinching condition (Pg) implies
that the L?-norm of X7 is close to zero.

Lemma 2.2. The pinching condition (Pc) with C' < §||Hy||3, implies
X715 < AC,

where As is a positive constant depending only on n, ||H||sx and ||Hg||2p-
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Proof: We saw that

w) [ e

so by the Hsiung-Minkowski formula and the Cauchy-Schwarz inequality

o [t ([ ) < o[ )
< n</]wHk<X,V>)2

SEAL / (X, 1)
M

< IE, / (X, ).
M

N

Then we deduce

Al HJLIXTIE < nllHE, ( /M <|X|2—<X,u>2))

AT [/M xp-non ( H) / |X|2]
alltalf, = 2on) H)] 1B

< C|IX)5 < AC.

N

/A

Finally, we get

A C
1X7|3 < — o = AuC
* S WHE,

In order to prove assertion i) of Theorem [, we will show that

1= y/xm]. <

For this, we need an upper bound on the L?norm of the function

)




Before getting such an estimate, we introduce the two following vector fieds:

Y =nHyw — M(M) ([, He-1) X,

7 E|X|1/2Hky_ X
V(o Heer) X2

First, we have the following:

Lemma 2.3. The pinching condition (Pc) implies
1Y][2 < nC.
Proof: We have

Vg = MA/%+M@@<A/ﬂAY%JXF

—on (M) ( /M H,H) /M Hy (X, )

e, + o) ([ ) —omnn ([ )
< nGmHmi—nMM@<Athy>

< nC,

/A

where we used the Hsiung-Minkowski formula (@), and the fact that

X3 < :

O

We also have

Lemma 2.4. If the pinching condition (Pc) is satisfied, with C < %||Hy||3,,
then
1213 < AsC,

where As is a positive constant depending only on n, ||H||sx and ||Hg||2p-

Proof: We have
B 2 \/ )\1(nM)

|ME:AM@MﬂHﬁ&W%+LMWkwmuamww

S NG ([ B iz [ -2y 5
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By the Holder inequality, we get

1218 < (;MH“)Q < /M Hé)w < /M W)m
()25

_ n n Hdl,
SV M) [ A (M) (f\, Hi1)®

< (ﬁ)/ ﬁ [nHHkH%p xon ([ H)]

< A3C,

where Az depends only on n, ||H||~ and ||Hg||2p- Note that we have used
ol 712D
_ 2|

A (M) | H]13,

Lemma [ and the fact that O

Now, we give an upper bound for the L?>-norm of the function ¢.
Lemma 2.5. The pinching condition (Pc) with C' < %||Hy|[3, implies

lello < Adlll|3*CH1.
Proof: We have

1/2
lolle= [ #262) " <ol

Moreover,

X
12 _ X[/2x — n
/¢ XX Ran )|
| X |12 v | X |2 H, n X
= —_— V_ [
MM [ He M) [, Heo V(M) [ X]V2

|X|1/2 n
— || Z]|;.
1+ )\1(M)|| ||1

A (M) fM Hy
By the Holder inequality, we get

|X‘1/2

1

Y

<

1 1/4
Y| < +— / XQ) Y
eyl (] E) e
ASIS/4 1/2
< Wc/.

10



Finally, from Lemmas P.3 and P.4, we obtain
o' 2[1* < A,

where Ay is a positive constant depending only on n, |[H||e and ||Hg||2p-

U

3 Proof of Theorem [

The proof of Theorem [[] is an immediate consequence of the two following
lemmas:

Lemma 3.1. Forp > 2 and any n > 0, there exists K, (n, ||H ||, || Hk||2p) S0
that if (P, ) is true, then ||p||s < 1. Moreover, K, — 0 when |[H||o —
oo ormn — 0.

Lemma 3.2. [Colbois-Grosjean [3]] Let xy be a point of the sphere S(0, R) in
R™ L with the center at the origin and of radius R. Assume that vy = Re with
e € S". Now let (M",g) be a compact, connected, oriented n-diemsnional
Riemannian manifold without boundary isometrically mmersed in R" L. If

the image of M is contained in (B(O, R+n)\ B(O,R— 77)) \ B(zo, p) with
p=4(2n—1)n. Then there exists a point yo € M so that the mean curvature
of M in yq satisfies |H(yo)| = ﬁ.

We will prove Lemma B.1] in Section fj. Now, we will prove Theorem [] by
using these two lemmas.

Proof of Theorem [I] Let ¢ > 0 and consider the function

We set

n(e) := inf {f( Al(nM) —a) ,f( Al(nM) +a) M}

By definition, 7(e) > 0, and by Lemma B, there exists K, ) such that for
all v € M,

(6) F(X](@)) < nle).

11



. We will show

Now to prove the theorem, it is sufficient to assume ¢ <
that either

n n 1 n
—e <X L +e or |X|<-=
Vaon SISy Ran <3y %on

By examining the function f, it is easy to see that f has a unique local

3HH||

maximum at 5 7- Moreover, from the definition of n(e), we have

)\(M

et 4 n 3/2_f 1 [ n
TS omme. S 2t \wany) T8V )
Since we assume € < 3“5”00 g‘ /7, we have

%\/)\18\4) - \/Alle) oo

which with (f]) yields ([7).

Now, from Lemma P, we deduce that there exists a point yo € M
such that .
() (fy Hi)

(Kn<e> + M (M) (fy, Hk1)2>2.

Since Ky < 2||Hgl[3,, the condition (Pr) implies

2 2
n
M M

We deduce that )
3 VA

Since M is connected, for any z € M,

)\1(nM) me sl \/7

which proves the assertion i) of the theorem.
In order to prove the second, we consider the pinching condition (Pc.)
with C. = K (3o ) Then assertion i) is still valid.

1(2n—1)

Let z =, //\I(TLM) e S (0, \ /%), with e € S” and assume that

12

| X (yo)|* >




B(z,e) N M = (. We can apply Lemma B2 So, there exists a point yo € M
such that [H(yo)| > 221 > [|H||w since we assumed e < 3”]3“00 < nf&_“;
This is a contradiction and so B(z,e) N M # (). The assertion i) is satisfied

and C. — 0 when ||H||,c — 00 or ¢ — 0. O

4 Proof of Theorem

From Theorem [, we know that for any ¢ > 0, there exists C. depending only
on n, ||H||e and ||Hg||2p so that if (Pr.) is true, then

10| <

for all z € M. Since \/n||H||s < ||Bl|oo, it is easy to see that we can assume
that C. depends only on n, ||B||« and || Hg||2p-

The proof of Theorem P is an immediate consequence of the following
lemma about the L*>®-norm of X7.

Lemma 4.1. Forp > 2 and any n > 0, there exists K, (n,||B||c, || Hk||2p)
so that if (Py,) is true, then || XT|| < 7.

We will prove this lemma in Section f.

Proof of Theorem[d Lete < %, /ﬁ <, /AI?M). This choice of € implies

that if the pinching condition (Pc,) is true, then |X| never vanishes, and so
we can consider the following map

F:M%S(O, L)

A (M)
n X
T W\ xen X

Without any pinching condition, a straightforward computation yields to

®  Jloror 1] < |5 - s 0

for any unitary vector u € T, M. But,

n | 9

‘ n 1 ‘_ 1
M(M) X2 | X2

N X

13



We recall that 7~ < Ay < ||BJ|%,. Since we assume ¢ < . /TBi=> the right

hand side is bounded by a constant depending only on n, || B||e and || Hg||2p-
So we have

(9)

‘ n 1

M X 1‘ S 7 1Bl 11 Hill20):

Moreover, since C. — 0 when ¢ — 0, there exists e(n, || B|| s, || Hk||2p, ) SO
that C. < K,, (where K, is the constant of Lemma [[.T]) and so, || X7||w < 7.
As before, there exists a constant § depending on n, ||B||« and ||Hy||2, such
that

n 1 n 1

10
W RO MOD XT
Then, from (B), (B) and (L0), we deduce that (Pc.) implies

(u, X)? <

X5 < 0*6(n, 11 Blloo, [ Hill2p)-

[e o]

]|(m(u)|2 - 1] < ey + 1.

Take n = @/%. We can assume that € is small enough to have ey < g. In
that case, we have

‘\de(u)|2 “1l <o

Now, it is sufficient to fix 6 €]0, 1] and, F'is a local diffeomorphism from M
into S (O, %) Since S (O, )\L)) is simply connected for n > 2,

1(M
the map F'is a global diffeomorphism.

5 Application to almost-Einstein Hypersur-
faces

In this section, we give an application of Theorems [[] and f] to almost Einstein
hypersurfaces. In fact, we obtain two different rigidty results.

Corollary 1. Let (M",g) be a connected, oriented Riemannian manifold
without boundary isometrically immersed in R™™. If (M™, g) is almost-
Finstein, that is, ||Ric — kg|| < € for a positive constant k, with € small
enough depending on n, k and ||H ||, then

dy <M,S"< ”;1» <e.

14




Corollary 2. Let (M™,g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R™L. If (M™, g) is
almost-FEinstein, that is, ||Ric — kgl < € for a positive constant k, with €
small enough depending on n, k and ||B||s, then M is diffeomorphic and

almost isometric to S™ <~ / "T_l)

Proof: Assume that k = n — 1. By the assumption ||Ric — (n — 1)g||o < ¢,
the Lichnerowicz theorem implies that

nn—1-¢) ne
my>"\rm e ,
M) n—1 A

) ( ”2) |,

) inf { H,} — nSup { Hs}

1 €
n—l n—l

> (n—l) _n— ~Fnle);

So, for p > 2, we have

won ([ H)Q—nHHzH%p

V
S
VS
—_
—_

= n

WV
S

/N 7N
—_
—_

where (3, is a positive function such that (3,(¢) — 0 when ¢ — 0.

We can choose e small enough to have (,(¢) < C(n,||B||sos || Hal|2p) of
Theorem [, and we deduce that there exists € depending only on n and || B||«
so that if [|Ric—(n—1)|| < €, then M is diffeomorphic and almost isometric
to S". Since 1 — 2 < Hy < 1+ 2, there is no dependence on ||Hy|[2,. By
homothety, we get the result for any k > 0.

The proof or Corollary [l| is the same, we use Theorem [ instead of The-
orem [. O

As we mentioned, these two corollaries are to be compared to the follow-
ing thoerem obtained by a pinching result associated with the Lichnerowicz
inequality.

Theorem 3. Let (M",g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R"*! and p > 5. Then

for any k > 0, there exists e(k,n, ||K||2p) (where K is the sectional curvature
of M) such that if

||Ric — kgl|s < €,

then M is homeomorphic to S™.

15



Proof: The assumption
||IRic — kgl|s < €,

implies that the scalar curvature satisfies
0 <n(k—¢e)<Scal <n(k+e).
So the first eigenvalue of the Laplacian can be bounded form above

n(k+e¢)
n—1"

AM(M) <

On the other hand, the Lichnerowicz theorem says that
n(k —¢)

n—1

M(M) >

Now, let us recall the following theorem due to E. Aubry ([]), which a
generalization of a theorem of Ilias ([f]).

Theorem (Aubry [[]). Let p, R and A be some real numbers such that
p>5% R>0and A>0. Let (M",g) be a complete Riemannian manifold.
There exists a(p,n, A) > 0 such that if

H(M —(n—1)) ‘ }LP(B(x,R))
V(B(z, R))

Sup . < a(p,n, A),

|| K]|2p < A, and
M (M) < n(l+ a(p,n, A)),

then M is homeomorphic to S™.

In this theorem, Ric(x) is the smallest eigenvalue of the symmetric bilin-
ear form Ric(z) on T, M, and (Ric — (n — 1)) = max (0, —Ric + (n — 1)).

Since M is almost-Einstein, we are precisely in the assumptions of this
theorem, and it is sufficient to choose e(k,n, || K||2p) > 0 small enough. [

6 Proof of the technical Lemmas

The proof of Lemmas B.] and [L.1] is based on the following result due to
Colbois and Grosjean [P using a Niremberg-Moser type of argument.

16



Lemma 6.1. Let (M",g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R™ ' and let € be a
nonnegative continuous function on M such that £ is smooth for k > 2.
Assume there exist 0 <1 < m < 2 such that

1
§§2k’2A§2 <divw + (ap + kag)E* 7+ (B + kBy) 2™,

where w is a 1-form and oy, oo, B and By are some nonnegative constants.
Then for any n > 0, there exists a positive constant L depending onn, §, oy,
ag, B1, B2, ||H||sw and n so that if ||£]|ec > 7, then

|7l < LI[&]]2-

Moreover, L is bounded when n — +oo and if B; > 0, then L — +o0 if
||H||co — +00 orn — 0.

In order to prove B.] and .1, it is sufficient to find an upper bound for
the functions k2 g 2
T TAY
{ |XT|2k72A|XT|2'

For this, the pinching condition (P¢) is used only one time, to obtain an
upper bound of ||X||s depending only on n, ||H||e and ||Hg||2p-

Lemma 6.2. [f the pinching condition (P¢) is satisfied with C < %||Hk||§p;
then there exists E(n, ||H ||, ||Hk||2p) such that || X||« < E.

Proof: From (f), we have
1
SAXPIX P <l H oo X

We apply Proposition 6.1 to the function £ = | X|. We now that if || X||s >
E, then there exists a constant L(n, ||H ||, £) such that

[1XT oo < LIIX] 2.

By the pinching condition (Pg) with C' < §||Hy||3,, we obtain from Lemma

R that
[1Xloe < LA, (| Hl oo, || Hill2p) 2.

But, L is bounded when E — 0, so we can choose E = E(n, ||H ||, || Hk||2p)
big enough to have

LA, || Hl oo, || Hell2p)'"? < E.

In that case, we have || X||oc < E(n, ||H||oo, || Hk||2p)- O
Then, the proof of Lemmas B.1] and [.]] is exactly the same as the proof of
the technical Lemmas in [B], [§ or [@].
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