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Introduction and results

Recently, Bauke and Mertens have proposed in [START_REF] Bauke | Universality in the level statistics of disordered systems[END_REF] a new and original look at disordered spin systems. This point of view consists of studying the micro-canonical scenario, contrary to the canonical formalism, that has become the favorite tool to treat models of statistical mechanics. More precisely, they analyze the statistics of spin configurations whose energy is very close to a given value. In discrete spin systems, for a given system size, the Hamiltonian will take on a finite number of random values, and generally (at least, if the disorder is continuous) a given value E is attained with probability 0. One may, however, ask : How close to E the best approximant is when the system size grows and, more generally, what the distribution of the energies that come closest to E is ? Finally, how the values of the corresponding configurations are distributed in configuration space ?

The original motivation for this viewpoint came from a reformulation of a problem in combinatorial optimization, the number partitioning problem (this is the problem of partitioning N (random) numbers into two subsets such that their sums in these subsets are as close as possible) in terms of a spin system Hamiltonian [START_REF] Bauke | Number partitioning as random energy model[END_REF][START_REF] Mertens | Phase transition in the number partitioning problem[END_REF][START_REF] Mertens | A physicist's approach to number partitioning[END_REF]. Mertens conjecture stated in these papers has been proven to be correct in [START_REF] Borgs | Phase transition and finite-size scaling for the integer partitioning problem[END_REF] (see also [START_REF] Borgs | Phase diagram for the constrained integer partitioning problem[END_REF]), and generalized in [START_REF] Bovier | Poisson convergence in the restricted k-partitioning problem[END_REF] for the partitioning into k > 2 subsets. Some time later, Bauke and Mertens generalized this conjecture in the following sense : let (H N (σ)) σ∈ΣN be the Hamiltonian of any disordered spin system with discrete spins (Σ N being the configuration space) and continuously distributed couplings, let E be any given number, then the distribution of the close to optimal approximants of the level √ N E is asymptotically (when the volume of the system N grows to infinity) the same as if the energies H N (σ) are replaced by independent Gaussian random variables with the same mean and variance as H N (σ) (that is the same as for Derrida's Random Energy spin glass Model [START_REF] Derrida | Random-Energy model : an exactly solvable model of disordered systems[END_REF], that is why it is called the REM conjecture).

What this distribution for independent Gaussian random variables is ? Let X be a standard Gaussian random variable, let δ N → 0 as N → ∞, E ∈ R, b > 0. Then it is easy to compute that

P(X ∈ [E -δ N b, E + δ N b]) = (2δ N b) 1/(2π)e -E 2 /2 (1 + o(1)) N → ∞.
Let now (X σ ) s∈ΣN be |Σ N | independent standard Gaussian random variables. Since they are independent, the number of them that are in the interval [E -δ N b, E + δ N b] has a Binomial distribution with parameters (2δ N b) 1/(2π)e -E 2 /2 (1 + o(1)) and |Σ N |. If we put

δ N = |Σ N | -1 √ 2π(1/2)e E 2 /2 ,
by a well known theorem of the course of elementary Probability, this random number converges in law to the Poisson distribution with parameter b as N → ∞. More generally, the point process

σ∈ΣN δ {δ -1 N N -1/2 | √ NXσ - √ N E|}
converges, as N → ∞, to the Poisson point process in R + whose intensity measure is the Lebesgue measure. So, Bauke and Mertens conjecture states that for the Hamiltonian (H N (σ)) σ∈ΣN of any disordered spin system and for a suitable normalization C(N, E) the sequence of point processes

σ∈ΣN δ {C(N,E)|HN (σ)- √ N E|}
converges, as N → ∞, to the Poisson point process in R + whose intensity measure is the Lebesgue measure. In other words, the best approximant to √ N E is at distance C -1 (N, E)W , where W is an exponential random variable of mean 1. More generally, the kth best approximant to

√ N E is at distance C -1 (N, E)(W 1 + • • • + W k )
, where W 1 , . . . , W k are independent exponential random variables of mean 1, k = 1, 2 . . . It appears rather surprising that such a result holds in great generality. Indeed, it is well known that the correlations of the random variables are strong enough to modify e.g. the maxima of the Hamiltonian. This conjecture has been proven in [START_REF] Bovier | Local energy statistics in disordered systems : a proof of the local REM conjecture[END_REF] for a rather large class of disordered spin systems including short range lattice spin systems as well as mean-field spin glasses, like p-spin Sherringthon-Kirkpatrick (SK) models with Hamiltonian

H N (σ) = N 1/2-p/2 i1,...,ip σ i1 • • • σ ip J 1≤i1,.
..,ip≤N where J i1,...,ip are independent standard Gaussian random variables, p ≥ 1. See also [START_REF] Borgs | Proof of the local REM conjecture for number partitioning I: Constant energy scales[END_REF] for the detailed study of the case p = 1.

Two questions naturally pose themselves. (i) Consider instead of E, N -dependent energy levels, say, E N = constN α . How fast can we allow E N to grow with N → ∞ for the same behaviour (i.e. convergence to the standard Poisson point process under a suitable normalization) to hold ? (ii) What type of behaviour can we expect once E N grows faster than this value ?

The first question (i) has been investigated for Gaussian disordered spin systems in [START_REF] Bovier | Local energy statistics in disordered systems : a proof of the local REM conjecture[END_REF]. It turned out that for short range lattice spin systems on Z d this convergence is still true up to α < 1/4. For mean-field spin glasses, like p-spin SK models with Hamiltonian H N (σ) = N 1/2-p/2 i1,...,ip σ i1 • • • σ ip J i1,...,ip mentioned above, this conjecture holds true up to α < 1/4 for p = 1 and up to α < 1/2 for p ≥ 2. It has been proven in [START_REF] Borgs | Proof of the local REM conjecture for number partitioning II: Growing energy scales[END_REF] that the conjecture fails at α = 1/4 for p = 1 and α = 1/2 for p = 2. The paper [START_REF] Borgs | Proof of the local REM conjecture for number partitioning II: Growing energy scales[END_REF] extends also these results for non-Gaussian mean-field 1-spin SK models with α > 0.

The second question (ii), that is the local behaviour beyond the critical value of α, where Bauke and Mertens conjecture fails, has been investigated for Derrida's Generalized Random Energy Models ( [START_REF] Derrida | A generalisaton of the random energy model that incldes correlations betwen energies[END_REF]) in [START_REF] Bovier | A tomography of the GREM : beyond the REM conjecture[END_REF].

Finally, the paper [START_REF] Ben Arous | A new REM conjecture[END_REF] introduces a new REM conjecture, where the range of energies involved is not reduced to a small window. The authors prove that for large class of random Hamiltonians the point process of properly normalized energies restricted to a sparse enough random subset of spin configuration space converges to the same point process as for the Random Energy Model, i.e. Poisson point process with intensity measure π -1/2 e -t √ 2 ln 2 dt. In this paper we study Bauke and Merten's conjecture on the local behaviour of energies not for disordered spin systems but for directed polymers in random environment. These models have received enough of attention of mathematical community over past fifteen years, see e.g. [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] for a survey of the main results and references therein. Let ({w n } n≥0 , P ) is a simple random walk on the d-dimensional lattice Z d . More precisely, we let Ω be the path space Ω = {ω = (ω n ) n≥0 ; ω n ∈ Z d , n ≥ 0}, F be the cylindrical σ-field on Ω and for all n ≥ 0, ω n : ω → ω n be the projection map. We consider the unique probability measure P on (Ω, F ) such that ω 1 -ω 0 , . . . , ω n -ω n-1 are independent and

P (ω 0 = 0) = 1, P (ω n -ω n-1 = ±δ j ) = (2d) -1 , j = 1, . . . , d,
where δ j = (δ kj ) d k=1 is the jth vector of the canonical basis of Z d . We will denote by

S N = {ω N = (i, ω i ) N i=0 } ((i, ω i ) ∈ N × Z d
) the space of paths of length N . We define the energy of the path

ω N = (i, ω i ) N i=0 as η(ω N ) = N -1/2 N i=1 η(i, ω i ) (1)
where {η(n, x) : n ∈ N, x ∈ Z d } is a sequence of independent identically distributed random variables on a probability space (H, G, P). We assume that they have mean zero and variance 1.

Our first theorem extends Bauke and Merens conjecture for directed polymers.

Theorem 1 Let η(n, x), {η(n, x) : n ∈ N, x ∈ Z d }, be the i.i.d. random variables of the third moment finite and with the Fourier transform φ(t) such that |φ(t

)| = O(|t| -1 ), |t| → ∞. Let E N = c ∈ R and let δ N = π/2e c 2 /2 ((2d) N ) -1 . ( 2 
)
Then the point process

ω N ∈SN δ {δ -1 N |η(ω N )-EN |} (3) 
converges weakly as N ↑ ∞ to the Poisson point process P on R + whose intensity measure is the Lebesgue measure. Moreover, for any ǫ > 0 and any b ∈ R + P(∀N 0 ∃N ≥ N 0 , ∃ω N,1 , ω N,2 : cov (η(ω N,1 ), η(ω N,2 )) > ǫ :

|η(ω N,1 ) -E N | ≤ |η(ω N,2 ) -E N | ≤ δ N b) = 0. ( 4 
)
The decay assumption on the Fourier transform is not optimal, we believe that it can be weaken but we did not try to optimize it. Nevertheless, some condition of this type is needed, the result can not be extended for discrete distributions where the number of possible values the Hamiltonian takes on would be finite.

The next two theorems prove Bauke and Mertens conjecture for directed polymers in Gaussian environment for growing levels E N = cN α . We are able to prove that this conjecture holds true for α < 1/4 for polymers in dimension d = 1 et and α < 1/2 in dimension d ≥ 2. We leave this investigation open for non-Gaussian environments.

The values α = 1/4 for d = 1 and α = 1/2 for d ≥ 2 are likely to be the true critical values. Note that these are the same as for Gaussian SK-spin glass models for p = 1 and p = 2 respectively according to [START_REF] Borgs | Proof of the local REM conjecture for number partitioning II: Growing energy scales[END_REF], and likely for p ≥ 3 as well.

Theorem 2 Let η(n, x), {η(n, x) : n ∈ N, x ∈ Z d }, be independent standard Gaussian random variables. Let d = 1. Let E N = cN α with c ∈ R, α ∈ [0, 1/4[ and δ N = π/2e E 2 N /2 (2 N ) -1 . (5) 
Then the point process

ω N ∈SN δ {δ -1 N |η(ω N )-EN |} (6) 
converges weakly as N ↑ ∞ to the Poisson point process P on R + whose intensity measure is the Lebesgue measure. Moreover, for any ǫ > 0 and any b ∈ R +

P(∀N 0 ∃N ≥ N 0 , ∃ω N,1 , ω N,2 : cov (η(ω N,1 ), η(ω N,2 )) > ǫ : |η(ω N,1 ) -E N | ≤ |η(ω N,2 ) -E N | ≤ δ N b) = 0. ( 7 
)
Theorem 3 Let η(n, x), {η(n, x) : n ∈ N, x ∈ Z d } be independent standard Gaussian random variables. Let d ≥ 2. Let E N = cN α with c ∈ R, α ∈ [0, 1/2[ and δ N = π/2e E 2 N /2 ((2d) N ) -1 . ( 8 
)
Then the point process

ω N ∈SN δ {δ -1 N |η(ω N )-EN |} (9) 
converges weakly as N ↑ ∞ to the Poisson point process P on R + whose intensity measure is the Lebesgue measure. Moreover, for any ǫ > 0 and any b ∈ R + P(∀N 0 ∃N ≥ N 0 , ∃ω N,1 , ω N,2 : cov (η(ω N,1 ), η(ω N,2 )) > ǫ :

|η(ω N,1 ) -E N | ≤ |η(ω N,2 ) -E N | ≤ δ N b) = 0. ( 10 
)
Acknowledgements. The author thanks Francis Comets for introducing him to the area of directed polymers. He also thanks Stephan Mertens and Anton Bovier for attracting his attention to the local behavior of disordered spin systems and interesting discussions.

2 Proofs of the theorems.

Our approach is based on the following sufficient condition of convergence to the Poisson point process. It has been proven in a somewhat more general form in [START_REF] Bovier | Poisson convergence in the restricted k-partitioning problem[END_REF].

Theorem 4 Let V i,M ≥ 0, i ∈ N, be a family of non-negative random variables satisfying the following assumptions : for any l ∈ N and all sets of constants b j > 0, j = 1, . . . , l lim M→∞ (i1,...,i l )∈{1,...,M}

P(∀ l j=1 V ij ,M < b j ) → l j=1 b j
where the sum is taken over all possible sequences of different indices (i 1 , . . . , i l ). Then the point process

M i=1 δ {Vi,M }
on R + converges weakly in distribution as M → ∞ to the Poisson point process P on R + whose intensity measure is the Lebesgue measure.

Hence, in all our proofs, we just have to verify the hypothesis of Theorem 4 for V i,M given by δ -1 N |η(ω N,i ) -E N |, i.e. we must show that

(ω N,1 ,...,ω N,l )∈S ⊗l N P(∀ l i=1 : |η(ω N,i ) -E N | < b i δ N ) → b 1 • • • b l (11)
where the sum is taken over all sets of different paths (ω N,1 , . . . , ω N,l ).

Informal proof of Theorem 1. Before proceeding with rigorous proofs let us give some informal arguments supporting Theorem 1.

The random variables η(ω N,i ), i = 1, . . . , l, are the sums of independent identically distributed random variables with mean 0 and the covariance matrix B N (ω N,1 , . . . , ω N,l ) with 1 on the diagonal and the covariances cov (η(ω 1) should be chosen of an appropriate order) for all pairs i = j, i, j = 1, . . . , l, as N → ∞, is (2d) N l (1 -γ(N )) as N → ∞ where γ(N ) is exponentially small in N . For all such sets (ω N,1 , . . . , ω N,i ), by the local Central Limit Theorem, the random variables η(ω N,i ), i = 1, . . . , l, should behave asymptotically as Gaussian random variables with covariances b i,j (N ) = o(1) and the determinant of the covariance matrix 1 + o(1). Therefore, the probability that these random variables belong to

N,i ), η(ω N,j )) = N -1 #{m : ω N,i m = ω N,j m } ≡ b i,j (N ). The number of sets (ω N,1 , . . . , ω N,l ) with b i,j (N ) = o(1) (o(
[-δ N b i + c, δ N b i + c] respectively for i = 1, . . . , l, equals (2δ N b 1 ) • • • (2δ N b l )( √ 2π) -l e -c 2 l/2 = b 1 • • • b l 2 -N l (1 + o(1)).
Since the number of such sets (ω N,1 , . . . , ω N,l ) is (2d) N l (1+o(1)), the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] 

over them converges to b 1 • • • b l .
Let us turn to the remaining tiny part of S ⊗l N where (ω N,1 , . . . , ω N,l ) are such that the covariances b i,j (N ) = o(1) with o(1) of an appropriate order for some i = j, i, j = 1, . . . , l, N → ∞.

The number of such sets is exponentially smaller than (2d) N l . Here two possibilities should be considered differently.

The first one is when the covariance matrix is non-degenerate. Then, invoking again the Central Limit Theorem, the probabilities P(•) in this case are not greater than

(detB N (ω N,1 , . . . , ω N,l )) -1/2 (2δ N b 1 ) • • • (2δ N b l )( √ 2π) -l .
From the definition of the covariances of η(ω N,i ), det B N (ω N,1 , . . . , ω N,l ) is a finite polynomial in the variables 1/N . Therefore the probabilities P(•) are bounded by (2d) -N l up to a polynomial term, while the number of sets (ω N,1 , . . . , ω N,l ) such that b i,j (N ) = o(1) some i = j, i, j = 1, . . . , l, is exponentially smaller than (2d) N l . Therefore the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] over such sets (ω N,1 , . . . , ω N,l ) converges to zero exponentially fast.

Let now (ω N,1 , . . . , ω N,l ) be such that B N (ω N,1 , . . . , ω N,l ) is degenerate of the rank r < l. Then, without loss of generality, we may assume that η(ω N,1 ), . . . , η(ω N,r ) are linearly independent, while η(ω N,r+1 ), . . . , η(ω N,l ) are their linear combinations. Then the probabilities P(•) are bounded by the probabilities that only η(ω N,1 ), . . . , η(ω N,r ) belong to the corresponding intervals, which are at most 2 -N r up to a polynomial term as previously. Moreover, we will show that for no one m = 0, 1, . . . , N , ω N,1 m , . . . , ω N,r m can not be all different. Otherwise, each of ω N,r+1 , . . . , ω N,l would coincide with one of ω N,1 , . . . , ω N,r , which is impossible since the sum ( 11) is taken over sets of different(!) paths. This implies that the number of such sets (ω N,1 , . . . , ω N,r ) is exponentially smaller than 2 N r . Furthermore, the number of possibilities to complete each of these sets by ω N,r+1 , . . . , ω N,l such that η(ω N,r+1 ), . . . , η(ω N,l ) are linear combinations of η(ω N,1 ), . . . , η(ω N,r ) is N -independent. Thus the number of sets (ω N,1 , . . . , ω N,l ) in this case being exponentially smaller than 2 N r , and the probabilities being 2 -N r up to a polynomial term, the corresponding sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] converges to zero. This completes the informal proof of (3) in Theorem 1.

We now give rigorous proofs. We start with proofs of Theorems 2 and 3 in Gaussian environment and give the proof of Theorem 1 after that.

Proof of Theorem 2. For η ∈]0, 1/2[ let us denote by

R η N,l = {(ω N,1 , . . . , ω N,l ) : cov(η(ω N,i ), η(ω N,j )) ≤ N η-1/2 , ∀i, j = 1, . . . , l, i = j}. ( 12 
)
Step 1. As a first preparatory step, we need to estimate the capacity of R η N,l in [START_REF] Erdos | Some problems concerning the stucture of random walk paths[END_REF]. Let us first note that for any two paths ω

N,1 , ω N,2 ∈ S N cov(η(ω N,1 ), η(ω N,2 )) = s/N if and only if #{m : (ω 1 m , m) = (ω 2 m , m)} = s, i.
e. the number of moments of time within the period [0, N ] when the trajectories ω N,1 and ω N,2 are at the same point of the space Z equals s. But due to the symmetry of the simple random walk

# ω N,1 , ω N,2 : #{m ∈ [0, . . . , N ] : ω 1 m -ω 2 m = 0} = s = # ω N,1 , ω N,2 : #{m ∈ [0, . . . , N ] : ω 1 m + ω 2 m = 0} = s . ( 13 
)
Taking into account the fact that the random walk starting from 0 can not visit 0 at odd moments of time, we obtain that (13) equals

# ω 2N : #{m ∈ [0, . . . , 2N ] : ω m = 0} = s .
This last number is well-known for the simple random walk on

Z : it equals 2 2N 2 s-2(2N ) 2N 2(2N )-s
(see e.g. [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]) which is, by Stirling's formula, when /4 as N → ∞. Finally, we obtain that for all N ≥ 0 the number (13) it is not greater than 2 2N e -hN 2η with some constant h > 0. It follows that for all N > 0

s = [N 1/2+η ], η ∈]0, 1/2[, equivalent to 2 2N (2πN ) -1/2 e -s 2 /(2(2N )) = 2 2N (2πN ) -1/2 e -N 2η
|S ⊗,l N \ R η N,l | ≤ (l(l -1)/2)2 N (l-2) # ω N,1 , ω N,2 : #{m ∈ [0, . . . , N ] : ω 1 m -ω 2 m = 0} ≥ N 1/2+η ≤ 2 N l CN exp(-hN 2η ) ( 14 
)
where C > 0, h > 0 are some constants.

Step 2. The second preparatory step is the estimation ( 16) and (18) of the probabilities in the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF]. Let B N (ω N,1 , . . . , ω N,l ) be the covariance matrix of the random variables η(ω N,i ) for i = 1, . . . , l. Then, if B N (ω N,1 , . . . , ω N,l ) is non-degenerate,

P(∀ l i=1 : |η(ω N,i ) -E N | < b i δ N ) = C(EN ) e -( zB -1 N (ω N,1 ,...,ω N,l ) z)/2 (2π) l/2 detB N (ω N,1 , . . . , ω N,l ) d z (15) 
where

C(E N ) = { z = (z 1 , . . . , z l ) : |z i -E N | ≤ δ N b i , ∀i = 1, . . . , l}.
Let η ∈]0, 1/2[. Since δ N is exponentially small in N , we see that uniformly for (ω N,1 , . . . , ω N,l ) ∈ R η N,l , the probability ( 15) equals

(2δ N / √ 2π) l (b 1 • • • b l )e -( EN B -1 N (ω N,1 ,...,ω N,l ) EN )/2 (1 + o(1)) = (2δ N / √ 2π) l (b 1 • • • b l )e -EN 2 (1+O(N η-1/2 ))/2 (1 + o(1)) (16) 
where we denoted by E N the vector (E N , . . . , E N ).

We will also need a more rough estimate of the probability (15) out of the set R η N,l . Let now the matrix B N (ω N,1 , . . . , ω N,l ) be of the rank r ≤ l. Then, if r < l, there are r paths among ω N,1 , . . . , ω N,l such that corresponding r random variables η(ω N,i ) form the basis. Without loss of generality we may assume that these are ω N,1 , . . . , ω N,r . Then the matrix B N (ω N,1 , . . . , ω N,r ) is non-degenerate and η(ω N,r+1 ), . . . , η(ω N,l ) are linear combinations of η(ω N,1 ), . . . , η(ω N,r ). We may now estimate from above the probabilities (11) by the probabilities P(∀ r i=1 : |η(ω N,i ) -E N | < b i δ N ) that can be expressed in terms of the r-dimmensional integrals like [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. Consequently, in this case

P(∀ l i=1 : |η(ω N,i ) -E N | < b i δ N ) ≤ (2δ N / √ 2π) r b 1 • • • b r detB N (ω N,1 , . . . , ω N,r ) . ( 17 
)
From the definition of the matrix elements, one sees that detB N (ω N,1 , . . . , ω N,l ) is a finite polynomial in the variables 1/N . Hence, if the rank of B(ω N,1 , . . . , ω N,r ) equals r, we have for all

N > 0 P(∀ l i=1 : |η(ω N,i ) -E N | < b i δ N ) ≤ 2 -N r e c 2 rN 2α /2 N k(r) (18) 
for some k(r) > 0.

Step 3. Armed with ( 14), ( 16) and (18), we now proceed with the proof of the theorem.

For given α ∈]0, 1/4[, let us choose first η 0 ∈]0, 1/4[ such that 2α -1/2 + η 0 < 0. ( 19 
)
Next, let us choose

η 1 > η 0 such that 2α -1/2 + η 1 < 2η 0 , (20) 
then

η 2 > η 1 such that 2α -1/2 + η 2 < 2η 1 , (21) 
etc. After i -1 steps we choose

η i > η i-1 such that 2α -1/2 + η i < 2η i-1 . (22) 
Let us take e.g. η i = (i + 1)η 0 . We stop the procedure at n = [α/η 0 ]th step, that is

n = min{i ≥ 0 : α < η i }. (23) 
Note that η n-1 ≤ α < 1/4, and then η n = η n-1 + η 0 < 1/2. We will prove that the sum (11

) over R η0 N,l converges to b 1 • • • b l , while those over R ηi N,l \ R ηi-1 N,l
for i = 1, 2, . . . , n and the one over S ⊗l N \ R ηn N,l converge o zero. By [START_REF] Mertens | Phase transition in the number partitioning problem[END_REF], each term of the sum (11) over R η0 N,l equals

(2δ N / √ 2π) l (b 1 • • • b l )e -EN 2 (1+O(N η 0 -1/2 ))/2 (1 + o(1)).
Here e EN 2 ×O(N η 0 -1/2 ) = 1 + o(1) by the choice (19) of η 0 . Then, by the definition of δ N (5), each term of the sum (11

) over R η0 N,l is (b 1 • • • b l )2 -N l (1 + o(1))
uniformly for (ω N,1 , . . . , ω N,l ) ∈ R η0 N,l . The number of terms in this sum is

|R η0 N,l |, that is 2 N l (1 + o(1)
) by [START_REF] Erdos | Some problems concerning the stucture of random walk paths[END_REF]. Hence, the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] 

over R η0 N,l converges to b 1 • • • b l . Let us consider the sum over R ηi N,l \ R ηi-1
N,l for i = 1, 2, . . . , n. Each term in this sum equals

(2δ N / √ 2π) l (b 1 • • • b l )e -EN 2 (1+O(N η i -1/2 )/2 (1 + o(1))
uniformly for (ω N,1 , . . . , ω N,l ) ∈ R ηi N,l . Then, by the definition of δ N (5), it is bounded by 2 -N l C i e hiN 2α-1/2+η i with some constants C i , h i > 0. The number of terms in this sum is not greater than

|S ⊗l N \ R ηi-1 N,l | which is bounded due to (14) by CN 2 N l exp(-hN 2ηi-1
). Then by the choice of η i (22) this sum converges to zero exponentially fast.

Let us now treat the sum over S ⊗l N \ R ηn N,l . Let us first study the sum over (ω N,1 , . . . , ω N,l ) such that the matrix B N (ω N,1 , . . . , ω N,l ) is non-degenerate. By (18) each term in this sum is bounded by 2 -N l e c 2 lN 2α /2 N k(l) for some k(l) > 0. The number of terms in this sum is bounded by CN 2 N l exp(-hN 2ηn ) by [START_REF] Erdos | Some problems concerning the stucture of random walk paths[END_REF]. Since α < η n by (23), this sum converges to zero exponentially fast.

Let us finally turn to the sum over (ω N,1 , . . . , ω N,l ) such that the matrix B(ω N,1 , . . . , ω N,l ) is degenerate of the rank r < l. By (18) each term in this sum is bounded by

2 -N r e c 2 rN 2α /2 N k(r) (24) 
for some k(r) > 0.

There are r paths among ω N,1 , . . . , ω N,l such that corresponding η(ω N,i ) form the basis. Without loss of generality we may assume that these are ω N,1 , . . . , ω N,r . Note that ω N,1 , . . . , ω N,r are such that it can not be for no one m ∈ [0, . . . , N ] that ω 1 m , . . . , ω r m are all different. In fact, assume that ω 1 m , . . . , ω r m are all different. Then η(m, ω 1 m ), . . . , η(m, ω r m ) are independent identically distributed random variables and η(m, ω r+1

m ) = µ 1 η(m, ω 1 m ) + • • • + µ r η(m, ω r m ). If ω r+1 m is different from all ω 1 m , . . . , ω r m , then η(m, ω r+1 m )
is independent from all of η(m, ω 1 m ), . . . , η(m, ω r m ), then the linear coefficients, being the covariances of η(m, ω r+1 m ) with η(m, ω 1 m ), . . . , η(m, ω r m ), are

µ 1 = • • • = µ r = 0. So, η(ω N,r+1
) can not be a non-trivial linear combination of η(ω N,1 ), . . . , η(ω N,r ). If ω r+1 m equals one of ω 1 m , . . . , ω r m , say ω i m , then again by computing the covariances of η(m, ω r+1 m ) with η(m, ω 1 m ), . . . , η(m, ω r m ), we get µ i = 1, µ j = 0 for j = 1, . . . , i -1, i + 1, . . . , r. Consequently,

η(ω i k ) = η(ω r+1 k
) for all k = 1, . . . , N , so that ω N,i = ω N,r+1 . But this is impossible since the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] is taken over different paths ω N,1 , . . . , ω N,l . Thus the sum is taken only over paths ω N,1 , . . . , ω N,r where at each moment of time at least two of them are at the same place.

The number of such sets of r different paths is exponentially smaller than 2 N r : there exists p > 0 such that is does not exceed 2 N r e -pN . (In fact, consider r independent simple random walks on Z that at a given moment of time occupy any k < r different points of Z. Then with probability not less than (1/2) r , at the next moment of time, they occupy at least k + 1 different points. Then with probability not less than ((1/2) r ) r at least once during r next moments of time they will occupy r different points. So, the number of sets of different r paths that at each moment of time during [0, N ] occupy at most r -1 different points is not greater than 2 N r (1

-(1/2 r ) r ) [N/r] .)
Given any set of r paths with η(ω N,1 ), . . . , η(ω N,r ) linearly independent, there is an N -independent number of possibilities to complete it by linear combinations η(ω N,r+1 ), . . . η(ω N,l ). To see this, first consider the equation λ 1 η(ω N,1 ) + • • • + λ r η(ω N,r ) = 0 with unknown λ 1 , . . . , λ r . For any moment of time m ∈ [0, N ] this means λ

1 η(m, ω 1 m ) + • • • + λ r η(m, ω r m ) = 0. If ω i1 m = ω i2 m = • • • ω i k m but ω j m = ω i1 m for all j ∈ {1, . . . , r} \ {i 1 , . . . , i k }, then λ i1 + • • • + λ i k = 0. Then for any m ∈ [0, N ] the equation λ 1 η(m, ω 1 m ) + • • • + λ r η(m, ω r m ) = 0 splits into a certain number n(m) (1 ≤ n(m) ≤ r) equations of type λ i1 + • • • + λ i k = 0.
Let us construct a matrix A with r columns and at least N and at most rN rows in the following way. For any m > 0, according to given ω 1 m , . . . , ω r m , let us add to A n(m) rows : each equation λ i1 + • • • + λ i k = 0 gives a row with 1 at places i 1 , . . . , i k and 0 at all other places. Then the equation λ 1 η(ω N,1 ) + • • • + λ r η(ω N,i ) = 0 is equivalent A λ = 0 with λ = (λ 1 , . . . , λ r ). Since this equation has only a trivial solution λ = 0, then the rank of A equals r. The matrix A contains at most 2 r different rows. There is less than (2 r ) r possibilities to choose r linearly independent of them. Let A r×r be an r ×r matrix consisting of r linearly independent rows of A. The fact that η(ω N,r+1 ) is a linear combination

µ 1 η(ω N,1 ) + • • • + µ r η(ω N,r ) = η(ω N,r+1
) can be written as r×r µ = b where the vector b contains only 1 and 0 : if a given row t of the matrix A r×r corresponds to the mth step of the random walks and has 1 at places i 1 , . . . , i k and 0 elsewhere, then we put b

t = 1 if ω i1 m = ω r+1 m and b t = 0 if ω i1 m = ω r+1 m .
Thus, given ω N,1 , . . . , ω N,r , there is an N independent number of possibilities to write the system A r×r µ = b with non degenerate matrix A r×r which determines uniquely linear coefficients µ 1 , . . . , µ r and consequently η(ω N,r+1 ) and the path ω N,r+1 itself through these linear coefficients. Hence, there is not more possibilities to choose ω N,r+1 than the number of non-degenerate matrices A r×r multiplied by the number of vectors b, that is roughly not more than 2 r 2 +r .

These observations lead to the fact that the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] with the covariance matrix B N (ω N,1 , . . . , ω N,l ) of the rank r contains at most (2 r 2 +r ) l-r 2 N r e -pN different terms with some constant p > 0. Then, taking into account the estimate (24) of each term with 2α < 1, we deduce that it converges to zero exponentially fast. This finishes the proof of (6).

To show [START_REF] Borgs | Phase diagram for the constrained integer partitioning problem[END_REF], we have been already noticed that the sum of terms

P(∀ 2 i=1 : |η(ω N,i )-E N | < b i δ N ) over all pairs of different paths ω N,1 , ω N,2 in S ⊗l N \ R η0
N,l converges to zero exponentially fast. Then [START_REF] Borgs | Phase diagram for the constrained integer partitioning problem[END_REF] follows from the Borel-Cantelli lemma.

Proof of Theorem 3. We have again to verify the hypothesis of Theorem 4 for V i,M given by δ -1 N |η(ω N,i ) -E N |, i.e. we must show [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF].

For β ∈]0, 1[ let us denote by K β N,l = {(ω N,1 , . . . , ω N,l ) : cov(η(ω N,i ), η(ω N,j )) ≤ N β-1 , ∀i, j = 1, . . . , l, i = j}.

Step 1. In this step we estimate the capacity of the complementary set to K β N,l in (26) and ( 27). We have :

|S ⊗,l N \ K β N,l | (25) ≤ (l(l -1)/2)(2d) N (l-2) # ω N,1 , ω N,2 : #{m ∈ [0, . . . , N ] : ω 1 m -ω 2 m = 0} > N β .
It has been shown in the proof of Theorem 2 that the number

# ω N,1 , ω N,2 : #{m ∈ [0, . . . , N ] : ω 1 m -ω 2 m = 0} > N β
equals the number of paths of a simple random walk within the period [0, 2N ] that visit the origin at least [N β ] + 1 times. Let W r be the time of the rth return to the origin of a simple random walk (W 1 = 0), R N be the number of returns to the origin in the first N steps. Then for any integer q

P (R N ≤ q) = P (W 1 + (W 2 -W 1 ) + • • • + (W q -W q-1 ) ≥ N ) ≥ q-1 k=1 P (E k )
where E k is the event that exactly k of the variables W s -W s-1 are greater or equal than N , and q -1 -k are less than N . Then

q-1 k=1 P (E k ) = q-1 k=1 q -1 k P (W 2 -W 1 ≥ N ) k (1 -P (W 2 -W 1 ≥ N )) q-1-k = 1 -(1 -P (W 2 -W 1 ≥ N )) q-1 .
It is shown in [START_REF] Erdos | Some problems concerning the stucture of random walk paths[END_REF] that in the case d = 2

P (W 2 -W 1 ≥ N ) = π(log N ) -1 (1 + O((log N ) -1 )), N → ∞. Then P (R N > q) ≤ 1 -π(log N ) -1 (1 + o(1)) q-1 . Consequently, # ω N,1 , ω N,2 : #{m ∈ [0, . . . , N ] : ω 1 m -ω 2 m = 0} > N β = (2d) 2N P (R 2N > [N β ]) ≤ (2d) 2N 1 -π(log 2N ) -1 (1 + o(1)) [N β ]-1 ≤ (2d) 2N exp(-h(log 2N ) -1 N β )
with some constant h > 0. Finally for d = 2 and all N > 0 by ( 25)

|S ⊗l N \ K η N,l | ≤ (2d) lN exp(-h 2 (log 2N ) -1 N β ) (26) 
with some constant h 2 > 0.

In the case d ≥ 3 the random walk is transient and

P (W 2 -W 1 ≥ N ) ≥ P (W 2 -W 1 = ∞) = γ d > 0.
It follows that P(R N > q) ≤ (1 -γ d ) q-1 and consequently

|S ⊗,l N \ K β N,l | ≤ (2d) lN exp(-h d N β ) (27) 
with some constant h d > 0.

Step 2. Proceeding exactly as in the proof of Theorem 2, we obtain that uniformly for (ω N,1 , . . . , ω

N,l ) ∈ K β N,l , P(∀ l i=1 : |η(ω N,i ) -E N | < b i δ N ) = (2δ N / √ 2π) l (b 1 • • • b l )e -EN 2 (1+O(N β-1 ))/2 (1 + o(1)) (28) 
where we denoted by E N the vector (E N , . . . , E N ). Moreover, if the covariance the matrix B N (ω N,1 , . . . , ω N,l ) is of the rank r ≤ l (using the fact that its determinant is a finite polynomial in the variables 1/N ) we get as in the proof of Theorem 2 that

P(∀ l i=1 : |η(ω N,i ) -E N | < b i δ N ) ≤ (2d) -N r e c 2 rN 2α /2 N k(r) (29) 
for some k(r) > 0.

Step 3. Having (26), ( 27), ( 28) and (29), we are able to carry out the proof of the theorem. For

given α ∈]0, 1/2[, let us choose first β 0 > 0 such that 2α -1 + β 0 < 0. (30) 
Next, let us choose

β 1 > β 0 such that 2α -1 + β 1 < β 0 , (31) 
then

β 2 > β 1 such that 2α -1 + β 2 < β 1 , (32) 
etc. After i -1 steps we choose

β i > β i-1 such that 2α -1 + β i < β i-1 . (33) 
Let us take e.g. β i = (i + 1)β 0 . We stop the procedure at n = [2α/β 0 ]th step, that is

n = min{i ≥ 0 : 2α < β i }. (34) 
Note that β n-1 ≤ 2α, and then

β n = β n-1 + β 0 < 2α + 1 -2α = 1.
We will prove that the sum (11) over

K β0 N,l converges to b 1 • • • b l , while those over K βi N,l \ K βi-1 N,l
for i = 1, 2, . . . , n and the one over S ⊗l N \ K βn N,l converge o zero. By (28), each term of the sum (11) over K β0 N,l equals

(2δ N / √ 2π) l (b 1 • • • b l )e -EN 2 (1+O(N β 0 -1 ))/2 (1 + o(1)).
Here e EN 2 ×O(N β 0 -1 ) = 1 + o(1) by the choice (30) of β 0 . Then, by the definition of δ N (8), each term of the sum (11

) over K β0 N,l is (b 1 • • • b l )(2d) -N l (1 + o(1))
uniformly for (ω N,1 , . . . , ω N,l ) ∈ K η0 N,l . The number of terms in this sum is

|K β0 N,l |, that is (2d) N l (1+ o(1)
) by ( 26) and ( 27). Hence, the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] 

over K β0 N,l converges to b 1 • • • b l . Let us consider the sum over K βi N,l \ K βi-1 N,l for i = 1, 2, . . . , n. By (28) each term in this sum equals (2δ N / √ 2π) l (b 1 • • • b l )e -EN 2 (1+O(N β i -1 )/2 (1 + o(1))
uniformly for (ω N,1 , . . . , ω N,l ) ∈ K βi N,l . Then, by the definition of δ N (8), it is bounded by the quantity (2d) -N l C i e hiN 2α-1+β i with some constants C i , h i > 0. The number of terms in this sum is not greater than

|S ⊗l N \ K βi-1 N,l | which is bounded by (2d) N l exp(-h 2 N βi-1 (log 2N ) -1
) in the case d = 2 due to (26) and by the quantity (2d) N l exp(-h d N βi-1 ) in the case d ≥ 3 due to (27). Then by the choice of β i (33) this sum converges to zero exponentially fast.

Let us now treat the sum over S ⊗l N \ K βn N,l . Let us first analyze the sum over (ω N,1 , . . . , ω N,l ) such that the matrix B N (ω N,1 , . . . , ω N,l ) is non-degenerate. By (29) each term in this sum is bounded by (2d) -N l e c 2 lN 2α /2 N k(l) for some k(l) > 0. The number of terms in this sum is bounded by the quantity (2d) N l exp(-h 2 N βn (log 2N ) -1 ) in the case d = 2 and by (2d) N l exp(-h d N βn ) in the case d ≥ 3 respectively by (26) and (27) . Since 2α < β n by (34), this sum converges to zero exponentially fast.

Let us finally turn to the sum over (ω N,1 , . . . , ω N,l ) such that the matrix B N (ω N,1 , . . . , ω N,l ) is degenerate of the rank r < l. By (29) each term in this sum is bounded by (2d) -N r e c 2 rN 2α /2 N k(r) for some k(r) > 0, while exactly by the same arguments as in the proof of Theorem 2, (they are, indeed, valid in all dimensions) the number of terms in this sum is less than O((2d) N r )e -pN with some constant p > 0. Hence, this last sum converges to zero exponentially fast as 2α < 1. This finishes the proof of [START_REF] Bovier | Local energy statistics in disordered systems : a proof of the local REM conjecture[END_REF]. The proof of ( 10) is completely analogous to the one of [START_REF] Borgs | Phase diagram for the constrained integer partitioning problem[END_REF].

Proof of Theorem 1. We again concentrate on the proof in the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] with E N = c.

Step 1. First of all, we need a rather rough estimate of the probabilities of [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF]. Let (ω N,1 , . . . , ω N,r ) be such that the matrix B N (ω N,1 , . . . , ω N,r ) is non-degenerate. We prove in this step that there exists a constant k(r) > 0 such that for any N > 0 and any (ω N,1 , . . . , ω N,r ) with non-degenerate B N (ω N,1 , . . . , ω N,r ), we have:

P(∀ r i=1 : |η(ω N,i ) -c| < b i δ N ) ≤ (2d) -N r N k(r) . (35) 
Let

f ω N,1 ,...,ω N,r N (t 1 , . . . , t r ) = E exp i r k=1 t k η(ω N,k )
be the Fourier transform of (η(ω N,1 ), . . . , η(ω N,r )). Then

P(∀ r i=1 : |η(ω N,i ) -c| < b i δ N ) = 1 (2π) r R r f ω N,1 ,...,ω N,r N ( t) r k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k dt 1 • • • dt r (36)
provided that the integrand is in L 1 (R d ). We will show that this is the case due to the assumption made on φ and deduce the bound (35).

We know that the function f ω N,1 ,...,ω N,r N ( t) is the product of N generating functions :

f ω N,1 ,...,ω N,r N ( t) = N n=1 E exp iN -1/2 r k=1 t k η(n, ω N,k n ) . (37) 
Moreover, each of these functions is itself a product of (at minimum 1 and at maximum r) generating functions of type φ((

t i1 + • • • + t i k )N -1/2
). More precisely, let us construct the matrix A with r columns and at least N and at most rN rows as in the proof of Theorem 2. Namely, for each step n = 0, 1, 2, . . . , N , we add to the matrix A at least 1 and at most r rows according to the following rule:

if ω N,i1 n = ω N,i2 n = • • • = ω N,i k n and ω N,j n = ω N,i1
n for any j ∈ {1, . . . , r} \ {i 1 , . . . , i k }, we add to A a row with 1 at places i 1 , . . . , i k and 0 at other r -k places. Then

f ω N,1 ,...,ω N,r N ( t) = j φ(N -1/2 (A t) j ). ( 38 
)
Since B N (ω N,1 , . . . , ω N,r ) is non-degenerate, the rank of the matrix A equals r. Let us choose in A any r linearly independent rows, and let us denote by A r the r × r matrix constructed by them.

Then by the assumption made on φ

|f ω N,1 ,...,ω N,r N ( t)| ≤ r j=1 |φ(N -1/2 (A r t) j )| ≤ r j=1 min 1, CN 1/2 |(A r t) j | ≤ C r N r/2 r j=1 min 1, 1 |(A r t) j | (39) with some constant C > 0. Furthermore r k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k ≤ r k=1 min (2δ N )b k , 2 |t k | ≤ C ′ r k=1 min (2d) -N , 1 |t k | (40) 
with some C ′ > 0. Hence,

1 (2π) r R r f ω N,1 ,...,ω N,r N ( t) r k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k dt 1 • • • dt r ≤ C 0 N r/2 r k=1 min (2d) -N , 1 |t k | min 1, 1 |(A r t) k | d t (41) 
with some constant C 0 > 0 depending on the function φ and on b 1 , . . . , b r only. Since the matrix A r is non-degenerate, using easy arguments of linear algebra, one can show that for some constant C 1 > 0 depending on the matrix A r only, we have

r k=1 min (2d) -N , 1 |t k | min 1, 1 |(A r t) k | d t ≤ C 1 r k=1 min (2d) -N , 1 |t k | 1, 1 |t k | d t. (42) 
The proof of (42) is given in Appendix. But the right-hand of (42) is finite. This shows that the integrand in (36) is in L 1 (R d ) and the inversion formula (36) is valid. Moreover, the right-hand side of (42) equals C 1 (2((2d) -N + (2d) -N N ln 2d + (2d) -N )) r . Hence, the probabilities above are bounded by the quantity C 0 N r/2 C 1 2 r (2+N ln(2d)) r (2d) -N r with C 0 depending on φ and b 1 , . . . , b r and C 1 depending on the choice of A r . To conclude the proof of (35), it remains to remark that there is an N -independent number of possibilities to construct a matrix A r (at most 2 r 2 ), since it contains only 0 or 1.

Step 2. We keep the notation R η N,l from (13) for η ∈]0, 1/2[. The capacity of this set for d = 1 is estimated in [START_REF] Erdos | Some problems concerning the stucture of random walk paths[END_REF]. Moreover by (26) for d = 2

|S ⊗l N \ R η N,l | = |S ⊗l N \ K η+1/2 N,l | ≤ (2d) N l exp(-h 2 (log 2N ) -1 N 1/2+η )
and by (27) for d ≥ 3

|S ⊗l N \ R η N,l | = |S ⊗l N \ K η+1/2 N,l | ≤ (2d) N l exp(-h d N 1/2+η ),
so that, for all d ≥ 1 there are h d , C d > 0 such that for all N > 0

|S ⊗l N \ R η N,l | ≤ (2d) N l C d N exp(-h d N 2η ). ( 43 
)
Sep 3. In this step we show that uniformly for (ω N,1 , . . . , ω N,l ) ∈ R η N,l

P(∀ l i=1 : |η(ω N,i ) -c| < b i δ N ) = (2d) -N l b 1 • • • b l (1 + o(1)). (44) 
For any (ω N,1 , . . . ω N,l ) ∈ R η N,l , we can represent the probabilities in the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] as sums of four terms :

P(∀ l i=1 : |η(ω N,i ) -c| < b i δ N ) = 1 (2π) l R l f ω N,1 ,...,ω N,l N ( t) l k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k dt 1 • • • dt l = 4 m=1 I m N (ω N,1 , . . . , ω N,l ) (45) 
where

I 1 N = 1 (2π) l R l l k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k e -tBN (ω N,1 ,...,ω N,l ) t/2 d t (46) - 1 (2π) l t >ǫN 1/6 l k=1 e -it k (-b k δN +c) -e -it k (b k δN +c)
it k e -tBN (ω N,1 ,...,ω N,l ) t/2 d t.

I 2 N = 1 (2π) l t <ǫN 1/6 l k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k × f ω N,1 ,...,ω N,l

N

( t) -e -tBN (ω N,1 ,...,ω N,l ) t/2 d t (47)

I 3 N = 1 (2π) l ǫN 1/6 < t <δN 1/2 l k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k f ω N,1 ,...,ω N,l N ( t)d t I 4 N = 1 (2π) l t >δN 1/2 l k=1 e -it k (-b k δN +c) -e -it k (b k δN +c) it k f ω N,1 ,...,ω N,l N ( t)d t
with ǫ, δ > 0 chosen according to the following Proposition 1.

Proposition 1 There exist constants N 0 , C, ǫ, δ, ζ > 0 such that for all (ω N,1 , . . . ω N,l ) ∈ R η N,l and all N ≥ N 0 the following estimates hold:

f ω N,1 ,...,ω N,l N ( t)-e -tBN (ω N,1 ,...,ω N,l ) t/2 ≤ C t 3 √ N e -tBN (ω N,1 ,...,ω N,l ) t/2
, for all t ≤ ǫN 1/6 . (48)

f ω N,1 ,...,ω N,l N ( t) ≤ e -ζ t 2 for all t < δ √ N . (49) 
The proof of this proposition mimics the one of the Berry-Essen inequality and is given in Appendix.

The first part of I 1 N is just the probability that l Gaussian random variables with zero mean and covariance matrix B N (ω N,1 , . . . , ω N,l ) belong to the intervals

[-δ N b k + c, δ N b k + c] for k = 1, . . . , l respectively. This is |zj-c|≤δN bj ,∀ l j=1 e -( zB -1 (ω N,1 ,...,ω N,l ) z)/2 (2π) l/2 detB(o N,1 , . . . , ω N,l ) d z

Appendix

Proof of (42). It is carried out via trivial arguments of linear algebra. Let m = 1, 2, . . . , r + 1, D m-1 be a non-degenerate r × r matrix with the first m -1 rows having 1 on the diagonal and 0 outside of the diagonal. (Clearly, D 0 is just a non-degenerate matrix and D r is the diagonal matrix with 1 everywhere on the diagonal.) Let us introduce the integral 

Now, observe that the left-hand side of (42) is J 0 (A r ). By (53) it is bounded by J 1 (A r 1 ) + a -1 1,1 J 1 (A r B -1 A r ). Again by (53) each of these two terms can be estimated by a sum of two terms of type J 2 (•) etc. After 2 r applications of (53) J 0 (A r ) is bounded by a sum of 2 r terms of type J r (D r ) multiplied by some constants depending only on the initial matrix A r . But all these 2 r terms J r (D r ) are the same as in the right-hand side of (42).

Proof of Proposition 1. We use the representation (38) of f ω N,1 ,...,ω N,l N ( t) as the product of a certain number K(N, ω N,1 , . . . , ω N,l ) (denote it shortly by K(N, ω), clearly N ≤ K(N, ω) ≤ lN ) of generating functions φ(N -1/2 (A t) j ) where at most 2 l are different. Each of them is of the form E exp(iN -1/2 (t i1 + • • • + t i,k )X) with X a standard Gaussian random variable. Applying the fact that |e iz -1 -iz -(iz) 2 /2!| ≤ |z| 3 /3! for any z ∈ R, we can write φ(N -1/2 (A t) j ) = 1 -

((A t) j ) 2 2!N -θ j ((A t) j ) 3 E |X| 3 3!N 3/2 ≡ 1 -α j (54) 
with some complex θ j with |θ j | < 1. It follows that there are some constants C 1 , C 2 > 0 such that for any (ω N,1 , . . . , ω N,l ) ∈ R η N,l and any j we have:

|α j | ≤ C 1 t 2 N -1 + C 2 t 3 N -3/2 .

J m- 1 (

 1 m-1 t) k | d t.Sice D m-1 is non-degenerate, there exists i ∈ {m, . . . , r} such that d m,i = 0 and the matrix D m which is obtained from the matrix D m-1 by replacing its mth row by the one with 1 at the place (m, i) and 0 at all places (m, j) for j = i is non-degenerate. Without loss of generality we may assume that i = m (otherwise juste permute the mth with the ith column in D m-1 andt i with t m in the integral J m-1 (D m-1 ) above). Since either |t m-1 | < |(D m-1 t) m-1 | or |t m-1 | ≥ |(D m-1 t) m-1 |, we can estimate J m-1 (D m-1 )roughly by the sum of the following two terms :J m-1 (D m-1) here is just J m (D m ). Let us make a change of variables in the second one : let z = B Dm-1 t, where the matrix B Dm-1 is chosen such that z 1 = t 1 , . . . , z m-1 = t m-1 , z m = (D m-1 t) m , z m+1 = t m+1 , . . . , z r = t r . (Clearly, its mth row is the same as in the matrix D m-1 , and it has 1 on the diagonal in all other r -1 rows and 0 outside of it.) Since d m,m = 0, the matrix B is non-degenerate. Then D m-1 t = D m-1 B -1Dm-1 z, where the matrix D m-1 B -1 Dm-1 is non-degenerate, and, moreover, it has the first m rows with 1 on the diagonal and 0 outside of it, as we have (D m-1 t) 1 = t 1 = z 1 , . . . , (D m-1 t) m-1 = t m-1 = z m-1 , (D m-1 t) m = z m . Then (52) can be written as J m-1 (D m-1 ) ≤ J m (D m ) + d -1 m,m J m (D m-1 B -1 Dm-1 ).

uniformly for (ω N,1 , . . . , ω N,l ) ∈ R η N,l , where we denoted by c the vector (c, . . . , c). Since

and the elements of the matrix B N (ω N,1 , . . . , ω N,l ) out of the diagonal are O(N η-1/2 ) = o(1) as N → ∞, the second part of I 1 N is smaller than (2d) -N l exponentially (with exponential term exp(-hN 1/3 ) for some h > 0).

There is a constant C > 0 such that the term

N,l and all N large enough. This follows from (51), the estimate (48) and again the fact that the elements of the matrix B N (ω N,1 , . . . , ω N,l ) out of the diagonal are

The third term I 3 N is exponentially smaller than (2d) -N l by (51) and the estimate (49). Finally, by (51)

The function f ω N,1 ,...,ω N,l N ( t) is the product of N generating functions (37). Note that for any pair ω N,i , ω N,j of (ω N,1 , . . . , ω N,l ) ∈ R η N,l , there are at most N η+1/2 steps n where ω N,i n = ω N,j n . Then there are at least N -[l(l -1)/2]N η+1/2 = a(N ) steps where all l coordinates ω N,i , i = 1, . . . , l, of the vector (ω N,1 , . . . , ω N,l ) ∈ R η N,l are different. In this case

By the assumption made on φ, this function is aperiodic and thus |φ(t)| < 1 for t = 0. Moreover, for any δ > 0 there exists h(δ) > 0 such that |φ(t)| ≤ 1 -h(δ) for |t| > δ/l. Then

) and the last integral converges due to the assumption made on φ(s).

Hence I 4 N is exponentially smaller than (2d) -N l . This finishes the proof of (44).

Step 4. We are now able to prove the theorem using the estimates (35),( 43) and (44). By (44), the sum [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] over (ω N,1 , . . . , ω N,l ) ∈ R η N,l but with B N (ω N,1 , . . . , ω N,l ) non-degenerate, by (43) has only at most (2d) N l CN exp(-hN 2η ) terms, while each of its terms by (35) with r = l is of the order (2d) -N l up to a polynomial term. Hence, this sum converges to zero. Finally, due to the fact that in any set (ω N,1 , . . . , ω N,l ) taken into account in [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF] the paths are all different, the sum over (ω N,1 , . . . , ω N,l ) ∈ R η N,l with B N (ω N,1 , . . . , ω N,l ) of the rank r < l has an exponentially smaller number of terms than (2d) N r . This has been shown in detail in the proof of Theorem 2 where the arguments did not depend on the dimension of the random walk. Since by (35) each of these terms is of the order (2d) -N r up to a polynomial term, this sum converges to zero. This concludes the proof of (3). The proof of ( 4) is completely analogous to the one of [START_REF] Borgs | Phase diagram for the constrained integer partitioning problem[END_REF].

Then |α j | < 1/2 and |α j | 2 ≤ C 3 t 3 N -3/2 with some C 3 > 0 for all t of the absolute value t ≤ δ √ N with δ > 0 small enough. Thus ln φ(N -1/2 (A t) j ) = -α j + θj α 2 j /2 (using the expansion ln(1 + z) = z + θz 2 /2 with some θ of the absolute value | θ| < 1 which is true for all z with |z| < 1/2) for all (ω N,1 , . . . , ω N,l ) ∈ R η N,l and for all t with t ≤ δ √ N with some θj such that | θj | < 1. It follows that

Since A * A = B N (ω N,1 , . . . , ω N,l ), here -

where

It follows that for ǫ > 0 small enough | exp(

for all t with t ≤ ǫN 1/6 . This proves (48). Finally |f ω N,1 ,...,ω N,l N ( t)| ≤ exp -tB N (ω N,1 , . . . , ω N,l ) t/2 exp (C 2 + C 3 /2)l t 3 N -1/2 .

(58)

Taking into account the fact that the elements of B N (ω N,1 , . . . , ω N,l ) out of the diagonal are at most N -1/2+η = o(1) as N → ∞, one deduces from (58) that for δ > 0 small enough (49) holds true with some ζ > 0 for all N large enough and all t with t ≤ δ √ N .